Ket luan bai toan... Bien thien cua y la difcfng net duft... Noi dung phan nay chi neu cac ufng dung sau : 1.. Chufng minh cac bat dang thufc 2.. Giai cac phi/ang trinh c6 dang "khong ma
Trang 1C101B NGUYEN THAI HOE
CAC BAI TOAN
T R I L O N NHA^
Trang 2NGUYEN THAI HOE
GlA TRILON NHAT
VA GlA T R I N H O N H A T
Trang 3Nhitng k
xac din
h
- GTL
N : Gia tr
i nh
o nha
t
- : Gia
m
-N ha xu
eo
n g
b o ta
c pham
Trang 4PHAN MOT
GIAI C A C BAI TOAN G T L N , GTNN
BANG PHUONG PHAP C A O C A P (dung dao hdm)
Cifc d a i , circ t i e u v a G T L N , G T N N cua h a m so
S u p h a n b i e t do du'Oc m o t a m o t each h i n h hoc cho bori h i n h ve sau d a y
Trang 5max f(x) = f(b)
min f(x) =
fcTi^u
= ^x^
)
Luu y :
- Ta
tieu
- Ta
i die
m c
6 hoan
h do
X 4
thi
f'(x4
)
= 0 nhifng
khong la diem
n thu
f ha
i tron
g din
h nghi
a : ton
xo) =
M hoS
c f(xo) =
m
Vi nh
ii ta biet :
sinx < 15 la bat dSn
5 v
i trong
TCr din
a c
6
II PHtfOfNG
P HA
P CHUN
G D
E T IM G TL
m s
o y = fix)
Buac 1.
Tim MXD ciia ha
h l
a X
Buac 2.
Tim trong
f'(x) khon
g to
n t
ai
Goi ta
h gi
a t
ri cu
a fix) t
ai ca
c bie
n cu
a fix) (ne
u c6) ;
,
Trang 6r
- M a x f(x) = so 16'n nhat trong
- m i n fix) = so nho nhat trong •
- T i n h gia t r i cua fix) t a i moi diem thuoc mien xac d i n h ma f'(x) = 0
hoac f'(x) khong xac d i n h
- So sanh cac gia t r i bien va moi f ( x i ) , i = l , 2 , , k
Buac 4
Ket luan bai toan
cac gia t r i bien va c^c f ( x i ) ( i = l , 2 , , k ) ' cac gia t r i bien va
cac f ( X i ) , ( i = l , 2 , , k ) "
Lilu y :
Neu bai toan chi doi h o i t i m G T L N va G T N N ciia h a m so t h i khong nen
t i m gia t r i ctfc t r i de suy r a G T L N va G T N N cua h a m so
Trang 7min y = y(0) =
Ta C
O y(t
) = 2t t
^ 3
Tim GTLN
va GTN
N cu
a y(t) tron
g [0, 1] :
Ta
CO
y'(t) =
2 4t2
Trong doa
n [
0 ; 1] , y'(t) =
0 ch
i kh
i t =
72
Tinh y(0), y V2
v2,
va yd) :
i mo
i xma
t = sinx = —
x = 0
2
Tim GTLN
n X
trong [1
21nx ln
^x X ^
Ldl GIAI
In x(
2
In x)
=> y' =
Trang 8Tinh y d ) , y(e^), y(e^)
Trang 9Giai ba
t phircfn
g trin
h y' >
Ta
dtro-c y' >
0 <
^ ijil
- >
(1 x)^ >
x^
< => 1
- X > X
'1'
[2)
-4 /
miny = y(0) =
Tim GTLN
Trang 10m a x y = y(72) = 2V2
{Li/u y : nhieu hoc sinh ket luan m i n y = -2N/2 la sai v i khong c6
xo e [ - 2 ; 2] de y(xo) = -2V2)
De t i m miny, ta nhan xet r k n g :
K h i X = - 2 t h i ca 2 so hang x va V 4 - x ^ dong thcfi dat G T N N , vay
