1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi thử đại học môn Toán năm 2014 tỉnh Bắc Ninh (THPT Ngô Gia Tự khối B)

6 284 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 259 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Các mặt phẳng SAC và SBD cùng vuông góc với mặt đáy ABCD.. Biết góc giữa hai mặt phẳng SAB và ABCD bằng 600.. Tính thể tích khối chóp và khoảng cách giữa hai đường thẳng CD và SB.. Trong

Trang 1

SỞ GD&ĐT BẮC NINH

TRƯỜNG THPT NGÔ GIA TỰ

NGÀY THI 17/01/2014

ĐỀ THI THỬ ĐẠI HỌC LẦN 2 NĂM HỌC 2013-2014 Môn thi: TOÁN; Khối B

Thời gian làm bài: 180 phút, không kể thời gian giao đề

Câu 1 (2 điểm) Cho hàm số 4 2

1

y x mx m với m là tham số, có đồ thị (C m)

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 1

b) Tìm m để các tiếp tuyến của đồ thị (C m ) tại các điểm cố định của (C m) vuông góc với nhau

Câu 2 (1 điểm) Giải phương trình: 2 cos 6x 3 cos 2xsin 2x 32 cos 4x

Câu 3 (1 điểm) Giải bất phương trình: 2

Câu 4 (1 điểm) Tìm hệ số của 10

x trong khai triển nhị thức Niutơn của (2 3 ) n

x , biết

2 1 2 1  2n 12 1

Câu 5 (1 điểm) Cho hình chóp SABCD có đáy ABCD là hình thang vuông tại A và B với AB

= BC = a; AD = 2a Các mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt đáy (ABCD) Biết góc giữa hai mặt phẳng (SAB) và (ABCD) bằng 600 Tính thể tích khối chóp và khoảng

cách giữa hai đường thẳng CD và SB

Câu 6 (1 điểm) Cho a, b, c là các số dương và a b c  3 Chứng minh rằng:

3 3

4

Câu 7 (1 điểm) Trong mặt phẳng Oxy, cho hình bình hành ABCD có diện tích bằng 4 Biết A(1;0), B(0;2) và giao điểm I của hai đường chéo nằm trên đường thẳng y = x Tìm tọa độ

đỉnh C và D

Câu 8 (1 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường tròn 2 2

( ) :C xy 13 và

2 2

( ') : (C x6) y 25 Gọi A là một giao điểm của ( )C và ( ')C với y  A 0 Viết phương trình

đường thẳng d đi quaA và cắt ( ), ( ')C C theo hai dây cung có độ dài bằng nhau (hai dây cung này khác nhau)

Câu 9 (1 điểm) Giải phương trình: 2 2

1

os 2

9 x 4.9c x 13 9 c x 3c x

-Hết -

Trang 2

SỞ GD&ĐT BẮC NINH

TRƯỜNG THPT NGÔ GIA TỰ

NGÀY THI 18/01/2014

HD CHẤM THI THỬ ĐẠI HỌC LẦN II NĂM 2014

Môn thi: TOÁN; Khối B

Thời gian làm bài: 180 phút, không kể thời gian giao đề

Khi m 1, ta có hàm số yx4  x2  2

 Tập xác định : D 

 Sự biến thiên:

- Chiều biến thiên: y'2 (2x x21); y '   0 x  0

- Khoảng đồng biến (0;) , khoảng nghịch biến ( ;0)

- Cực trị: Hàm số đạt cực tiểu tại x0,y CT  2

- Giới hạn: lim

x  và lim

x 

- Bảng biến thiên

x  0 

y’ – 0 +  

y -2

 Đồ thị : Đồ thị cắt trục Ox tại ( 1;0);(1;0)  và cắt Oy tại (0; 2) 

0.25

0.25

0.25

0.25

Gọi điểm cố định mà đồ thị đi qua có tọa độ là: ( ;x y , ta có 0 0)

yxmxm luôn đúng với mọi m

Hay: m x( 021) 1 x04y0 0 luôn đúng với mọi m

2 0 4

0 0

1 0 1

x

y x

 

 Khi đó (C m) luôn luôn đi qua hai điểm cố định là A( 1;0), (1;0)  B Hai tiếp tuyến tại A, B vuông góc nên có

3 '( 1) (1) 1 ( 4 2 )(4 2 ) 1

2

yy      mm   m  hoặc 5

2

0.25 0.25 0.25

0.25

Trang 3

Vậy với 3

2

2

m   thỏa mãn yêu cầu bài toán

Phương trình đã cho trở thành

2cos6x+2cos4x- 3cos2x = sin2x+ 3

 4cos5xcosx = 2sinxcosx + 2 3 cos2x

os x=0 2cos5x =sinx+ 3 cos

c

x

 

os5x=cos(x- )

