1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Tài liệu ôn tập tin học lớp 12 kiểm tra, thi bồi dưỡng học sinh tham khảo (10)

65 2,5K 6

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 65
Dung lượng 430 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Mô tả các phép toán trên số nguyên Lập thuật toán và chơng trình mô tả các phép toán cộng, trừ, nhân, chia cho các số nguyên với độlớn tùy ý.. Tìm thuật toán và lập chơng trình cho biết

Trang 1

1 Điểm và tam giác

Cho tam giác có 3 đỉnh với tọa độ (x1, y1), (x2, y2), (x3, y3) Lập thuật toán cho biết điểm (x, y)nằm trong hay ngoài tam giác

2 Ba hình hộp

Cho 3 hình hộp với các cạnh (là số nguyên) a1>=b1>=c1, a2>=b2>=c2, a3>=b3>=c3

Lập thuật toán cho biết 3 hình hộp trên có thể lập thành một hình lập phơng đợc không

6 Bài toán "Tháp Hà nội"

Cho 3 cọc và n đĩa (lồng vào cọc) đặt ở cọc số 1 và theo thứ tự to dới nhỏ trên (xem hình vẽ)

Hãy chuyển n đĩa đó sang cọc số 3 sao cho thứ tự vẫn đợc bảo toàn Đợc sử dụng cọc số 2 làm trunggian và thỏa mãn yêu cầu khi chuyển thì chỉ cho phép đĩa bé đặt trên đĩa to Mỗi lần đợc chuyển một

đĩa Hãy lập chơng trình mô tả quá trình chuyển đổi đó

7 Bài toán "8 Hậu"

Hãy lập chơng trình xếp 8 con hậu lên bàn cờ quốc tế sao cho không có hai con hậu nào ở tình trạng

đe dọa lẫn nhau

8 Bài toán "Mã đi"

Hãy lập chơng trình di chuyển con mã trên bàn cờ n x n, xuất phát từ một vị trí nào đó sao cho nó diqua mỗi ô đúng một lần và quay về ô xuất phát

9 Tìm "giao điểm" của các hình chữ nhật

Trên mặt phẳng tọa độ cho n hình chữ nhật có các cạnh song song với các trục tọa độ Hãy xây dựngthuật toán để tìm số lớn nhất k thỏa mãn điều kiện: Tồn tại một điểm trên mặt phẳng nằm trong khình chữ nhật trên

10 Dãy số gần nhau

Cặp 2 số a,b gọi là gần nhau nếu |a-b|<10 Dãy số a1, a2, , an gọi là gần nhau nếu tồn tại một hoán

vị của dãy trên b1, b2, , bnsao cho các cặp số (b1, b2), (b2, b3), , (bn-1, bn) là gần nhau

Hãy tìm thuật toán cho phép biết đợc rằng một dãy số cho trớc có phải là gần nhau hay không

11 Đờng đi ngắn nhất

Cho một lới ô vuông kích thớc m x n (xem hình vẽ) Lập thuật toán tính số các đờng đi ngắn nhất từ

A đến B và chỉ đi trên các cạnh của lới

12 Danh sách lớp

Lập chơng trình nhập từ bàn phím danh sách học sinh (vào cả Họ, Đệm và Tên)của một lớp (<100hs) và sau đó in ra theo thứ tự từ điển tên của các học sinh đó,nghĩa là xếp theo thứ tự A, B, C củatên trớc, họ và đệm sau

13 Cộng - Trừ - Nhân - Chia

Lập chơng trình nhập từ bàn phím hai số tự nhiên m, n nhỏ hơn 1000000 và in ra kết quả số m x n,m+n, m/n, m-n

14 Dãy điểm gần nhau

Cho n điểm trên mặt phẳng Hai điểm (ax, ay), (bx, by) đợc gọi là gần nhau nếu max(|ax-bx|,|ay-by|)

<10 Một dãy điểm đợc gọi là gần nhau nếu tồn tại một hoán vị của n điểm trên sao cho 2 điểm (bxi,

by) và (bx , by ) là gần nhau với i=1, 2, , n-1

Trang 2

Hãy tìm thuật toán cho phép biết đợc rằng 1 dãy điểm cho trớc có phải là gần nhau hay không?

17 Bài toán "Luật chơi Đôminô"

Giả sử đã có 1 quân đôminô trên mặt bàn Trò chơi đôminô thực hiện nh sau: Xếp một cách tuần tự

về 2 phía các quân bài (theo luật đôminô) cho đến khi không xếp đợc nữa Lập thuật toán xác định

đợc cách chơi sao cho khi đã xếp xong, số quân trên tay có số điểm bé nhất

18 Về một phân hoạch của hình chữ nhật

Cho hình chữ nhật ABCD Trên các cạnh AB, CD cho các phân hoạch N điểm Trên BC, AD cho cácphân hoạch M điểm Nối lần lợt các điểm trên phân hoạch đối diện, theo thứ tự lần lợt Biết rằng đ-ờng nối các phân hoạch trên AB, CD sẽ song song với AD Ta thu đợc một phân hoạch Q của hìnhchữ nhật ABCD thành các hình tứ giác Chỉ ra thuật toán tìm ra đợc hình tứ giác có diện tích lớnnhất

19 Dãy số xoáy Spiral

Lập chơng trình nhập dãy các số tự nhiên 1,2,3, ,N2 vào một mảng A[NxN]

theo chiều xoáy (spiral) nh hình vẽ

20 Đếm hình chữ nhật

Trên giấy kẻ ca rô kích thớc 100 x 100 vẽ một số hình chữ nhật Mỗi hình chữ nhật đợc tạo từ một

số các ô vuông Các hình chữ nhật khác nhau thì rời nhau (không kề cạnh và đỉnh) Cho mảng kíchthớc 100 x 100 với điều kiện: Aij= 1 nếu ô (i,j) nằm trong một hình chữ nhật nào đó và Aij= 0 nếungợc lại Hãy lập chơng trình để tính số các hình chữ nhật có trên tờ giấy

21 Bài toán "Mêcung"

Mêcung đợc cho bởi mảng A kích thớc N x N, Aij = 0 nếu vị trí (i,j) là "tự do", Aij = 1 nếu vị trí (i,j)

là "đóng kín" Từ vị trí ban đầu là một điểm tự do có thể dịch chuyển sang điểm "tự do" ở bên cạnh.Nếu ra đợc điểm bên ngoài thì ta nói là có thể thoát khỏi Mêcung Lập thuật toán cho phép biết đợcrằng từ một điểm "tự do" có thể thoát khỏi Mêcung hay không

Xem lời giải

22 Dãy sỏi 3 màu

Giả sử có dãy N hòn sỏi (N>3) Mỗi hòn sỏi có 1 trong 3 màu: Trắng, Xanh, đỏ Viết thuật toán đổichỗ N hòn sỏi sao cho các hòn màu trắng đợc xếp đầu tiên, sau đó đến các hòn màu xanh, cuối cùng

đến màu đỏ

23 Xâu nhị phân không lặp

Xâu nhị phân là xâu chỉ chứa các ký tự 0 và 1 Xâu nhị phân S đợc gọi là không lặp bậc k nếu mỗixâu con độ dài k của nó đều khác nhau từng đôi một (nghĩa là không có 2 xâu con độ dài k nàogiống hệt nhau) Xâu nhị phân không lặp bậc k đợc gọi là cực đại nếu việc bổ sung vào bên phải haytrái của nó một ký tự 0 hoặc 1 sẽ phá vỡ tính không lặp bậc k của nó Xây dựng thuật toán tìm mộtxâu nhị phân cực đại không lặp bậc k có độ dài ngắn nhất (với k cho trớc)

Xem lời giải

24 Tính giá trị một biểu thức

Cho các số tự nhiên M, N (N>2) và mảng 3 chiều A(M,M,N-1) Tìm giá trị nhỏ nhất của tổng sau

đây: R = A(i1, i2, 1) + A(i2, i3, 2) + + A(iN-1, iN, N-1)

ở đây giới hạn đợc xét trên tập các dãy số nguyên 1<= i1,i2, iN <= M (không cho phép độ phức tạp

cỡ M x N)

Xem lời giải

Trang 3

Các điều kiện Ci xác định nh sau:

Nếu Tij = 1 thì Ci = True;

Nếu Tij = 0 thì Ci = False;

Nếu Tij = 2 thì Ci cha đợc xác định (hay nhận giá trị nào cũng đợc) Mỗi hành động Hj ứng với cột jcủa T sẽ xác định một bộ các điều kiện (C1, C2, , Cm)

Bảng T gọi là mâu thuẫn nếu tồn tại một bộ điều kiện (C1, ,Cm) ứng với nhiều hành động khácnhau Bảng T gọi là đầy đủ nếu nó không mâu thuẫn và mọi bộ điều kiện (C1, ,Cm) sẽ ứng với mộthành động xác định (trong số các hành động H1, H2, , Hn)

1) Lập thuật toán và chơng trình kiểm tra xem bảng T cho trớc có mâu thuẫn không?

2) Lập thuật toán và chơng trình kiểm tra xem T có đầy đủ không?

Xem lời giải

28 Thuật toán sinh phân số tối giản

In ra theo trật tự tăng dần tất cả các phân số tối giản 0<m/n <1 với mẫu số <= 10

Xem lời giải

29 Về một hàm đệ qui

Cho hàm F(n), n-nguyên >= 0 xác định nh sau:

f(0)=0, f(1)=1, f(2n)=f(n), f(2n+1) = f(n) + f(n+1)

Với N cho trớc, không dùng mảng độ dài N hãy lập thuật toán tính f(N)

Xem lời giải

30 Đờng đi hợp lệ

Cho lới N x M các đờng Một đờng đi từ A đến B gọi là hợp lệ nếu nó không đi lại điểm đã đi qua.Lập thuật toán và chơng trình tính số các đờng đi hợp lệ từ A đến B

Xem lời giải

31 Bài toán đờng đi hợp lệ tổng quát

Cho lới ô vuông kích thớc M x N Một đờng đi từ một điểm đến một điểm khác gọi là hợp lệ nếu nókhông đi lại điểm đã đi qua Lập thuật toán và chơng trình tính số các đờng đi hợp lệ từ điểm A0 đến

điểm A1 nào đó trong lới

Xem lời giải

32 Bài toán Hậu min

Tìm số con Hậu ít nhất xếp trên bàn cờ (8 x 8) sao cho chúng khống chế đợc tất cả các ô trên bàn

cờ

Xem lời giải

33 Sắp xếp công việc trên 2 máy

Có n chi tiết máy phải gia công lần lợt ở 2 máy (1) và (2) Các thời gian gia công tơng ứng là ti1, ti2, i

= 1, 2, , n Tìm cách sắp xếp thứ tự công việc để từ khi bắt đầu đến khi kết thúc chiếm thời gian làngắn nhất

Xem lời giải

Trang 4

34 Tích hai ma trận nguyên

Cho ma trận vuông A(n x n) với các phần tử là các số nguyên Tìm thuật toán cho phép biết rằng A

có phải là tích của 2 ma trận nguyên bậc n hay không?

Xem lời giải

35 Mô tả các phép toán trên số nguyên

Lập thuật toán và chơng trình mô tả các phép toán cộng, trừ, nhân, chia cho các số nguyên với độlớn tùy ý

Xem lời giải

36 Kiểm tra tứ giác lồi

Cho 4 điểm A,B,C,D trên mặt phẳng Tìm thuật toán xác định xem tứ giác ABCD có phải là tứ giáclồi hay không? Tổng quát cho đa giác n đỉnh

Xem lời giải

Xem lời giải

39 Bài toán "đổi màu bi"

Trên bàn có N1 hòn bi xanh, N2 hòn bi đỏ và N3 hòn bi vàng Luật chơi nh sau:

Nếu 2 hòn bi khác màu nhau chạm nhau thì chúng sẽ cùng biến thành màu thứ 3 (ví dụ: xanh, vàng > đỏ, đỏ)

Tìm thuật toán và lập chơng trình cho biết rằng có thể biến tất cả các hòn bi đó thành một màu đỏ có

đợc không

Xem lời giải

40 Bài toán đổi màu bi Tổng quát

Điều kiện giống nh trong đề số 39 Tìm thuật toán biến số bi trên thành M1 hòn bi xanh, M2 hòn bi

đỏ, M3 hòn bi vàng (M1+M2 + M3 = N1 + N2 + N3)

Xem lời giải

41 Ma trận thuần nhất

Cho ma trận vuông Aij bậc n với tính chất sau:

1 Các số Aij = 0 hoặc Aij = 1

2 Nếu Aij = 1 <=> Aji = 0 (i khác j)

Bộ 3 số tự nhiên (i,j,k) gọi là thuần nhất nếu Aij= Ajk= Aki

Với n cho trớc:

1) Lập thuật toán và chơng trình xác định ma trận A sao cho không tồn tại bộ thuần nhất nào 2) Lập thuật toán và chơng trình xác định A với số cực đại các bộ thuần nhất và tính số cực đại đó Xem lời giải

42 Xác định các tứ giác đồng hồ trong ma trận

Cho ma trận vuông A[i,j] (i,j = 1, 2 n) Các phần tử của A đợc đánh số từ 1 đến n x n

Gọi S là số lợng các "tứ giác" Ai,j; Ai,j+1; Ai+1,j; Ai+1,j+1 sao cho các số ở đỉnh của nó xếp theothứ tự tăng dần theo chiều kim đồng hồ (tính từ một đỉnh nào đó)

Trang 5

43 Bài toán "hậu" tổng quát

Trên bàn cờ n x n xếp số "hậu" lớn nhất Pk sao cho mỗi chúng đều khống chế đúng k "hậu" khác.(Với n=8 kết quả nh sau: P0=8 (bài toán "hậu" cổ điển),

Tìm thuật toán xây dựng ma trận kỳ ảo bậc n bất kỳ

Xem lời giải

46 Lịch tháng kỳ ảo

Lịch của các tháng đợc biểu diễn bằng một ma trận có số cột bằng 7 và số hàng nhỏ hơn hoặc bằng

6

Ví dụ: Trong hình vẽ, lịch này thỏa mãn tính chất sau: Mọi ma trận con 3 x 3 không có ô trống đều

là ma trận "kỳ ảo" theo nghĩa: Tổng các số của mỗi đờng chéo bằng tổng của trung bình cộng củatất cả các cột và hàng Hãy xây dựng tất cả các lịch tháng có tính chất nh trên Lập chơng trình môtả tất cả các khả năng xảy ra

Xem lời giải

47 Các vòng tròn Olimpic

5 vòng tròn Olimpic chia mặt phẳng thành 15 phần (không kể phần vô hạn) (hình vẽ) Hãy đặt vàomỗi phần đó một số sao cho tổng số các số trong mỗi vòng tròn bằng 39

Lập chơng trình giải quyết bài toán trên và cho biết có bao nhiêu cách xếp nh vậy

Xem lời giải

48 Về một ma trận số

Mô tả thuật toán, lập chơng trình xây dựng ma trận A[10 x 10] thoả mãn các tính chất:

1 Aij là các số nguyên từ 0 9

2 Mỗi số từ 0 9 đợc gặp 10 lần trong ma trận A

3 Mỗi hàng và mỗi cột của A chứa không quá 4 số khác nhau

Xem lời giải

49 Phân hoạch hình chữ nhật

Một hình vuông có thể chia thành nhiều hình chữ nhật có các cạnh song song với cạnh hình vuông(xem Hình vẽ) Xây dựng cấu trúc dữ liệu và lập chơng trình mô tả phép chia đó Tính xem có baonhiêu cách chia nh vậy

50 Bài toán về dây xích

Giả sử hình vuông A chia thành n hình chữ nhật con P1, P2, Pn nh đã mô tả trong bài 49 Tập con

Q nằm trong [P1,P2 Pn] gọi là một dây xích nếu hình chiếu của chúng lên một trong các cạnh củahình vuông là các đoạn thẳng không chồng lên nhau và phủ kín cạnh này của hình vuông

1) Cho trớc 2 hình chữ nhật con Pi, Pj nào đó Lập thuật toán và chơng trình để xác định một dâyxích chứa Pi, Pj (dây xích này bao giờ cũng tồn tại !)

2) Hãy tìm tất cả các dây xích chứa 2 hình Pi, Pj cho trớc

3) Hãy chỉ ra một dây xích có độ dài cực đại

4) Hãy chỉ ra một dây xích có độ dài cực tiểu

Xem lời giải

51 Phân hoạch hình hộp chữ nhật

Cho một hình lập phơng Có thể chia hình đó thành nhiều hình hộp chữ nhật có các cạnh song songvới các cạnh của hình lập phơng Xây dựng cấu trúc dữ liệu và lập chơng trình mô tả phép chia đó.Tính xem có bao nhiêu phép chia nh vậy

Xem lời giải

Trang 6

52 Bài toán "đấu cờ"

Có 2n vận động viên đấu cờ Mọi vận động viên cần đấu 1 lần với mỗi vận động viên còn lại Tất cảchỉ có n bàn cờ Hãy lập lịch đấu cờ cho các vận động viên sao cho lúc nào cũng có đủ n đôi chơivới nhau

Xem lời giải

53 Bài toán "Bàn trà"

Có n ngời ngồi xung quanh một cái bàn tròn uống trà với nhau Sau 1 phút lại có 1 cặp ngồi cạnhnhau đổi chỗ cho nhau Lập thuật toán và viết chơng trình cho phép sau một thời gian ngắn nhất tấtcả các cặp cạnh nhau đều đợc "đổi chỗ" cho nhau (nghĩa là khi đó tất cả những ngời ngồi bên tráichuyển sang bên phải và ngợc lại)

Xem lời giải

54 Bảng số kỳ lạ Tổng quát

Dãy số tự nhiên khác nhau đôi một a, b, c, d, e, k đợc xây dựng từ biểu đồ thoả mãn tính chất:Mỗi số bằng tổng của 2 số có mũi tên đến số đã cho (xem hình vẽ) Ví dụ: b = a+e, c = b+f, Với số d cho trớc, xây dựng thuật toán cho phép thiết lập đợc biểu đồ đó

Tính số d nhỏ nhất cho phép xây dựng biểu đồ trên

Xem lời giải

55 Bảng số kỳ lạ tổng quát

Cho dãy số tự nhiên khác nhau từng đôi một a1, a2, an đợc xây dựng từ biểu đồ thoả mãn tínhchất: Mỗi số bằng tổng của 2 số có mũi tên đến số đã cho (hình vẽ)

Tìm số ak nhỏ nhất với n cho trớc

56 Bài toán "Kangaroo"

Trên một lới N x N ô, Kangaroo có thể bớc nh sau: (x,y) _ (x+1, y-1) hoặc (x, y) _ (x-5, y+7) (nhngkhông đợc ra khỏi lới)

Hãy xác định xem từ những điểm ban đầu nào, con Kangaroo có thể đi đến đợc tất cả các ô khác củalới (không loại trừ trờng hợp đi lại các ô đã đi qua)

Xem lời giải

57 Xây dựng một lớp dãy nhị phân

Xây dựng chơng trình và thuật toán để thiết lập tất cả các dãy A1, A2, An (n -cho trớc) gồm các số0,1 và thoả mãn điều kiện: A1.Ak+1 + A2.Ak+2+ + An-k.An là số lẻ với mọi k = 0, 1, , n-1 (đáp số

có thể là phủ định sự tồn tại của các dãy trên)

Xem lời giải

58 Dãy số tựa giao hoán

Viết chơng trình thực hiện các công việc sau:

1) Nhập hai số nguyên dơng m, n và n số nguyên a1, ,an

2) Tìm và in ra trong dãy n số trên m số liên tiếp là hoán vị của m số tự nhiên đầu tiên Nếu không

có m số liên tiếp nh vậy, hãy thông báo trên màn hình

3) Tìm và in ra dãy con liên tiếp dài nhất của dãy a1, ,an mà dãy đó là dãy các số nguyên liên tiếp Xem lời giải

59 Bài toán "Tú lơ khơ 4 màu"

Có một tập bài 4n quân gồm n tờ màu xanh, n tờ màu đỏ, n tờ màu vàng, n tờ màu tím đợc xếp thànhmột tập Luật chơi là xáo bài trên tay, mỗi lần chơi đợc rời một phần bài liên tục lên đầu tập Lậpthuật toán và chơng trình cho phép sau một số ít lần nhất xáo bài không có 2 quân bài nào cùng màuliền nhau

Xem lời giải

60 Hệ các tam giác cực tiểu

Trên mặt phẳng cho n điểm B1 Bn (tọa độ cho trớc) Một tam giác với các đỉnh trong B1 Bn gọi

là cực tiểu nếu nó không chứa một điểm nào khác của hệ này

1) Lập thuật toán và chơng trình tìm ra một tam giác cực tiểu

2) Tìm hệ cực đại các tam giác cực tiểu rời nhau

Trang 7

Xem lời giải

61 Phép biến đổi trên bộ ba số

Trên bảng cho 3 số tự nhiên N1, N2, N3 Mỗi bớc đi đợc thực hiện nh sau:

Xoá đi 1 trong 3 số trên và thay thế số đó bằng tổng của 2 số còn lại trừ đi 1 Tìm thuật toán chophép biết rằng sau một số hữu hạn bớc có thu đợc bộ 3 số (A, B, C) cho trớc hay không nếu 3 số đầutiên là 2,2,2

62 Tiếp tục phép biến đổi bộ 3 số

Trên bảng cho 3 số tự nhiên N1, N2, N3 Mỗi bớc đi đợc thực hiện nh sau:

Xoá đi 1 trong 3 số trên và thay thế số đó bằng tổng của 2 số còn lại trừ đi 1 Tìm thuật toán chophép biết rằng sau một số hữu hạn bớc có thu đợc bộ 3 số (A, B, C) cho trớc hay không nếu 3 số đầutiên là bộ (m, n, l) cho trớc

Xem lời giải

63 Ma trận hoán vị

Lập chơng trình xây dựng ma trận A bậc N N thỏa mãn các điều kiện sau: ´N thỏa mãn các điều kiện sau:

1 đối xứng: Aij = Aji

2 Aii = 0, (i = 1, 2, n)

3 Mỗi hàng và mỗi cột của ma trận A đều là các hoán vị của dãy số 0, 1, 2, n-1

Xem lời giải

Lập chơng trình tìm thuật toán tối u cho ngời thứ nhất

Chú ý: Lới ô vuông đợc coi là vô hạn về cả hai phía

Xem lời giải

65 Trò chơi Tích - Tắc vuông tổng quát

Cách chơi tơng tự bài 64 điểm khác là ngời thứ hai có thể đánh dấu đồng thời đợc nhỏ hơn hoặcbằng k ô trống (k>1) Tìm thuật toán tối u cho các ngời chơi

Xem lời giải

66 Kim giờ và phút gặp nhau bao nhiêu lần trong ngày

Đồng hồ quả lắc có 2 kim: giờ và phút Tính xem trong vòng 1 ngày đêm (từ 0h - 24h) có bao nhiêulần 2 kim gặp nhau và đó là những lúc nào

Xem lời giải

67 Kim giờ, phút, giây gặp nhau bao nhiêu lần trong ngày

Đồng hồ quả lắc có 3 kim: giờ, phút và giây Tính xem trong vòng 1 ngày đêm (từ 0h - 24h) có baonhiêu lần 3 kim gặp nhau và đó là những lúc nào

Xem lời giải

68 Về một bài toán và đồng hồ điện tử

Giờ của đồng hồ điện tử thông báo giờ và phút Ví dụ: 02:51, 11:02 Lập chơng trình tính tổng sốthời gian trên mặt đồng hồ xuất hiện chữ số k (k = 0, 1, 9)

Xem lời giải

69 Chia nhóm công nhân

Có N công nhân phải sản xuất M sản phẩm Mỗi sản phẩm phải lần lợt trải qua n công đoạn, mỗicông đoạn tốn lần lợt t1, t2, ,tn thời gian Cần sắp xếp N công nhân thành n tốp: N = A1 + A2+ + An, mỗi tốp chuyên làm một công đoạn của sản phẩm Mỗi công nhân chỉ làm đợc từng sản phẩmmột

Hãy tìm cách chia N = A1 + + An thành n tốp sao cho công việc sẽ đ ợc diễn ra trong thời giannhỏ nhất

Xem lời giải

Trang 8

70 Về một phép biến đổi trên lới số

Trên một lới N x N các ô đợc đánh số 1 hoặc -1 Lới trên đợc biến đổi theo quy tắc sau: Một ô nào

đó đợc thay thế bằng tích của các số trong các ô kề nó (kề cạnh) Lập chơng trình thực hiện sao chosau một số bớc toàn lới còn lại chữ số 1

Xem lời giải

71 Khoảng cách giữa các ô cùng lới số tự nhiên

Các phần tử của ma trận A[NxN] là các số tự nhiên từ 1đN2 Khoảng cách giữa 2 ô Aij, Akl đợc tínhbằng max(|i-k|, |j-l|)

Tính số tự nhiên lớn nhất d thỏa mãn tính chất: Tồn tại một hoán vị các phần tử của A sao cho mỗiphần tử của A đều dịch đi một khoảng cách lớn hơn hoặc bằng d

Xem lời giải

72 Về một thuật toán sinh dãy số nguyên

Trên các máy vi tính 16 bit, thông thờng các số nguyên đợc hiểu nằm trong khoảng cách

-32768<= x <= 32767

Hãy viết chơng trình sinh ra một dãy số nguyên dài nhất thỏa mãn điều kiện: Trong dãy này khôngtồn tại một bộ 3 số nào là một cấp số cộng

Xem lời giải

73 Trò chơi tô cạnh lới ô vuông

Trên mặt phẳng có một lới ô vuông n x n Hai ngời chơi trò chơi sau: Mỗi ngời đến lợt mình đợc tôlại cạnh của 1 ô vuông Ngời thắng cuộc là ngời đầu tiên vẽ đợc một đờng kín (không đợc tô vàocạnh đã tô) Xây dựng thuật toán tối u cho các ngời chơi

Xem lời giải

74 Về trò chơi đảo tô cạnh lới ô vuông

Trên mặt phẳng có một lới ô vuông n x n Hai ngời chơi trò chơi sau: Mỗi ngời đến lợt mình đợc tôlại cạnh của 1 ô vuông Ngời thua cuộc là ngời bắt buộc vẽ một đờng kín (không đợc tô vào cạnh đãtô) Xây dựng thuật toán tối u cho các ngời chơi

Xem lời giải

75 Phép biến đổi

Có n ngời ngồi xung quanh một bàn tròn Mọi ngời đợc ghi lên trớc mặt mình một số 0 hoặc 1 Mỗibớc, hai ngời nào đó ngồi gần nhau có thể đồng thời tăng các số của mình lên 1 đơn vị Cần chỉ rathuật toán cho phép sau một số hữu hạn phép chơi, tất cả mọi ngời đều có các số bằng nhau

Xem lời giải

76 Trò chơi lập số chính phơng

Hai ngời chơi trò chơi sau:

Ngời thứ nhất viết lên bảng một chữ số (từ 0-9) Ngời thứ hai đợc viết thêm về bên trái hoặc phải 1chữ số nữa Cứ nh vậy Mỗi ngời đều cố gắng sao cho khi viết xong lợt mình số thu đợc sẽ là sốchính phơng

Tìm thuật toán cho ngời đi nớc đầu tiên sao cho ngời thứ hai không bao giờ đạt đợc mục đích Xem lời giải

Trang 9

79 Bài toán tô màu chấp nhận đợc

Trên một lới vuông N x N đánh dấu tập M gồm hữu hạn điểm Các điểm của M sẽ đợc đánh dấu bởimột trong hai màu xanh và đỏ Cách đánh màu đợc coi là chấp nhận đợc nếu trên mỗi đờng nằmngang hoặc thẳng đứng của lới số các điểm xanh và đỏ hơn kém nhau không quá 1

Lập thuật toán xây dựng một cách tô mầu chấp nhận đợc cho tập M cho trớc

Viết chơng trình liệt kê tất cả các cách tô màu chấp nhận đợc

Xung quanh một bàn tròn có 2N ngời ngồi: N nam, N nữ Mỗi lần đổi có thể đổi chỗ đợc 2 ngời bất

kỳ Xác định thuật toán tìm ra số bớc đổi ít nhất sao cho không có 2 ngời cùng giới ngồi cạnh nhau Xem lời giải

82 Hai hàng số kỳ ảo

Hãy xếp 2N số tự nhiên 1, 2, , 2N thành 2 hàng số:

A1, A2 An B1, B2 Bn Thỏa mãn điều kiện: Tổng các số theo n cột bằng nhau, tổng các số theo các hàng bằng nhau Xem lời giải

83 Thuật toán lan số trên mảng

Cho lới ô vuông n x m Các ô vuông ở biên đã điền số -1 Các ô bên trong đợc điền tiếp các số 1,-1theo qui tắc sau: điền vào một ô trống số bằng tích của 2 số khác 0 gần nhất theo hàng hoặc cột củalới

1) Lập chơng trình cho phép điền vào tất cả các ô còn lại cho đến khi công việc kết thúc Sau đó in

ra số các số một có trong lới Gọi số này là S

2) Xây dựng thuật toán điền số sao cho S là nhỏ nhất

3) Xây dựng thuật toán điền số sao cho S là lớn nhất

Xem lời giải

84 Trò chơi "Phân rã số"

Trên bảng đen đợc viết một số tự nhiên n Hai ngời chơi trò chơi sau: Ngời thứ nhất xóa số n và viếtvào đó hai số m, k sao cho m+k=n Ngời thứ hai lại làm tơng tự đối với một trong hai số m, k Cuộcchơi dừng lại khi trên bảng còn toàn số 1

Tìm thuật toán tối u trong hai trờng hợp:

1) Ngời thắng cuộc là ngời đi sau cùng

2) Ngời thua cuộc là ngời đi sau cùng

Xem lời giải

85 Thuật toán bẻ Sôcôla

Có một thanh Sôcôla kích thớc m x n đợc vạch thành m x n ô vuông nhỏ, mỗi ô kích thớc 1 x 1 Haingời chơi nh sau: Ngời đầu tiên bẻ miếng Sôcôla làm 2 mảnh theo một đờng vạch Ngời thứ hai làmtơng tự với một trong hai mảnh Sôcôla còn lại Tìm thuật toán tối u trong hai trờng hợp:

1) Ngời thắng cuộc là ngời đợc bẻ lần cuối

2) Ngời thua cuộc là ngời đợc bẻ lần cuối

(Cuộc chơi dừng lại khi còn lại toàn các ô vuông 1 x 1)

Xem lời giải

86 Bài toán "đẩy" bi

Trên một lới vuông N x N có một hòn bi tại ô vuông ở góc trái dới Tọa độ các ô lới ký hiệu (i,j), vịtrí góc trái dới là (1,1) Mỗi bớc đi của luật chơi nh sau: Nếu hòn bi ở vị trí (i,j) mà tại các ô (i+1, j)

và (i, j+1) trống thì hòn bi này có thể cất đi và đặt vào hai ô (i+1, j), (i, j+1) hai hòn bi khác Mục

đích chơi là làm sao "đẩy" các hòn bi càng xa gốc tọa độ càng tốt Cụ thể là cần đẩy khỏi tam giácvuông đỉnh ở gốc tọa độ và có cạnh d Tìm thuật toán xác định số d lớn nhất sao cho có thể đạt đợcmục đích

Trang 10

Xem lời giải

87 Về các số 0 và 1 trong ma trận

Cần xếp vào các số 0, 1 vào ma trận A[M x N] với M x N chẵn, thỏa mãn các tính

chất sau:

1) Tổng số các số 0 và 1 trong toàn ma trận là bằng nhau

2) Trên mỗi hàng và mỗi cột, tỉ số giữa số lợng các số 0 và 1 hoặc nhỏ hơn 1/4 hoặc lớn hơn 3/4 Xem lời giải

88 Xây dựng số tự nhiên "ngoại đạo"

Cho trớc các số tự nhiên A1, A2, ,An Lập chơng trình in ra số tự nhiên nhỏ nhất M không biểudiễn dới dạng tổng của một hay nhiều số hạng trong dãy trên (mỗi phần tử chỉ đợc có trong một sốhạng của tổng mà thôi)

Xem lời giải

91 Xây dựng các số tốt

Một số tự nhiên gồm 2m chữ số đợc gọi là "tốt" nếu tập hợp các chữ số có chỉ số chẵn và lẻ chứa sốcác số chẵn và lẻ nh nhau Ví dụ: số 2347169824 là số "tốt" vì tập các chữ số chỉ số chẵn và lẻ đềuchứa 3 số chẵn và 2 số lẻ

Cho trớc một số có (2m+1) chữ số Lập thuật toán để sau khi xóa đi một chữ số của nó, số này sẽ trởnên "tốt" Lập đoạn chơng trình nhập từ bàn phím một số (2m+1) chữ số và biến đổi chúng thành số

"tốt" In ra kết quả

Xem lời giải

92 Bài toán "điện thoại"

Có n điểm cho trớc (đó là n trạm điện thoại) Hai ngời chơi trò chơi sau: Mỗi ngời đến lợt mình đợcphép nối dây của hai trạm điện thoại cha đợc nối dây Ngời thắng cuộc là ngời mắc đợc đờng dâycần thiết cuối cùng (nếu sau đó tất cả các trạm đều có thể nói chuyện đợc với nhau, dù có phải quacác trạm trung gian) Tìm thuật toán tối u cho các ngời chơi

Xem lời giải

93 Ma trận tựa kỳ ảo

Lập thuật toán điền vào ma trận A[N x N] các số tự nhiên khác nhau thỏa mãn điều kiện sau: Vớimọi k=2, 3, n, mọi ma trận con bậc k của A đều thỏa mãn tính chất: Tổng các số trên hai đờngchéo bằng nhau (ma trận con hiểu là k hàng và cột liền nhau)

Xem lời giải

94 Các ma trận con kỳ dị

Lập thuật toán điền vào ma trận A[N x N] các số tự nhiên khác nhau thỏa mãn điều kiện sau: Vớimọi k=2, 3, n, mọi ma trận con bậc k của A đều thỏa mãn tính chất: Tích các số trên hai đờngchéo bằng nhau (ma trận con hiểu là k hàng và cột liền nhau)

Xem lời giải

95 Ma trận hoàn chỉnh

Ma trận số A[M x N] gọi là "hoàn chỉnh" nếu nó không có hai hàng nào giống hệt nhau Cho tr ớc

ma trận hoàn chỉnh A[M x N] Lập thuật toán để sau khi xóa đi một cột nào đó, ma trận thu đợc vẫn

là hoàn chỉnh (chơng trình phải chỉ ra chỉ số cột cần phải xóa đi)

Xem lời giải

Trang 11

96 Hệ thống bóng điện kỳ ảo

Trên tờng treo n bóng điện, giữa một số cặp bóng điện có nối dây trang trí Các bóng điện đợc thắpsáng theo hai màu xanh và đỏ Sau mỗi phút các bóng điện sẽ đợc thay đổi màu theo nguyên tắc sau:Xét bóng điện A và tập DA các bóng điện của hệ thống có nối dây với A Bóng điện A sẽ đổi màunếu nh quá một nửa các bóng của DA khác màu với A (không đổi màu nếu ngợc lại) Ngời ta đãquan sát đợc sau một khoảng thời gian nào đó toàn cảnh bóng điện sẽ có hiện tợng sau: Một số bóng

điện sẽ dừng lại không đổi mầu nữa, còn một số bóng điện khác sẽ đổi màu liên tục sau mỗi bớc.Lập chơng trình để tính số thời gian đó

Xem lời giải

97 Về một ma trận kỳ lạ

Điền vào ma trận m x n (m hàng, n cột) các số tự nhiên từ 1, 2, m x n sao cho tổng số các số trongcác cột của ma trận là nh nhau (làm đợc khi m chẵn hoặc n x m lẻ)

Xem lời giải

98 Tìm cách đi tối u cho con xe

Trên bàn cờ ô vuông n x m, góc trái dới cùng có một con xe Hai ngời lần lợt đi con xe đó Qui tắcchỉ cho phép đi lên hoặc về bên phải (quãng đờng tùy ý) Ngời thua cuộc là ngời phải đi nớc cuốicùng Lập thuật toán tối u

99 Bài toán "Thủy chiến"

Trên một lới ô vuông NxN, một ngời đánh dấu lên đó (một cách bí mật) một số "tàu chiến" dạng1xk, các tàu chiến này phải rời nhau Ngời thứ hai "thả bom" tại từng ô vuông và sau một lần đánhbom thu đợc câu trả lời: "trúng" hoặc "trợt" Tìm thuật toán tối u cho ngời thứ hai để xác định đợc vịtrí tàu

Xem lời giải

100 Lại về bài toán thuỷ chiến khác

Trên một lới ô vuông N x N, một ngời đánh dấu lên đó (một cách bí mật) một số "tàu chiến" dạng1x N, các tàu chiến này phải rời nhau Ngời thứ hai đánh một loạt "bom" tại từng ô vuông và saumột lần đánh bom thu đợc câu trả lời: "trúng" hoặc "trợt" Tính xem ngời thứ hai phải đánh nhiềunhất là bao nhiêu bom để biết đợc vị trí tàu

Xem lời giải

101 Điền dấu cho biểu thức

Cho trớc các số tự nhiên A1, A2, An sao cho Ai <= n Hãy tìm các dấu (+), (-) thay thế vào các vịtrí có dấu (*) tơng ứng trong biểu thức * A1 * A2 * * An sao cho giá trị của biểu thức này bằng 0.Chơng trình phải tìm ra đợc lời giải hoặc phủ định cách tìm

102 Bài toán "Trộn bài"

Các quân bài đợc đánh số từ 1 đến n đợc xếp lại thành một tập (nh bộ tú lơkhơ và tam cúc) Mộtphép trộn hay xáo bài cho phép: Lấy từ mặt trên một số bất kỳ quân bài, sau đó không đổi thứ tự cóthể nhét hoặc đút vào bất kỳ khe nào của chỗ bài còn lại Cho phép đút vào một hoặc nhiều khe, chỉyêu cầu khônglàm thay đổi thứ tự của tập đợc đút và tập bài bị đút vào (giống nh trộn bài bình th-ờng) Hỏi sau ít nhất bao nhiêu phép trộn nh vậy, các quân bài sẽ đợc xếp lại theo thứ tự

103 Trò chơi "Hai đống sỏi"

Có hai đống sỏi, mỗi đống n hòn sỏi Hai ngời lần lợt lấy 1 hoặc nhiều hònsỏi từ một đống nào đó.Ngời thắng cuộc là ngời nhặt đợc viên sỏi cuối cùng Tìm thuật toán tối u cho các ngời chơi

104 Trò chơi hai đống sỏi tổng quát

Có hai đống sỏi, mỗi đống n hòn sỏi Hai ngời lần lợt lấy 1 hoặc nhiều hòn sỏi từ một đống nào đó.Nhng khi lấy sỏi đi không đợc phép để lại 2 đống có số sỏi nh nhau Ngời thắng cuộc là ngời nhặt đ-

ợc viên sỏi cuối cùng Tìm thuật toán tối u cho các ngời chơi

Trang 12

105 Bài toán chia kẹo

Có 2 đống kẹo, mỗi đống 12 cái Hai ngời lần lợt làm các bớc sau: Chuyển 1 cái kẹo từ đống nàysang đống kia và ăn 2 cái kẹo từ một đống nào đó Ngời đi sau cùng là ngời thắng cuộc Tìm thuậttoán tối u

106 Trò chơi Gelfand

Bàn cờ kích thớc n x n đặt chéo Một con tốt nằm ở đỉnh dới Hai ngời lần lợt đẩy con tốt đi một

n-ớc Không đợc đi lùi lại Ngời đầu tiên đặt đợc con tốt sang đầu ngợc lại là ngời thắng cuộc Tìmthuật toán tối u cho ngời đi nớc đầu tiên

107 Tô màu lới ô

Một lới ô vuông N x N Các ô đợc tô màu đỏ hoặc xanh ô đợc gọi là đặc biệt nếu màu của nó trùngvới 1/2 các ô xung quanh (kể cả các ô chung đỉnh) Lập thuật toán tô màu sao cho số các ô đặc biệt

là lớn nhất

108 Bài toán tìm đờng đi ngắn nhất trên lới - tổng quát

Cho lới ô vuông M x N Mỗi mắt lới đợc đánh một số Tìm đờng đi "ngắn nhất" từ A đến B (A, B là

2 nút lới và đờng đi trên các cạnh của lới), nghĩa là đờng đi mà tổng các số trên đờng đi là bé nhất

109 Tính số các hình chữ nhật cùng màu

Một lới ô vuông N x N các ô vuông đợc tô bởi m=2 màu Lập chơng trình tính số các hình chữ nhậtnằm bên trong lới mà đỉnh của chúng nằm trong 4 ô có màu nh nhau

110 Bài toán hình chữ nhật cùng màu - Tổng quát

Một lới ô vuông N x N các ô vuông đợc tô bởi m màu Lập chơng trình tính số các hình chữ nhậtnằm bên trong lới mà đỉnh của chúng nằm trong 4 ô có màu nh nhau

112 Bài toán che mắt mèo

Trên bàn cờ ô vuông N x N tại mỗi ô có thể xếp hoặc một con mèo con, hoặc một quân cờ Hai conmèo trên bàn cờ sẽ nhìn thấy nhau nếu trên đờng thẳng nối chúng theo hàng ngang, hàng dọc hay đ-ờng chéo không có quân cờ nào cả Hãy tìm cách xếp mèo và quân cờ nh trên cho số mèo lớn nhất

và không có hai con mèo nào nhìn thấy nhau

113 Ma trận lặp

Một lới ô vuông N x N các ô đợc điền các số nguyên sao cho 2 số ở hai ô chung cạnh với nhau sẽhơn kém nhau không quá 1 Ta nói lới trên có mức lặp bằng k nếu tồn tại một số nguyên đợc lặp lạitrên lới k lần và điều này không thoả mãn với k+1 Rõ ràng độ lặp lớn nhất bằng N2 khi tất cả các sốtrong lới là nh nhau Tìm cách xếp số sao cho nó có mức lặp là ít nhất

114 Dãy số đặc biệt

Từ dãy số 1, 2, 3, , 1995 hãy xóa đi một số lợng ít nhất các số sao cho trong dãy số còn lại khôngtồn tại bộ 3 số nào mà một trong chúng bằng tích hai số còn lại

115 Dãy con đặc biệt

Cho trớc dãy số thực: A1, A2, An (1)

Hãy chọn ra từ (1) dãy con: B1, B2, Bm (2) thỏa mãn điều kiện sau:

1) Không có 3 số hạng liền nhau nào của (1) nằm trong (2)

2) Trong 3 số hạng liên tiếp bất kỳ của (1) có ít ra là một số nằm trong (2)

3) Tổng trị tuyệt đối các số của dãy (2) lớn hơn 1/6 tổng trị tuyệt đối các số của dãy (1)

Trang 13

116 Về một ma trận hầu hết 0

Cho ma trận vuông A bậc n x n Các phần tử của A gồm n-1 số 1 và còn lại là số 0 Lập thuật toán

để sau khi đổi chỗ một số hàng và cột, ma trận A sẽ thỏa mãn điều kiện: các số 1 đều nằm d ới đờngchéo chính

Tối u bài toán theo nghĩa số phép biến đổi là nhỏ nhất

Kiểm tra xem A có là liên thông hay không?

Trờng hợp A không là liên thông hãy tìm cách biến đổi một số ít nhất các số 1 hoặc 2 thành

0 sao cho A trở thành liên thông

118 Ma trận Mê cung

Ma trận A bậc N x N đợc gọi là "Mê cung" nếu:

1) Các phần tử là 0, 1, -1

2) Phản đối xứng

3) Với mọi i, tồn tại dãy k, l, s sao cho:

Aik = Akl = = Asi = 1

Lập thuật toán xây dựng ma trận "Mê cung"

119 Bài toán "Mê cung" tổng quát

Trên bàn cờ ô vuông M x N các ô đợc đánh dấu 0 là các ô tự do, các ô đợc đánh dấu 1 là các ô cómìn Tìm đờng đi ngắn nhất giữa 2 điểm tự do A, B cho trớc của "Mê cung"

120 Dãy số hoàn toàn không công bằng

b) Bất cứ 3 điểm nào của tập trên cũng tạo thành tam giác tù

Tìm thuật toán cho phép từ một tập hữu hạn các điểm trên mặt phẳng thỏa mãn tính chất T bổ sungthêm một điểm nữa sao cho tập thu đợc vẫn thỏa mãn tính chất T (do đó thuật toán cho phép với ncho trớc xây dựng một tập gồm n điểm thoả mãn tính chất T)

a) In ra dòng thứ n của bảng này (chú ý khi n khá lớn!)

b) Tính xem ở hàng thứ i có bao nhiêu số

123 Về các phép biến đổi "Nhân 2 trừ 1"

Cho ma trận A kích thớc m x n, Aij - các số tự nhiên Các phép biến đổi có thể là:

- Nhân tất cả các số của một hàng với 2

- Trừ tất cả các số của một cột cho 1

Tìm thuật toán sao cho sau một số phép biến đổi trên ma trận A trở thành toàn số 0

Trang 14

Tại các đỉnh của n đa giác đều đặt các số 1, -1 Bạn có quyền hỏi, mỗi câu hỏi sẽ biết đợc:

Tích của bất kỳ 3 số trong số n số trên

Lập thuật toán để tính xem sau ít nhất bao nhiêu lần hỏi bạn có thể biết đợc tích của tất cả n số trên

126 Tích của 3 số kề nhau trong n số

Tại các đỉnh của n đa giác đều đặt các số 1, -1 Bạn có quyền hỏi, mỗi câu hỏi sẽ biết đợc:

Tích của bất kỳ 3 số đứng cạnh nhau

Lập thuật toán để tính xem sau ít nhất bao nhiêu lần hỏi bạn có thể biết đợc tích của tất cả n số trên

127 Đoán vị trí số trên lới

Trên bàn cờ ô vuông 8 x 8 xếp các số từ 1 đến 64 Sau mỗi câu hỏi bạn có thể biết đ ợc tập hợp các

số của một số các ô bất kỳ Lập thuật toán để sau một số lần hỏi ít nhất biết đợc vị trí của tất cả các

số

128 Bài toán 16 con hậu

Trên bàn cờ n x n hãy xếp 2n con hậu sao cho trên mỗi hàng và mỗi cột có đúng 2 con hậu

129 Xoá số trên vòng tròn

Các số từ 1 đến 1995 đợc xếp theo thứ tự tăng dần trên một đờng tròn theo chiều kim đồng hồ Bắt

đầu từ số 1, chuyển động theo chiều kim đồng hồ, cứ bớc qua một số lại xoá đi một số Công việc đótiếp diễn cho đến khi trên vòng tròn còn lại đúng một số Lập chơng trình tính và in ra số đó

130 Về các số tự nhiên tốt

Số tự nhiên n gọi là "Tốt" nếu tồn tại các số tự nhiên (không nhất thiết khác nhau) A1 Ak sao cho A1 + A2 + + Ak = n

1/A1 + 1/A2 + + 1/Ak = 1

Lập chơng trình kiểm tra xem các số 19, 21, 23 có phải là "Tốt" không ?

131 Bài toán chia quốc hội

Quốc hội của một nớc nọ có N nghị sĩ Biết rằng mỗi nghị sĩ có không quá 3

kẻ thù t tởng trong quốc hội Hãy giúp nớc đó chia Quốc hội thành 2 viện

sao cho trong mỗi viện, mỗi nghị sĩ có không quá một kẻ thù t tởng

132 Bài toán xếp 20 quân cờ

Cần xếp 20 quân bài khác nhau lên bàn cờ ô vuông 100 x100 Biết rằng mỗi quân cờ từ 1 ô bất kỳcủa bàn cờ có thể khống chế nhỏ hơn 20 vị trí Tìm cách xếp 20 quân cờ trên sao cho không có quân

cờ nào khống chế đợc các quân cờ khác

134 Về một đồ thị có hớng

Cho n điểm trên mặt phẳng (n>4) Giữa 2 điểm có thể nối đợc 1 đoạn thẳng có hớng Hãy tìm cách

kẻ một số đoạn thẳng có hớng nh vậy để thoả mãn điều kiện sau:

Trang 15

Với mọi i, j từ điểm i có thể đi đợc đến j qua không quá 2 đoạn thẳng Lập chơng trình mô tả tất cảcác cách xếp trên

135 Về một cách nối các điểm trên mặt phẳng

Cho n điểm trên mặt phẳng Cần nối một số đoạn thẳng giữa các điểm sao cho:

a) điểm nào cũng có đoạn thẳng nối đến

b) Không tồn tại bộ 3 điểm nào mà số các đoạn đi từ 3 điểm này là nh nhau

Lập thuật toán mô tả các cách nối trên

136 Đờng đi của vua

Từ 1 ô bất kỳ trên bàn cờ vua 8 x 8, quân cờ vua sẽ đi một lợt (theo luật đi của

vua) khắp các ô của bàn cờ, mỗi ô một lần và cuối cùng trở về vị trí cũ Từ tâm

các ô mà quân cờ vua đã đi qua nối chúng lại theo các đoạn thẳng liên tiếp

a) Lập một đờng đi nh vậy của quân cờ vua

b) Tính quãng đờng ngắn nhất và dài nhất mà quân cờ vua có thể đi đợc

137 9 con tốt

Trên bàn cờ ô vuông 8 x 8 có 9 con tốt xếp thành một hình vuông 3x 3 ở góc trái dới bàn cờ Cáccon tốt có thể nhảy qua 1 con tốt khác tới vị trí đối xứng với con tốt đó Tồn tại hay không thuật toán

để chuyển cả 9 con tốt đó:

a) đến hình vuông 3x 3 ở góc trái phía trên?

b) đến hình vuông 3 x 3 ở góc phải phía trên?

138 Biểu diễn một số nguyên từ cấp số cộng

Viết chơng trình làm các việc sau:

Hai ma trận Latinh A, B cùng kích thớc (xem bài 139) gọi là trực giao với nhau nếu nh chúng không

có 2 bộ (Aij, Bij) nào giống nhau Hãy xây dựng tất cả các cặp ma trận Latinh là trực giao với nhau

Trang 16

Tìm thuật toán xếp các số từ 1 đến 2n-1 theo thứ tự sao cho trong dãy số đó không có tổng của một

số số hạng liên tiếp nào mà chia hết cho 2n

147 Bài toán con sên bò

Trên bàn cờ 9 x 9 tại mỗi ô có một con sên Sau 1 tiếng còi, tất cả các con sên đều chuyển động sangmột ô bên cạnh theo hớng chéo Nh vậy sau một tiếng còi, có 1 số ô sẽ có một vài con sên, có 1 số ô

sẽ không có con sên nào Hãy tính giá trị nhỏ nhất và lớn nhất của số các ô không có con sên nào

148 Bài toán con sên bò tổng quát

Trên bàn cờ n x n tại mỗi ô có một con sên Sau 1 tiếng còi, tất cả các con sên đều chuyển động sangmột ô bên cạnh theo hớng chéo Nh vậy sau một tiếng còi, có một số ô sẽ có một vài con sên, có một

số ô sẽ không có con sên nào Hãy tính giá trị nhỏ nhất và lớn nhất của số các ô không có con sênnào

149 Xếp lại giá sách

Trên giá sách có n quyển sách đợc đánh số từ 1 đến n (các tập của một tuyển tập) và đợc xếp thànhmột hàng ngang nhng không theo thứ tự các tập Cho phép thay đổi nh sau: Mỗi lần đổi một quyểnsách có số hiệu k với tập ở vị trí k của giá sách Lập thuật toán cho biết sau bao nhiêu lần đổi nh vậythì các quyển sách đợc xếp lại đúng thứ tự

150 Sắp xếp trên vòng tròn

Trên vòng tròn xếp n số 1, 2, 3, , n Cho phép thực hiện đổi chỗ hai số cạnh nhau nếu chúng hơnkém nhau lớn hơn 1 Lập thuật toán sử dụng các phép biến đổi đó để xếp lại các số trên theo đúngthứ tự của mình

151 Ma trận hoán vị

Xây dựng ma trận n x n sao cho mỗi hàng, mỗi cột và mỗi đờng chéo đều là các hoán vị của 1, 2, ,

n

152 Về một hoán vị đặc biệt

In ra tất cả các hoán vị của 1,2, ,n thoả mãn tính chất sau: Với mọi i, nếu số i không nằm ở vị trí

đầu tiên thì i-1 hoặc i+1 phải nằm ở bên trái của i

153 Bài toán biểu diễn tiền

Cho m loại tiền với các giá trị tự nhiên a1, a2, am và một giá trị tiền N (tự nhiên) Viết thuật toán

và chơng trình để tính tất cả các cách biểu diễn N bởi m loại tiền kể trên

154 Trò chơi hai đống sỏi

Cho 2 đống sỏi có a và b viên, có 2 ngời chơi bốc sỏi Mỗi ngời đến lợt có thể bốc một trong haicách:

- Bốc ở một đống một số sỏi bất kì

- Bốc ở hai đống một số sỏi nh nhau

Ngời bốc cuối cùng là ngời thắng cuộc Tìm thuật toán tối u và viết chơng trình cho các ngời chơi

155 Ghi số trên bảng

Trên bảng ghi số 0 Mỗi lần đợc tăng số đã viết lên bảng lên 1 đơn vị hoặc tăng gấp đôi Hỏi sau ítnhất là bao nhiêu bớc sẽ thu đợc số N

Trang 17

156 Sắp xếp truyện

Một quyển sách truyện có n truyện ngắn Mỗi truyện ngắn chiếm lần lợt a1, a2, ,an trang giấy Cáctruyện đợc in từ trang 1, mỗi truyện mới đợc in từ đầu trang tiếp theo Hãy sắp xếp các truyện saocho số lợng các truyện bắt đầu từ trang lẻ là:

ở phân xởng B và quá trình này sẽ đợc lặp lại một cách tuần hoàn (tìm điều kiện của a, b khi nào thìlập đợc bảng phân công nh vậy)

158 Tìm đờng đi du lịch tối u

Tại một đất nớc có n thành phố Giữa các thành phố có các tuyến đờng (1 chiều) Biết rằng:

1) Giữa 2 thành phố bất kỳ có thể đi đến nhau (có thể qua nhiều tuyến đờng)

2) Từ 1 thành phố số các đờng đi ra bằng số các đờng đi vào

Lập thuật toán tìm một con đờng xuất phát từ một thành phố nào đó, đi qua tất cả các tuyến đờng,mỗi tuyến đờng 1 lần, cuối cùng trở về thành phố ban đầu

159 Tìm 3 số tự nhiên

Tìm 3 số tự nhiên n1, n2, n3 thỏa mãn điều kiện sau:

a) Tỉ số giữa các số trên là 1:3:5

b) Các chữ số của 3 số trên viết trong cơ số 10 gộp lại lập thành hoán vị của các số 0,1,2, ,9

160 Biểu diễn số tự nhiên thành tổng các số tự nhiên khác

Với số tự nhiên n cho trớc tính xem có bao nhiêu cách biểu diễn n thành tổng của 1 hay nhiều số tựnhiên khác (không tính đến thứ tự của các số hạng, ví dụ 3=2+1=1+2 coi nh là một cách biểu diễn)

163 Bài toán xếp xe kiểu khác

Trên bàn cờ vua 8 x 8 có thể xếp ít nhất bao nhiêu con xe sao cho chúng khống chế đ ợc toàn bộ bàn

Trang 18

167 Trả tiền cho khách

(Đề thi Tin học chọn đội tuyển quốc gia 1995)

Một quầy trả tiền có N loại tiền với các mệnh giá (giá trị tiền ghi trên tờ tiền) là A[1], A[2], , A[N](các A[i] là nguyên dơng và khác nhau từng đôi) Giả thiết loại tiền mệnh giá A[i] có B[i] tờ(1<=i<=N) Có M khách (đợc đánh số hiệu từ 1 đến M) cần lấy tiền Số tiền khách j cần lấy là K[j],K[j] nguyên dơng, 1<=j<=M Quy định rằng với mỗi khách hoặc quầy từ chối cha trả tiền hoặc quầyphải trả đúng số tiền mà khách cần lấy

Dữ liệu vào đợc cho trong file văn bản có tên INP.TXT trong đó dòng đầu ghi giá trị N (N<=10),dòng tiếp theo ghi các giá trị A[1], A[2], , A[N], dòng tiếp theo ghi các giá trị B[1], B[2], , B[N],sau đó là dòng ghi giá trị M (M <=20), cuối cùng là dòng ghi các giá trị K[1], K[2], , K[M], tất cảcác giá trị đều nguyên dơng

1) Đọc file dữ liệu và đa ra màn hình nội dung file dữ liệu (theo thứ tự trên)

2) Tìm cách trả tiền sao cho trả đợc nhiều khách nhất Thông báo kết quả ra file văn bản với tênOUT2.TXT trong đó dòng đầu ghi số khách đợc trả tiền, trong các dòng tiếp theo, mỗi dòng ghithông tin về một khách đợc trả tiền gồm số hiệu của khách, số tiền phải trả và dãy các số X[1], X[2], , X[N], trong đó X[i] là số tờ của loại tiền mệnh giá A[i], 1<=i<=N, đợc trả cho khách

3) Tìm cách trả tiền sao cho trả đợc nhiều tiền nhất Thông báo kết quả ra file văn bản với tênOUT3.TXT trong đó dòng đầu ghi tổng số tiền đã trả đợc, trong các dòng tiếp theo, mỗi dòng ghithông tin về một khách đợc trả tiền theo quy cách giống nh câu (2)

Chú ý: Hai giá trị liền nhau trên một dòng của các file văn bản cách nhau ít nhất một dấu trắng

168 Trò chơi 3 đống sỏi

Có ba đống sỏi với số sỏi là a,b,c Hai ngời chơi bốc sỏi nh sau: Mỗi ngời đến lợt mình đợc bốc 1 sốsỏi bất kỳ từ một đống Ngời thắng cuộc là ngời bốc sỏi sau cùng Lập thuật toán tối u cho các ngờichơi

169 Lới ô vuông vô hạn

Trên bàn cờ vuông vô hạn về 2 phía lần lợt đặt các số theo qui tắc sau:

Số đầu tiên ở vị trí (1,1) là 0 Sau đó mỗi ô đợc điền số nhỏ nhất lớn hơn hoặc bằng 0 mà cha đợc

điền ở hàng hoặc cột chứa ô đó

Ví dụ một số số đầu tiên nh sau:

Xác định ma trận A bậc n x n với các số hạng của chúng bằng -1,0,1 sao cho tổng số tất cả các hàng

và cột (chúng gồm 2n số) đều là các số khác nhau từng đôi một

171 Biến đổi các cặp số

đối với cặp số (a,b) cho phép thực hiện biến đổi sau: Cộng một số vào số kia và biến đổi cặp số đãcho thành (a+b,b) hoặc (a,a+b) Viết chơng trình tính số các phép biến đổi ít nhất có thể đợc để biến

đổi từ cặp (1,1) thành cặp số chứa số N cho trớc

172 Bài toán sơn tốt đen

Trên bàn cờ 10 x 10 xếp bất kỳ 90 con tốt trắng Mỗi phép biến đổi làm đợc việc sau: Nhặt 1 con tốttrắng, sơn đen nó và đặt vào 1 ô trống bất kỳ Công việc đó đợc tiến hành cho đến khi trên bàn cờkhông còn quân tốt trắng nào

Lập thuật toán mô tả công việc trên và tìm cách sao cho trong suốt quá trình trên không có 2 con tốtkhác màu nào phải đứng cạnh nhau (đứng cạnh nhau theo cạnh của ô bàn cờ)

173 Về 1 thuật toán của dãy tuần hoàn

Dãy số {Xn} gọi là tuần hoàn nếu tồn tại các số tự nhiên M, T sao cho:

Xn = Xn + T, với mọi n>M

Số M, T nhỏ nhất với tính chất trên gọi là Bậc và Chu kỳ của dãy Xn

a) Cho dãy tuần hoàn {Xn} Lập thuật toán tính M và T mà chỉ sử dụng tổng số các so sánh là tuyếntính đối với Max(M,T)

b) Lập chơng trình cụ thể tính M, T đối với dãy tuần hoàn Xn biết X1 và biết rằng Xn+1=F(Xn), ở

đây:

Trang 19

F(x) = g(x) mod 108, g(x) - hàm số đợc xác định theo công thức:

174 Bài toán xếp bánh ga tô

Có n loại bánh ga tô, mỗi loại m chiếc Tất cả n x m chiếc bánh trên xếp đều trong n thùng, mỗithùng m chiếc Lập thuật toán để chọn ra từ n thùng trên, mỗi thùng một chiếc sao cho thu đợc nchiếc thuộc n loại bánh khác nhau

ơng trình để xây dựng dãy số đó

177 Dãy tam phân không lặp

Cho trớc số tự nhiên n Lập thuật toán cho biết có xây dựng đợc dãy số gồm các chữ số 1, 2, 3 saocho trong dãy này không có 1 chữ số hoặc 1 nhóm chữ số nào đợc lặp lại hai lần liên tiếp hay không.Nếu đợc thì lập chơng trình xây dựng dãy số đó

182 Xây dựng các tuyến đờng tối u

Tại một nớc nọ có n thành phố Cần xây dựng một số tuyến đờng giữa một số thành phố sao chothoả mãn:

a) Nếu giữa 2 thành phố A, B có tuyến đờng thì không tồn tại thành phố C sao cho từ C có các tuyến

đờng đến A và B (để tiết kiệm vật liệu)

b) Nếu giữa A, B không có tuyến đờng nào thì tồn tại đúng 2 thành phố khác C, D sao cho từ C và D

có các tuyến đờng đến cả A và B

Lập thuật toán xây dựng tuyến đờng cho n thành phố trên (hoặc cho biết rằng không thể xây dựng ợc)

đ-183 Cấp số cộng bao gồm toàn các số nguyên tố

Tìm một cấp số cộng gồm toàn các số nguyên tố nhỏ hơn 3000

184 Dãy các số tự nhiên viết liên tiếp

Tất cả các số tự nhiên bắt đầu từ 1 đợc viết liên tiếp theo thứ tự (từ trái sang phải) Lập thuật toán đểtính xem ở vị trí thứ N là chữ số nào

185 Về một ma trận vuông đặc biệt

Lập thuật toán xây dựng tất cả các ma trận vuông bậc n với các phần tử nguyên thoả mãn điều kiện:

Trang 20

Với mọi i, j, k ta có Aij + Ajk + Aki = 0

186 Ba đống sỏi

Có 3 đống sỏi (với số sỏi a, b, c) Mỗi phép biến đổi cho phép lấy đi từ mỗi đống 1 hòn sỏi hoặctăng gấp đôi số sỏi ở 1 đống nào đó Lập thuật toán để sau khi thực hiện một số phép biến đổi có thểlấy hết số sỏi ở cả 3 đống

187 Các tổng con bằng nhau lớn nhất

Cho n số 1, 2, , n sắp xếp trên một đờng thẳng nhng không theo thứ tự Mỗi lần cho phép đổi chỗ 2

số Lập thuật toán thực hiện một số phép biến đổi ít nhất để xếp lại trật tự các số trên

190 Sắp xếp bảng số

Các số từ 1 đến n x n đợc xếp một cách ngẫu nhiên trên toàn bàn cờ ô vuông n x n Bằng các phép

đổi chỗ 2 số, lập thuật toán thực hiện sau một số ít nhất các phép đổi chỗ đa bảng trên về theo thứ tựtăng dần

a) Lập thuật toán cho ngời chơi thứ hai sao cho hiệu số trên thu đợc luôn nhỏ hơn 40.000

b) Lập thuật toán cho ngời chơi thứ nhất sao cho hiệu số trên luôn lớn hơn 40.000

192 Điền số vào phép nhân

Hai ngời lần lợt điền dấu + hoặc - vào các dấu * của dãy số:

* 1 * 2 * * 20

a) Lập thuật toán cho ngời thứ nhất để luôn đạt đợc tổng có giá trị tuyệt đối nhỏ hơn 30

b) Lập thuật toán cho ngời chơi thứ hai sao cho tổng đạt đợc có giá trị tuyệt đối lớn hơn 30

193 Về một thuật toán xây dựng ma trận nguyên

Cho các số tự nhiên A1, A2, , Am, B1, , Bn thoả mãn:

A1 + A2 + + Am = B1 + B2 + + Bn

Lập thuật toán xây dựng ma trận nguyên m x n sao cho tổng các số ở hàng i bằng Ai, tổng các số ởcột j bằng B

Trang 21

194 Trò chơi: Một con tốt

Trên bàn cờ n x n có một con tốt nằm ở góc trái dới Hai ngời chơi trò chơi sau: Mỗi ngời đợc đi con tốt một nớc sang ô bên cạnh Không đợc đi con tốt vào ô đã đi qua Ngời thuacuộc là ngời không đi đợc nớc của mình

Lập thuật toán tối u cho các ngời chơi (Nếu n chẵn, ngời đi đầu thắng, n lẻ ngời đi sau thắng)

195 Kết quả giải bóng đá (đề thi Tin học chọn đội tuyển quốc gia 1995)

ở một nớc nọ do các đội bóng đá thiếu tinh thần thi đấu nên số trận đấu hòa rất nhiều Ban tổ chứcquyết định thay đổi luật để kích thích các đội thi đấu tích cực hơn Giải sẽ tổ chức thi đấu vòng trònnghĩa là mỗi đội đều phải đấu với tất cả các đội khác đúng một trận Nếu hòa, cả hai đội đều bị 0

điểm Đội thắng sẽ đợc 3 điểm còn đội thua cũng sẽ đợc 1 điểm Do sơ xuất của ban tổ chức, bảngkết quả thi đấu của tất cả các đội bị nhòe một số chỗ không đọc đợc Ban tổ chức quyết định gửibảng đó đến một trung tâm Tin học nhờ xem xét việc khôi phục lại các thông tin bị mất

Giả sử số đội bóng bằng N (N<=20), bảng kết quả đợc cho bởi một mảng số nguyên A[1 N,1 N+1], trong đó A[i, j] bằng số điểm đội i đạt đợc trong trận đấu với đội j (1<=i,j<=N, i khác j) vàA[i, N+1] bằng tổng số điểm của đội i trong toàn giải Để đầy đủ, ta quy ớc A[i, j]=0 (1<=i<=N) Dữ liệu vào đợc cho trong một file văn bản với tên là INP.TXT, trong đó dòng đầu tiên ghi giá trị N,dòng i+1 (1<=i<=N) ghi các giá trị A[i,1], A[i,2], , A[i,N], A[i,N+1] Các giá trị này cách nhau ítnhất một dấu trắng và quy ớc rằng giá trị nào bị nhòe thì tại đó đợc thay bằng dấu ?

Lời giải cần đa ra một file văn bản với tên là OUT.TXT, trong đó liệt kê tất cả các khả năng có thể

có Với mỗi bảng kết quả đợc khôi phục, cần ghi số thứ tự của bảng trên một dòng, các dòng tiếptheo, ghi các dòng của bảng giống nh trong file dữ liệu vào, trong đó các dấu ? đợc thay bằng cácgiá trị tơng ứng đã khôi phục

Ví dụ với file dữ liệu vào INP.TXT

196 Bài toán "Tem th"

Một đất nớc nọ có n loại tem th khác nhau Luật dán tem là ở trên mỗi phong bì chỉ đợc dán nhỏ hơnhoặc bằng m con tem (có thể là giống nhau)

a) Cho trớc n loại tem ứng với số tiền là a1, a2, , an Hãy xác định dãy số 1, 2, 3 Tn,m lớn nhất(với m, n cho trớc) sao cho mọi số trong dãy trên đều đợc thể hiện bằng giá tiền 1 lá th với qui tắcdán tem nh trên

b) Cho trớc m,n Hãy xác định bộ tem a1, a2, , an sao cho số Tm,n đợc xác định trong câu (a) làlớn nhất

Ví dụ: Với n=4, m=5, dãy cần tìm là 1, 2, 71 ứng với bộ tem (1, 4, 12, 21) hoặc (1, 5, 12, 28)

197 Bài toán "Phủ hình chữ nhật"

Hai hình chữ nhật gọi là không so sánh đợc nếu không thể xếp hình nọ nằm bên trong hình kia Chotrớc hình chữ nhật mxn Hãy xác định xem hình này có thể phủ đợc bởi các hình chữ nhật conkhông so sánh đợc với nhau không? Trong trờng hợp có thể, tìm tất cả các phủ nói trên

198 Bài toán "Pentamino"

Hình chữ nhật 6 x 10 đợc tạo thành từ 12 Pentamino (mỗi Pentamino tạo thành từ 5 hình vuông 1 x1) nh hình vẽ

Hãy tìm tất cả các cách phân chia khác cho trờng hợp 6 x 10

Làm bài toán tơng tự cho hình chữ nhật 5 x 12

Trang 22

199 Bài toán "Y-Pentamino"

cho ta cảm tởng rằng hình vuông 70 x 70 có thể phủ bằng 24 hình vuông kích thớc 1 x 1, 2 x 2, ,

24 x 24 Lập chơng trình kiểm tra xem điều trên có đúng không

201 Sắp xếp công việc

Có n ngời và n công việc Gọi Cij là công sức làm việc j của ngời i Lập chơng trình để sắp xếp mỗingời một công việc sao cho công sức bỏ ra là ít nhất

202 Xâu nhị phân N - đầy đủ

Lập thuật toán in ra xâu ký tự X gồm các số 0, 1 sao cho thoả mãn tính chất: Mọi xâu gồm các ký tự

0, 1 có độ dài N đều đợc gặp trong X (xâu ký tự X nh vậy gọi là N-đầy đủ)

Lập xâu ký tự N-đầy đủ có độ dài ngắn nhất

(Độ dài xâu này sẽ là 2N + N - 1)

203 Xâu nhị phân vòng N - đầy đủ

Trên vòng tròn sắp xếp các ký tự 0, 1 sao cho mọi xâu ký tự 0, 1 độ dài n đều đợc gặp trên vòng tròn(là một dãy n ký tự liên tiếp, tính theo chiều kim đồng hồ)

204 Bài toán k đống sỏi

Trên mặt đất có k đống sỏi với số sỏi tơng ứng là A1, A2, Ak thỏa mãn điều kiện:

Xét một Graph với 2 đỉnh đợc đánh dấu Hai ngời chơi trò chơi sau:

a) Ngời thứ nhất có quyền bỏ đi 1 cạnh của Graph trên

b) Ngời thứ hai có quyền đánh dấu 1 trong các cạnh còn lại của Graph để cho biết rằng cạnh này đã

đợc "bảo vệ" và không bao giờ bị tháo gỡ bởi ngời thứ nhất nữa Ngời thứ nhất thắng cuộc nếu táchrời đợc hai đỉnh đã đánh dấu Ngời thứ hai thắng cuộc nếu nối liền đợc hai đỉnh trên bởi các cạnh đã

đợc bảo vệ Lập thuật toán tối u cho trò chơi trên

206 Xếp quân cờ 3 màu

Một lới ô vuông gồm 3 hàng và n cột Xếp ngẫu nhiên 3n quân cờ, trong đó n quân xanh, n quân đỏ,

n quân vàng vào các ô của lới trên Cho phép đổi vị trí các quân cờ của một hàng bất kỳ

Lập thuật toán sắp xếp lại sao cho mỗi cột của bàn cờ đều chứa 3 quân cờ với 3 mầu khác nhau

207 Xếp cờ trên lới 3 màu - tổng quát

Tổng quát hóa đề số 206 cho trờng hợp lới m hàng và n cột

208 Thiết lập hệ thống đờng tối u

Có n thành phố Cần nối giữa các thành phố bằng các con đờng sao cho:

Từ một thành phố bất kỳ có thể đi đến thành phố bất kỳ khác phải qua cùng lắm là 1 thành phố trunggian nữa, và số các đờng là bé nhất

209 Gọi điện thoại

Có N ngời, mỗi ngời biết một trong N thông tin khác nhau Họ bắt đầu gọi điện thoại để thông báocác thông tin đó cho nhau Mỗi cú điện thoại giữa hai ngời kéo dài 1 phút Hỏi sau ít nhất bao nhiêuphút để tất cả mọi ngời đều biết tất cả các thông tin trên? (mỗi lần gọi điện, hai ngời có thể thôngbáo cho nhau tất cả các thông tin mình biết)

Trang 23

210 Xếp số trên vòng tròn

Sắp xếp các số 1, 2, , n lên vòng tròn sao cho hai số bất kỳ cạnh nhau sẽ có hiệu nhỏ hơn hoặcbằng 2

211 Tổng các số tự nhiên liên tiếp

Cho trớc số tự nhiên n Lập thuật toán cho biết n có thể biểu diễn thành tổng của hai hoặc nhiều số

tự nhiên liên tiếp hay không?

Trong trờng hợp có, hãy thể hiện tất cả các cách có thể có

212 Số đặc biệt có 5 chữ số

Có bao nhiêu số có 5 chữ số chia hết cho 3 và trong cách viết của nó có chứa chữ số 6

213 Tìm giá trị lớn nhất

Tìm giá trị lớn nhất của tổng

|A1-1| + |A2-2| + + |An-n| với A1, A2, An là hoán vị của 1,2, n

214 Bài toán n-mino

n-mino là hình thu đợc từ n hình vuông 1 x 1 ghép lại (cạnh nối cạnh) Hai n-mino coi nh đồng nhấtnếu chúng có thể chồng khít lên nhau Lập chơng trình tính và vẽ ra tất cả các n-mino Gọi Mn là sốcác n-mino khác nhau

Ví dụ:

215 Bài toán 16 quân cờ

Trên bàn cờ 8 x 8 xếp 16 quân cờ sao cho trên mỗi hàng và mỗi cột có đúng 2 quân cờ Hãy tô màu

16 quân cờ này bằng hai mầu đỏ, xanh sao cho trên mỗi hàng và mỗi cột 2 quân cờ trên có mầukhác nhau

216 Xếp đôi nhảy

Có n bạn trai và n bạn gái cùng đến một cuộc khiêu vũ Biết rằng mỗi bạn trai quen với 2 bạn gái vàmỗi bạn gái quen với 2 bạn trai Lập cách chia 2n bạn trên thành n đôi nhảy sao cho mỗi đôi nhảygồm 2 bạn đã quen nhau

217 Cực tiểu hóa một giá trị

Hãy xếp các số 1,2, , n lên vòng tròn sao cho tổng của n số hạng |Ai-Aj| là nhỏ nhất, trong đó j=i+1với i<n và j=1 với i=n

218 Đờng đi trên lới

Cho lới ô vuông m x n, các ô đợc điền các số Aij đờng đi là đờng:

+ Xuất phát từ một ô bên trái

+ Kết thúc tại một ô bên phải

+ Từ 1 ô chỉ có quyền đi sang 3 ô kề bên phải nó

Ví dụ:

1) Tính số các đờng đi khác nhau

2) Tìm đờng đi với tổng các số trên đờng đi là nhỏ nhất

219 Xếp lịch thực hiện các công việc

Có n công việc, ký hiệu là A1, A2, ,An, cần phải thực hiện bởi một thợ cả Công việc Ai cần làmtrong Ti đơn vị thời gian Với mỗi công việc Ai tồn tại hàm Gi(t) - hàm giá trị công việc phụ thuộcvào thời gian t, Gi(t) - hàm đơn điệu tăng thực sự Hãy tìm lịch thực hiện lần l ợt các công việc Ai1,

Ai2, , Ain sao cho cực tiểu hóa giá trị:

220 Lịch xếp công việc

Có n công việc và k thợ cả Biết rằng mỗi ngời thợ đều làm đợc mọi công việc và làm công việc thứ imất Ti thời gian Các công việc này có liên quan với nhau, phụ thuộc vào các số Pij với i<j, trong

đó:

Nếu Pij=1 thì công việc i cần thực hiện trớc công việc j

Nếu Pij= -1 thì công việc i cần thực hiện sau công việc j

Nếu Pij = 0 thì các công việc i,j độc lập với nhau

Hãy lập lịch phân công cho k thợ cả thực hiện n công việc trên sao cho thời gian để thực hiện các công việc trên là nhỏ nhất và các điều kiện Pij phải đợc thỏa mãn

Trang 24

Xét phép biến đổi sau với các vectơ trên:

Giả sử v = (A1,A2, ,An,0, ) đặt k = A1+A2+ +An

Trớc tiên tịnh tiến vectơ v sang trái 1 đơn vị, ta thu đợc vectơ (A2,A3, An,0, ) Bây giờ ở vị trí k củavectơ trên ta cộng thêm 1 đơn vị, tức là nếu đặt Ek =(0 0,1,0, ) (chỉ tọa độ k có giá trị là 1, các tọa

điểm bất kỳ lập thành tam giác có một góc lớn hơn 120 độ

Lập thuật toán đánh số các điểm trên thành A1,A2, , An sao cho với mọi i < j < k ta có góc tạo bởi

ba điểm Ai, Aj, Ak với đỉnh tại Aj lớn hơn 120 độ

Hãy điền các số 1, 2, , n vào các đỉnh của đa giác Mn cạnh sao cho với mọi cặp i, j tồn tại cạnh của

đa giác với hai đỉnh là i, j

226 Phép biến đổi với các dấu +,

-Trên bàn cờ ô vuông n x n đặt 1 dấu "-" và (n2-1) dấu "+"

Cho phép đổi dấu của tất cả các ô:

- Cùng nằm trên 1 hàng

- Cùng nằm trên 1 cột

- Cùng nằm trên một đờng chéo (\ và /) (chính và phụ)

Lập thuật toán cho biết rằng sau một số các phép biến đổi có thể đa bàn cờ về dạng toàn dấu "+" haykhông ?

227 Tìm số đặc biệt

Với số tự nhiên n đặt Cn= n+ Sn, ở đây Sn bằng tổng các chữ số của số tự nhiên n

Hãy tìm các số n sao cho Cn=1995

Trang 25

228 Đa vé vào thùng rác

Xét tập hợp các vé gồm các số có k chữ số, bắt đầu từ 0 0 đến 9 9 Có 100 thùng rác đợc đánh dấu

từ 01, 02, đến 99 Các vé này cần vứt vào thùng rác theo nguyên tắc sau: mỗi vé chỉ đợc vứt vàothùng rác đợc đánh số bằng số thu đợc từ số vé sau khi xóa đi k-2 chữ số

Cần ít nhất bao nhiêu thùng để đựng tất cả các vé đó?

Lập thuật toán mô tả cách bỏ vé vào các thùng đó sao cho số thùng là ít nhất

229 Tô màu khối lập phơng

Một hình hộp lập phơng cần đợc tô bởi 2 mầu Hai cách tô gọi là nh nhau nếu 2 hình đó có thể đợcxếp cạnh nhau sau cho chúng giống hệt nhau Hãy lập thuật toán và viết chơng trình mô tả tất cả cáccách tô màu Có bao nhiêu cách tô màu nh vậy?

230 Tô màu hình lập phơng tổng quát

Một hình hộp lập phơng cần đợc tô bởi n mầu (n<=6) Hai cách tô gọi là nh nhau nếu 2 hình đó cóthể đợc xếp cạnh nhau sau cho chúng giống hệt nhau Hãy lập thuật toán và viết chơng trình mô tảtất cả các cách tô màu Có bao nhiêu cách tô màu nh vậy?