Trang 11Chon (pe[0; 7i
] k
hi d
o x- 2c os 9e [-
2;
2]
sin cp > 0 sin
(p = si
n c
p
va
y = 2(sin cp + co s
9) =
2^2 sin
do O<
x<
7i :o -<
x + -
-2
<y
<272
(xem h in
h ve )
(diem ngon
M cu
a cun
g x + — chay tren cung
xy
- 2V
2
mi ny = -2
Trang 13i to an
7
Tim GTL
N v
a GTN
Ldl GIAI
Ta c6 y' = -
5 si
n x + 5 sin 5x = 5(si
n 5
x sin x)
-y' =
0 o sin5x =
sinx
< =>
5x
= X +
Xo = - + /
0 ch
i k
hi x = 0, x = ±
De tin
h gi
a t
ri cu
a y, t
a d
e y rkn
g cosx, cos5x.l
a ham
so chin
y
6
_
7 1 57
= 37
= 6
^ =
373 2
va y(0) =
y =
y ± — =
373 ; min
y = y(0) =
4
I 6j
Ba
i to an
8
Tim GTL
N v
a GTN
N cu
a ham
so y = 2
sin^
x + cos'^ 2
x
LOI GIAI
Ta bien doi
+ cos'
* 2
cos2x^
^l-^^
(l-cos2x)^
+cos
^2
Chon phep bien doi
t = cos2x
t e [-1 ; 1]
Trang 14Voi bien t , h a m y = ^ ( 1 - t ) ^ +
8
Ta t i m G T L N va G T N N cua y(t) trong [ - 1 ; 1]
(2t)^ - (1 - 1 ) ^ Taco y'(t) = ^ ( l - t ) 3 ( - l ) + 4 t 3 = ^
maxy = 3, dat t a i moi x ma cos2x = 1 x = krc
m i n y = — , dat t a i moi x ma cos 2x = — = cos 2a => x = ± a + /:t
Ap dung bat dSng thufc Cosi doi v d i t i c h 5 thiTa so khong a m , trong do c6
— sin*^ X va 3 thiifa so' — 1
Trang 152
2 f
l 2 ' ' 1
108
3125
Dau = xay r
a kh
i : — sin
^ x — cos
^ x)
^ (cos
^ x)
^ = (sin^ x)
^ x => u
e [
0 ; 1,]
Vdri bie
n u, ha
m y c6 dan
g
y(u) =
u 2
u)^
vdriu G
[0 ; 1]
Ta tim GTLN
va GTN
N cu
a y(u) tron
g [
0 ; 1]
Taco y'(u) =
u2 3(l-u)2
.(-l) + (l-u)^.2u
= u(
l - uf
[2(1 u) - 3u;
-= u(l-u
)2
(2-5u)
y' =
0 kh
i u = 0, u = 1, u = -
Trang 16Bai toan 10
Ldl GlAl
Ta CO y' = sin^ x.q cos^"^ x(- sin x) + cos*' x.p sin^"^ x cos x
= p cos^"^^ X sinP"-^ X - q sin^"^^ x cos^~^ x
= sinP~^ x cosP"^ x.[q cos^ x - p sin^ x]
P q (p + q)2 (p + q)2
>0
min y =^(0) = y = 0
Trang 17i to an
11
Tim GTL
N v
a GTN
N cu
a ha
m s
o y = sin^
^ x + cos^
° x
Ldl GlAl
Chon
u sin
x =
> u
e [
0 ; 1]
Kh
i d
o :
y ^u^
^ + (l-u)
^°
Tim GTL
N v
a GTNN cua ha
m y(u) tron
g [
0 ; 1]
Ta
CO
y' = lOu^
- 10(
1 u
l ^ _ b)[a2
" + a^"-^b
+ •
• + ab^""^
- (
1 u)] [u
-^ + u
"(l
- u) + •••
+ u(l - u)"^ + (1 -
i bSn
g 0 nen
A >
0
=> y' =
0 k
hi u = - 2
Ta
CO
y(0) =
1, yd) =
(me
Trang 19Taco y(4) =
21 + -ln
2 2
yd) =
0
/1 \
Vay
4 2
2 2
maxy = y(4) =
21 +
-ln
2 2 miny =
y(l)
= 0
Ba
i toa
n 13
Tim GTLN
n
X
- I
n 5 = In
x
5 5 n - = I X In 0 o ' = = :> y <=>
X
= - e [1; 5
Ta
CO
yd) =
- ln5,
0
min y = y '5^
5
e