6

x

 2

24 2 2

42 7

k x

k x

 

   

  



0.25

0.25

0.25

0.25

3 Giải bất phương trình: 2

Điều kiện: 2

3

Bất phương trình trở thành:   2

x  x  x  x

2 3

3

2 3 2

  

  

f xf     

Khi đó từ (1) ta có x 2 0x 2

Kết hợp với điều kiện ta có nghiệm của bất phương trình: 3 2

2 x

0.25

0.25

0.25

0.25

4

Tìm hệ số của 10

Ta có C20n1C21n1 C22n n11 (1 1) 2n1 22n1

2 1 2  1; 2 1 2 1; 2 1 2  1; ; 2 1 2  1

  n   n   nn  n

0.25 0.25

Trang 4

Do đó:

2 1

2 1 2 1 2 1

2

n

Mà:

10

10 0

k

Hệ số của 10

x tương ứng k10 Vậy hệ số của 10

x là: 10 10 10

103 3

0.25

0.25

5 Hình học không gian 1.0

* Tính thể tích:

Gọi H = AC  BD  SH  (ABCD) & BH =

3

1

BD

Kẻ HE  AB  AB  (SHE) nên góc giữa (SAB) và (ABCD) là:

SHE60

Mà HE =

3

1

AD =

3

2a

SH =

3

3

2a

V SABCD =

3

1

.SH.S ABCD =

3

3

3

a

S

K

A O D

I

E H

B C

* Tính khoảng cách:

Gọi O là trung điểm AD, ACBOI

Khi đó ABCO là hình vuông cạnh a

ACD có trung tuyến SO =

2

1

AD

CD AC CD (SAC) và BO // CD

Hay CD // (SBO) và BO (SAC)

d(CD ; SB) = d(CD ; (SBO)) = d(C ; (SBO))

Theo tính chất trọng tâm tam giác BCO ta có

IS

0.25

0.25

0.25

Trang 5

Kẻ CK SI mà CK BO CK (SBO) d(C;(SBO)) = CK

Trong tam giác SIC có:

3 2 a SI

IC SH

Vậy: ( ; ) 2 3

5

a

0.25

Ta có:

2

7 12

 

a b c

Dấu bằng xảy ra khi và chỉ khi: 16; 4; 1

0.25

0.5

0.25

7

Ta có:

AB   AB



Phương trình của AB là: 2x   y 2 0

2 1; 2 , 2 ; 2 2

Mặt khác: S ABCDAB CH  (CH: chiều cao) 4 4

5

CH

Ngoài ra:  

; , ;

| 6 4 | 4

;

0 1;0 , 0; 2

t

 

Vậy tọa độ của C và D là 5 8; , 8 2;

C  D 

    hoặc C1; 0 , D0; 2 

0.25

0.25

0.25

0.25

8

Theo giả thiết:

( ') '(6; 0) , ' 5

Trang 6

Tọa độ các giao điểm của ( )C và C( ') là nghiệm của hệ phương trình:

 

2

(2;3) ( 0) 3

3

  

x

y

A y

Gọi H, H’ lần lượt là giao điểm của đường thẳng d và các đường tròn

( ) , ( ')C C thỏa AHAH', với H không trùng H’

Gọi M, M’ lần lượt là trung điểm của AH, AH’ Vì A là trung điểm của đoạn thẳng HH’ nên A là trung điểm của đoạn thẳng MM’

Gọi I là trung điểm của đoạn thẳng OO’  I(3; 0)

Ta có IA // OM Mà OM ( )d nên IA( )d

( ) ( 1;3)

  

Vậy phương trình đường thẳng d: 1( x2) 3( y3)   0 x 3y 7 0

0.25

0.5

0.25

2

2 sin

9 x4.9 x 13 9  x 3 x

2

sin

Đặt s in x2

9 ,1 9

t t , ta có phương trình : 2

39 27

13 0 1; 3; 9

       

1 sin 0 cos 0

2

sin cos 2 0

Vậy nghiệm phương trình là: ( )

4

0.25

0.5

0.25

Các cách giải khác đúng cho điểm tương đương từng phần

Ngày đăng: 24/07/2015, 07:11

HÌNH ẢNH LIÊN QUAN

5  Hình học không gian                1.0 - Đề thi thử đại học môn Toán năm 2014 tỉnh Bắc Ninh (THPT Ngô Gia Tự khối B)
5 Hình học không gian 1.0 (Trang 4)

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm