G là trọng tâm của tam giác ABC.. Hai mặt phẳng SGB và SGC cùng vuông góc với mặt phẳng ABC.. Tính thể tích của hình chóp S.ABC theo a.. Tìm giá trị nhỏ nhất của 1 II.. Gọi M là một điểm
Trang 1I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1 (2,0 điểm) Cho hàm số: 2 1
2
x y x
-=
- (1)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1)
b) Cho đường thẳng d: y = - x + m và hai điểm M(3;4) và N(4;5) Tìm các giá trị của m để đường
thẳng d cắt đồ thị hàm số (1) tại hai điểm phân biệt A, B sao cho 4 điểm A, B, M, N lập thành tứ giác
lồi AMBN có diện tích bằng 2
Câu 2 (1,0 điểm) Giải phương trình
2
sin sin 2 2sin cos sin cos
6 cos 2 sin( )
4
x π
x
+
.Câu 3 (1,0 điểm) Giải bất phương trình: 1 1 2 1
3
+ - - (xÎR)
Câu 4 (1,0 điểm) Tính
2
( 1) tan
1 tan
x
=
+
ò
Câu 5 (1,0 điểm) Cho hình chóp S.ABC có SA=3a (với a>0); SA tạo với đáy (ABC) một góc bằng
600 Tam giác ABC vuông tại B, · 0
30
ACB = G là trọng tâm của tam giác ABC Hai mặt phẳng (SGB) và (SGC) cùng vuông góc với mặt phẳng (ABC) Tính thể tích của hình chóp S.ABC theo a
Câu 6 (1,0 điểm) Cho 3 số thực , , x y z thỏa mãn x3+8y3+27z3-18xyz= Tìm giá trị nhỏ nhất của 1
II PHẦN RIÊNG (3,0 điểm):Thí sinh chỉ được làm 1 trong 2 phần riêng (phần A hoặc phần B)
A Theo chương trình Chuẩn
Câu 7.a (1,0 điểm) Trong mặt phẳng tọa độ Oxy cho đường tròn 2 2
( ) :C x +y =9, đường thẳng :y x 3 3
D = - + và điểm A(3, 0) Gọi M là một điểm thay đổi trên (C) và B là điểm sao cho tứ giác ABMO là hình bình hành Tìm toạ độ trọng tâm G của tam giác ABM, biết G thuộc D và G có tung
độ dương
Câu 8.a (1,0 điểm) Giải phương trình log (42 x-2x+1+4)-log (28 x -1)3 = 2
Câu 9.a (1,0 điểm) Từ các chữ số 0, 1, 2, 3, 4 lập các số chẵn có 4 chữ số đôi một khác nhau Lấy
ngẫu nhiên một số vừa lập.Tính xác suất để lấy được một số lớn hơn 2013
B Theo chương trình Nâng cao
Câu 7.b (1,0 điểm) Cho hình chử nhật ABCD có phương trình đường thẳng AD: 2x+y-1=0, điểm
I(-3;2)thuộc BD sao cho uur IB = - 2 uur ID
Tìm toạ độ các đỉnh của hình chử nhật, biết điểm D có hoành
độ dương và AD = 2AB
Câu 8.b (1,0 điểm) Giải hệ phương trình 2 2 ( )
, 16
ì
Î í
î
Câu 9.b (1,0 điểm) Có bao nhiêu cách chia 6 đồ vật đôi một khác nhau cho 3 người sao cho mỗi
người nhận được ít nhất một đồ vật
-Hết - Thí sinh không được sử dụng tài liệu Cán bộ coi thi không giải thích gì thêm
Họ và tên thí sinh……… …….; Số báo danh………
TRƯỜNG THPT ĐỨC THỌ
ĐỀ CHÍNH THỨC
ĐỀ THI THỬ ĐẠI HỌC LẦN I, NĂM 2014
Môn: TOÁN; Khối A
Thời gian làm bài: 180 phút, không kể thời gian phát đề
www.VNMATH.com