Trang 20Bai toan 14
Tim GTLN cua ham so
y = 2x^ - 3x^ - 12x + 1 trong doan [-3 ; 3]
Ldl GIAI
Goi z = 2x^ - 3x2 - I2x + 1, khi do y =
Ta xet bien thien cua ham so z tren [-3 ; 3] roi suy ra bien thien cua
ham so y de tii do c6 ket luan cua bai toan
=> z' = O o x = - l hoac x = + 2
De hieu bai toan mot each tiTdng minh, ta nen dung bang bien thien sau :
Luu y tren bang bien thien :
Bien thien cua z Ja diidng net lien
Bien thien cua y la difcfng net duft
Trang 21TCr
M, I,
N bie
n th ie
n cii
a y v
a z trCing
nh au
Doc tr en b an
g bie
n th ie
n ta t hu
duac
ma
x y = y (- 3) =
44
Ch
u y r kn
g, ba
i to an thiTc ra c
hi ca
n gia
i n gS
m z ' va g ia
i z ' =
0 t im cac ng hi
em
- Ti nh
z ( -3 ), z(3 ) va g ia t
ri cii
a z(x ) ta
i ca
c ng hi em m
a a
day
la
3) =
- 44 , z{
-l ) =
8, z(2 ) =
- 19 , z(3 ) = -
8
- D
o y = |
z | ch
o ne
n GT LN ciia ha
m y c
hi la
so Io
n n ha
t t ro ng cac s
= 8 , |z(2)
| = 1
9, |z(3)
| =
8
suy ra m ax
y = |z(-3)|
= 4
4
Nh if ng
de hie
u
ro ti nh c ha
t bie
n th ie
n cii
a ha
m y t
n to
t ho'n ,
Ba
i to an
15
Go
i X
j , X2 la cac ng hi em ciia phiTdn
g t ri nh :
x^
+ p
x + = 0
1) (
p ^ 0)
Ha
y ti
m p
de :
u = x
f + x^
da
t gia t
ri nh
d nh
at va t im G TN
N cu
a u
Ldl GIAI
Qu
y tr in
h gia
i b
ai to an bao go
u ki en ciia p
de phiTcrn
g t ri nh 1) c
6 ng hi em (Buoc
Budc 2.
T im
u t he
o p
Budc 3.
T im G TN
N cii
a u v
di mo
i p da t im
dJcfc
t ro ng bi/dc 1
+ Die
u ki en
de ph ifo ng t ri nh 1) c
6 ng hi em
la
A >
0 * )
oi u
ve da ng t hu an Icfi d
e du ng diToc di nh l
i V ie
t ch
o phifofn
g
tr in
h 1)
Trang 22+ Tim GTNN ciia u(p) vo'i moi p thoa man dieu kien *)
(co the giai khong dung, nhiT sau :
Do p'^ + > 2 => min u = 2 - 4 = -2 la sai vi voi dieu kien *) thi
P
p n - L > 2 )
P
Ta chon : t = p'^ ^ t > 4
Khi do ta diipc u(t) = t t - - 4
Ta tim min u(t) voi t > 4
=:> u(t) la ham so dong thien vdti t > 2 va khi do thi miny(t) = —
4
Ta ket luan diToc :
minu =^ - , dat khi t = p'' = 4 => P = ± N / 2
4
Trang 23Bai toa
n 16
3a^x^
Sa^x + a^ - a^ + -
f + x| da
t GTNN, GTL
6 nghie
m :
A >
0 *)
^ +
12a'* -9a^
>0
Sa^Ca^ 4a2 + 3) <
0 (d
o 33
^ >
0)
(a^ -1) (a
^ 3) <
i +
X2)
Vdri
moi a thoa ma
n die
u kie
n *) t
-4
Khi d
o u = a
n 2 mien 1
; y
/sl
va T-Vs
; -1
i a
=> Tre
n 2 mien tho
a ma
n die
u kie
n *), ha
m u(a) l
o bd
i ban
g sa
u :
Trang 25CO
u'(t) = (t +
2)(2) (2
- 2t)
(t +
2Y
(t + 2)2
1 da
t kh
i t = 0 => x = 0 hoac y = 0
min u = u
dinh ve sU c6 gia trj Id
Dieu dang luu
N
Dieu do c6 nghTa
Khi do, d
u :
Bai toa
n 18
Cho ha
m so ' y = 7
x
-1 + 7
9
- x
Hay ti
m G TL
N v
a G TN
3 ; 6) ; c) [
3 ; 6) ; d) (
3 ; 6]
Ldl GIAI
Ta co y' =
_ l=
+
L=
l) =
1
V9-x.Vx-
-1 <^
x
<5
Bien thien cu
a ha
m y cho bd
i ban
g sa
u
Trang 26X 3 5 6
y
y
TCr bang bien t h i e n ta suy ra ket qua ciia bai toan trong cac triiong hop :
b) K h i mien xac dinh la (3 ; 6)
m a x y = y(5) = 4
m i n y : khong c6 v i t a i x = 3, y khong xac d i n h
c) K h i mien xac dinh la : [3 ; 6)
T i m G T L N va G T N N ciia ham so trong cac mien :
Chu y : N/2 + \/6 < \/5 + \/3 va y lien tuc trong cac mien da cho
a) K h i mien xac dinh la [3 ; 6] :
Ldl GIAI
Ta CO y ' = 3x^ + 6x - 9 = 3(x^ + 2x - 3) ^ y ' = 0 o x = l
x = - 3
va ca ham y va y' deu lien tuc trong mien da cho
Bien t h i e n ciia ham y cho bdi bang :
Trang 27T Cr bang, t
maxy = y(-3) =
y(3) =
16
min
y = y(-5) = yd) =-1
maxy = y(-3) =
y(3)-16
miny = y(l) =
-16 ; (x = -5 khong thuo
c mie
n xa
c dinh)
c) Mie
n xa
c din
h = (-5 ; -3)
maxy y(-3) =
miny = y(l) =
-16 (
x = -5 khong thuo
c mie
n xa
c dinh)
Ba
i toa
n 20
Cho ha
m s
o y = x + - Ti
c mie
a)
[-2 ; 2] ; b) (
0 ; 2]
Ldl GIAI
Taco y' =l-
do li
m y
= o o
-o
o
Bien thien
Trang 28Tif bang va do thi, ta c6 ket qua
a) MXD = [-2 ; 2], ham y khong Hen tuc trong [-2 ; 2]
max y : khong c6 vi Hm y = +oo
min y : khong c6 vi Um y = -<x>
x->0'
Ta chi thu dugfc :
y^,^=y(l) = 2 ; y c p = y ( - l ) = -2
b) MXD = (0 ; +2] : ham y Hen tuc trong (0 ; +oo)
(bang bien thien cua y la nufa bang ben phai x = 0 Do thi y chi la nhanh
ben phai true Oy cua do thi da ve)
Ta CO max y : khong c6 vi lim y = +QO
BAI TAP TLT LUYEN
1 Tim GTLN va GTNN cua ham so : y = 4 cos^ x + sVs sin x + 7 sin^ x
Trang 29Tim
TL
N v
a GTN
N cu
a y
= slx
+ 1 +
V4-
x
4.
Tim
TL
N v
a GTN
X
5.
Tim
TL
N v
a GTN
TL
N v
a GTN
TN
N cii
a y = -xlnx-xln
TN
N cii
a y = sin^
^ x + co
s ^"
* x ' ~
9.
Tim mien gia t
ri cii
a ham
TL
N v
a GTN
N cu
a ham
1 + cosx
y = cos -2x + co
s 4x
11.
Cho phirong
trin
h :
x^ (2 si
-n a
- l)x + 6 sin^ a
- si
n a
- 1 = 0
Goi x^
, X
2
la cac nghie
m cii
a phifOn
g trin
h 1)
Tim GTL
N v
a GTN
N cu
a u = x
^ + x|
12.
Tim
TN
N cu
a ham
so
y = 2x^ +15x
^ +
36 X
-3
0 tron
g [-3: 2
13.
Goi
Xj , X 2
la nghiem
ciia phiion
g trin
h
12x2 -6ax + a
^ _
4 + :
t GTL
N v
a GTN
N
14.
Tim
TL
N v
a GTN
Trang 30§2 ifNG DVNG B A I T O A N TIM G T L N , GTNN V A O V I E C
G I A I C A C B A I T O A N K H A C
Noi dung phan nay chi neu cac ufng dung sau :
1. Chufng minh cac bat dang thufc
2. Tim gia t r i ciia tham so de phiiong trinh c6 nghiem
3 Giai cac phi/ang trinh c6 dang "khong mau miTc"
trong do m, M la cac hSng so ; fix) la ham so ciia bien so x c6 khi (thay
vi fix) la ham ciia x) la bieu thufc chufa nhieu dai lifcJng tham gia nhiTng diTo'c xem la ham ciia m6t trong cac dai liio'ng do
II PhUdng phap giai
Bai toan chufng minh cac bat dang thufc da cho diTo'c xem la hoan thanh neu ta chufng minh difo'c :
max fix) = M (cho a))
min fix) = m (cho b))
maxf(x) = M
min f (x) = m (cho c))
Khi do tuy tCrng loai ham so, khi tim GTLN hoac GTNN cua fix) c6 the dung cac phtfcfng phap so" cap (khong diing dao ham) hoac phtfcfng phap cao cap (dung dao ham)
Chii y : Trong cac bat dang thufc a), b) va c) deu phai c6 dang thufc (dau =)
Trang 312
1 ^
Chufng min
h rSn
g vdr
i mo
i x t
hi ba
t din
Ta
CO
x^ + (1 - x)^
= x
^ +
1 - 5
x + lOx^
- lOx
^ + 5x^ - x^
= Sx^
- lOx
^ + lOx^
"*
-lOx^
+ 10x2-5
+ 32x
2 I6x + 3 > 0
-« (lex^
^ 32x3 ^ 24x2
_ 8
x + 1) + (Sx^ - 8x + 2) >
0
(2x 1)^ + 2(2x -
Dau = xa
y r
a k
hi 2x-l = 0ox = — 2
Cdch 2.
Goi f (x) = x^ + (1 - x)^
= > f(x) >
c chufn
g min
h ne
u t
a chufn
g min
+5(l-x)'^
.(
-l) =
5
f (x) =
5 x4
-(
x)
l-4
x2 + (1 - x)2 x2-(
x)
1 >
0 vd
i mo
i x, ne
n
f (x) = 0c^
2x-l = 0
<:^
x = -
2
Trang 32Bien thien ciia ham fix) cho bdi bang difdfi day
l i m f(x) = lim(5x'' - lOx^ + lOx^ - 5x + 1)
Bai t o a n 22
3x^ — 4xy Cho ham so f ( x , y ) = — ^ ~ - trong do x va y khong dong thcfi bSng 0
Trang 33(x + 2v)^
g thof
i bkn
g 0, dSn
-4xy+ y^
) _ _ (2x-y)
g thcf
i bSn
g 0, dan
ma x + 2
Ba
i toa
n 23
Hay chufn
g min
0 1)
dung vdt
i mo
i x, y trong d
o
P(x, y) = x^ +
xy + y^ - 3(x + y) +
h
min P(x, y) =
3
3"
y-2
2 - - + y + y 2 X + [ 2
2x + y-
3)
2+
-i
(y -l
Trang 34Ro rang la P(x, y) > 0 \6i moi x, y, dau = xay r a k h i
cos'^ (D sin* (D + cos"* ( 0 4 4 4
Trang 35t diigf
c k
hi x = ±
Ta
CO
2 x^) (l +4x
(l + x^)2(l +
x2).2x 4x(x
2-i)
y' = O ox =
0,
x = ±
l
hm
y
= li
n cu
a y cho bd
n t
a thu duftfc
(dpcm)
Ba
i t oa
n 25
Chufng min
1
^ (x
^ y^
-)(
xV ) ^
1
4
~ (l + x2)2(l +
y2)2 ~
4 1)
Trang 36LOI GIAI
Goi u = ( x ^ - y ^ ) ( l - x V ) (l + x2)2(l + y2)2
Ta chi can chutog minh max u = — va min u = - —
4 4 (dung phep bien doi stf cap)
Ta bien doi difo'c
va ta thu diroc u(x,y) = z(x) - t(y)
TCr do ta CO :
max u = max z(x) - min t(y)
min u = min z(x) - max t(y) *^
(do z(x) va t(y) la hai ham so c6 bien so rieng biet)
Van de con lai la tim max va min cua ham so
h(a)=
(l + a2)2
Ta CO ngay : h(a) = 0, dau = xay ra khi a = 0
Tii do ta c6 dtfo'c min h(a) = h(0) = 0
De tim max h(a) (do a ^ 0 vi khi a = 0 ham h(a) dat GTNN, ta da xet) ta chia tuf va mau cua h(a) cho a^ va difoc
1 h(a) =
( 1^
a +
Trang 37-do
1 — a +
a
> 2, da
u = xay r
a k
hi a = ±
1
\
a + -
V
a
> 4 =>
h(a) <
—, da
u = xay r
a k
hi a = ±
chi vie
c xe
m a = x roi a = y trong
ham
so h(a) v
a ch
u y t
di *) t
- 0 = — dat dtfof
c k
minu = 0
- — = -
h
Chii y :
Co the dun
a ,
y = tan
a dtfof
c ^ -
u = — (co
s 4p
- cos
Ba
i to an
26
Cho ha
m s
o u ^ x
^ + y^, bie
t ran
g x va
y tho
a ma
n phirorn
g trin
h :
(x2 y2 +1)' + 4x2y2 -
Sx^ 2y2 +
2 =
0 1)
Hay chufng
a ch
i ca
n chijfn
g min
h : vdi mo
i x
, y
thoa ma
n 1) t
hi :
max u = 3
va min
u = +
l
Bien doi
1) o (x -
yf +
4x2y2 5x2 _
x2+
3 =
0
(ta d
a lam xuat hie
n u = x
^ + y^)
Trang 38bat dang thufc Cosi V i vay t a bien doi h a m u ve dang sau :
x + 1 y + 1 z + 1
Trang 39= 3
- V
v& ma
x u = 3
V >
3 „, ^ =
, da
u = xay r
a kh
i x + l
^ = -
3 3 => x + l = z + l = y + l i x a kh xay r dau =
= y==
z = —
u = xay r
a kh
i x = y = z = -
4 4,
ta c
6
1^
(x + y)(l-xy)
^1
2 (l +
= (x
^y)(l-xy)
n chufn
g min
h ma
x u = —
va mi
n u = -
Chi ca
n d
e y den dSn
g thuf
c dun
g sa
u : x^Xl + 1 + = ( xy)2 (1 - yf + (X + y^)
Khi d
o u=
(x
-H y)(
l-xy)
(x +
r + (1 - x
Trang 40dau = xay ra k h i (x + y) (1 - xy)
_x + y = xy - 1
Ta t h u di/ofc u < => i < u <
-2 -2 -2 TCr do ta ket luan dirorc
Goi y = V ( l - x)^ + + x)^ Ta chufng m i n h : max y = 4V2
Do 0 < X < 1, ta chon x = coscp vdi 0 < cp < —
2 2 2 2 COS — < COS —, dau = xay r a k h i cos — = 0 hoSc cos —
2 2 2 2 sin^ ^ + cos^ - < sin^ ^ + cos^ ^ = 1
Trang 41dau = xa
y r
a k
hi sin — =
• 9 sin —
= 1
• 9 sin —
2
= 0
va chu
= 1
cos(p
= 1
- 2 sin
2 ^ = -1
y <
4>/2.1
, da
u = xay r
30
Cho cac s
o thii
c x va
y khong dong thor
i bkn
<^
j"
' y
'<
2V 2-
Nhan xet ra
ng
maxu
Ux 2^
4y2j
= 1
Trang 42ta bieu dien ham y ve dang mdi sau :
Do cac phiio'ng t r i n h a) va b) chac ch&n c6 nghiem (p, tijf do suy r a x va y
nen ta ket luan difoc :
Ta can chuTng m i n h max A = 1
Tii dieu k i e n 1) t a chon difOc
a - cos a
6 - cosfi' v d i 0 < a, P < 71