231 Bài toán "Cắt dây"

Có n đoạn dây chiều dài là D1, D2, , Dn và m mẫu: A1, A2, , Am Cần cắt từ n đoạn dây trênthành các mẫu sao cho tổng số các đoạn dây thừa là bé nhất

232 Bài toán "May đo"

Giả sử có n mẫu vải hình chữ nhật với độ dài các cạnh tơng ứng là (a1, b1), (a2, b2), (an, bn) Cầncắt ra từ một băng vải chiều rộng là R, chiều dài là vô tận đúng n mẫu trên sao cho số vải thừa ra códiện tích nhỏ nhất (chỉ tính số vải thừa ở chỗ bị cắt ra) (xem hình vẽ)

233 Bài toán "Ngời gác rừng"

Một khu rừng có n địa điểm A1, A2, , An Do điều kiện địa hình thời gian đi từ vị trí i đến vị trí jmất Cij thời gian Vậy ta có ma trận thời gian (Cij), Cii=0, Cij>0

(Chú ý: ma trận không đối xứng) Từ một vị trí (Ai chẳng hạn) ngời gác rừng cần đi kiểm tra một lợttất cả các vị trí, mỗi vị trí một lần

Lập thuật toán tính đờng đi sao cho tổng thời gian phải đi là nhỏ nhất

234 Một thuật toán điền số của ma trận

Hãy lập thuật toán điền các phần tử của ma trận N x N các số 0, 1 và -1 sao cho:

a) Tổng các số của mọi hình vuông con 2 x2 đều bằng 0

b) Tổng các số của ma trận trên là lớn nhất

235 Phủ 3- mino cho hình chữ nhật

Cho hình chữ nhật M x N Biết rằng M x N chia hết cho 6

a) Chứng minh rằng hình chữ nhật này có thể phủ bởi các 3-mino (xem bài 214)

b) Lập thuật toán xây dựng một phủ nào đó

236 Trò chơi viết phấn lên bảng

Hai ngời chơi trò chơi sau:

- Mỗi ngời lần lợt viết lên bảng một số tự nhiên

- Qui tắc đi là không đợc viết số là ớc số của các số đã ghi trên bảng và số đợc viết phải nhỏhơn hoặc bằng n (n là số cho trớc)

- Ngời thắng cuộc là ngời đi đợc nớc sau cùng

Tìm thuật toán tối u cho các ngời chơi

Nếu k thuộc A thì 2k+1 thuộc A và 3k+1 thuộc A

Hãy lập chơng trình in ra n<1000 số hạng đầu tiên của A

(Ta có một số số hạng đầu tiên: 1,3,4,7,9,10,13,15,19, )

Trang 26

239 Quan hệ "chứa nhị phân" giữa các số

Cho hai số tự nhiên a, b Ta nói rằng a nằm trong b nếu nh khai triển nhị phân của a có thể thu đợc

từ khai triển nhị phân của b bằng cách xóa đi một số chữ số

Lập thuật toán cho phép từ hai số cho trớc m, n tìm số tự nhiên d lớn nhất sao cho d nằm trong cả m

và n

240 Trò chơi đoán số

Cho trớc số tự nhiên n>1 Hai ngời chơi trò chơi sau:

Ngời thứ nhất chọn 1 số bất kỳ x<n Ngời thứ hai bắt đầu hỏi các câu hỏi dạng "số x lớn hơn hoặcbằng a?" Nếu câu trả lời là "Yes", phải trả 2đ, "No", phải trả 1đ Hãy tính số tiền p(n) nhỏ nhất đủcho ngời thứ 2 đoán đợc mọi số x<n

Lập thuật toán cho ngời thứ hai đoán đợc số x mà phải trả số tiền nhỏ hơn hoặc bằng P(n)

241 Bài toán "Cắt giấy"

Có một tờ giấy kẻ lới ô vuông kích thớc m x n Hai ngời lần lợt chơi trò chơi sau: Ngời đầu tiên cắt

từ một mắt lới ngoài cùng theo cạnh kia của lới một đoạn có độ dài là 1 Mỗi ngời đến lợt mình đợccắt tiếp từ vị trí cắt dở theo một cạnh của lới Ngời thắng cuộc là ngời đầu tiên cắt mảnh giấy làm 2phần (không cắt theo cạnh mép tờ giấy)

Tìm thuật toán tối u cho các ngời chơi

242 Trò chơi đi một quân mã

Trên bàn cờ 8 x 8 đặt 1 quân mã ở góc trái phía dới Hai ngời lần lợt đi quân mã đó, mỗi ngời đi 1

n-ớc Không cho phép đi lại các ô đã đi qua Ngời thắng cuộc là ngời đi đợc nớc cờ sau cùng

Tìm thuật toán tối u cho các ngời chơi

243 Trò chơi một quân mã tổng quát

Trên bàn cờ m x n đặt 1 quân mã ở góc trái phía dới Hai ngời lần lợt đi quân mã đó, mỗi ngời đi 1nớc Không cho phép đi lại các ô đã đi qua Ngời thắng cuộc là ngời đi đợc nớc cờ sau cùng

Lập thuật toán tối u cho các ngời chơi

245 Bài toán n-minô cho không gian 3 chiều

n-minô trong không gian là hình khi đợc ghép bởi n khối lập phơng 1x1x1

Lập thuật toán xây dựng tất cả n-minô

M2=1, M3=2, M4=7

246 Xếp n x k quân cờ

Hãy xếp lên bàn cờ ô vuông n x n đúng n x k quân cờ sao cho trên mỗi hàng và mỗi cột của bàn cờ

có đúng k quân cờ Lập thuật toán để tính xem có bao nhiêu cách xếp nh vậy, không tính đến cácphép đối xứng qua tâm, qua các trục ngang, dọc và đờng chéo

247 Về một hoán vị trên vòng tròn

Tìm số n nhỏ nhất thỏa mãn điều kiện: Có thể điền các số 1, 2, , n lên vòng tròn sao cho hai số bất

kỳ cạnh nhau có hiệu số bằng 3, 4 hoặc 5

248 Từ đầy đủ

Xét một ngôn ngữ trên bảng n chữ cái Một từ gọi là "đầy đủ" nếu thoả mãn các tính chất sau: 1) Hai chữ cạnh nhau thì khác nhau

2) Không thể xóa đi 1 số chữ để thu đợc từ dạng abab, a khác b

Lập thuật toán xây dựng một từ "đầy đủ" có độ dài cực đại

249 Phủ hình gần vuông bằng 3- minô

Cho hình vuông 2n x 2n với n không chia hết cho 3 Ta bỏ đi 1 ô vuông 1x1 bất kỳ Chứng minhrằng phần còn lại của hình vuông có thể phủ kín bởi các 3-minô hình thớc thợ Lập thuật toán xâydựng phủ đó (xem bài 235)

Trang 27

250 Biến đổi về vòng tròn 0

Trên vòng tròn xếp ngẫu nhiên n số 0 hoặc 1 (n là lũy thừa của 2)

Xét phép biến đổi sau: đồng thời thay thế các số 1 vào giữa hai số khác nhau, số 0 vào giữa hai sốbằng nhau và xóa các số cũ đi Quá trình này kết thúc khi trên vòng tròn còn lại toàn số 0

Chứng minh rằng quá trình biến đổi trên luôn kết thúc sau hữu hạn bớc Lập thuật toán xếp các giátrị ban đầu sao cho quá trình trên diễn ra lâu nhất

251 Hệ các tam giác âm

Trên mặt phẳng cho n điểm (không có 3 điểm nào thẳng hàng) Hai điểm bất kỳ của hệ đợc nối vớinhau Các đoạn này đợc đánh số 1 hoặc (-1) Số các đoạn (-1) là k Một tam giác có các đỉnh của hệtrên đợc gọi là âm nếu tích các số trên 3 cạnh của nó bằng (-1) Lập cách đánh số sao cho số các tamgiác âm là:

a) Lớn nhất b) Nhỏ nhất

252 Xếp xe trên bàn cờ

Trên bàn cờ ô vuông n x n (n chẵn), các ô đợc tô màu bởi n2/2 màu khác nhau sao cho mỗi màu tô

đúng 2 ô Hãy đặt vào bàn cờ n con xe sao cho chúng nằm trên các ô có màu khác nhau và khôngkhống chế lẫn nhau

253 Về một phép biến đổi dãy số

Cho dãy số A1, A2, An ở đây các số Ai bằng 1 hoặc -1 Ta thực hiện các phép biến đổi sau trêndãy số trên

(A1,A2, ,An) > (A1A2,A2A3, ,AnA1)

Dừng lại khi gặp dãy 1,1, 1

a) Lập thuật toán cho biết quá trình biến đổi trên có khi nào gặp bộ số (1, 1, 1) hay không?

b) Chứng minh rằng nếu n = 2k thì các phép biến đổi trên bao giờ cũng dừng lại

c) Trong trờng hợp tổng quát, trong các dãy thu đợc bao giờ cũng tuần hoàn

Tìm vị trí đầu tiên mà dãy tuần hoàn và tính chu kỳ của nó

254 Bài toán "Cá heo"

Loài cá heo chỉ chuyển động theo 1 trong 3 hớng sau:

Từ vị trí (x,y) nó chỉ có thể chuyển dịch đợc đến vị trí (x+1,y) hoặc (x,y+1) oặc (x-1,y-1) Giả sử vịtrí ban đầu của cá heo là ô trái dới của lới ô vuông n x n

Lập thuật toán cho biết cá heo có thể đi khắp bàn cờ, mỗi ô một lần hay không?

Nếu đợc, chỉ ra lộ trình của cá heo

255 Bài toán "Cá heo" tổng quát

Loài cá heo chỉ chuyển động theo 1 trong 3 hớng (xem đề số 254) Giả sử vị trí ban đầu của cá heo

là một ô bất kỳ của bàn cờ m x n Lập thuật toán cho biết cá heo có thể đi khắp bàn cờ, mỗi ô mộtlần hay không? Nếu đợc, chỉ ra lộ trình của cá heo

256 Bài toán "Xếp đồng xu"

Trên bàn cờ ô vuông n x n mỗi ô xếp 1 đồng xu Cho phép thực hiện phép biến đổi sau: Nhặt ở 2 ônào đó, mỗi ô 1 đồng xu ở trên cùng và chuyển mỗi chúng sang ô bên cạnh Lập chơng trình chỉ racách xếp sao cho cuối cùng tất cả n2 đồng xu đợc xếp vào các ô trên 1 cột

257 Viết tên trên mặt đa diện

Cho trong không gian một đa diện n mặt (n>=5) Biết rằng từ mỗi đỉnh của đa diện chỉ có 3 cạnh đi

ra Hai ngời chơi trò chơi sau: lần lợt viết tên của mình lên các mặt của đa diện Không đợc phépviết vào mặt đã có tên rồi Ngời thắng cuộc là ngời đầu tiên viết đợc tên của mình lên 3 mặt cóchung đỉnh

Tìm thuật toán tối u bảo đảm ngời đi trớc luôn thắng

258 Bài toán "Trò chơi đẩy quân cờ"

Trên dải 1 x n ô vuông (n>=4) có 3 quân cờ nằm ở các vị trí 1,2,3

Hai ngời lần lợt đợc đi một trong các quân cờ trên sang phải Luật chơi là không đợc đè lên nhauhoặc vợt qua đầu nhau (ngời thắng cuộc là ngời đi đợc nớc cờ sau cùng)

Tìm thuật toán tối u cho các ngời chơi

259 Bài toán "Trò chơi lấn sân"

Trên bàn cờ ô vuông n x n, ở hàng đầu tiên xếp n quân trắng, hàng cuối xếp n quân đen Hai ng ời(gọi là Trắng, đen) lần lợt đợc đi quân của mình tiến lên hoặc thụt lùi (không hạn chế độ dài) không

Trang 28

đợc đè lên quân đối phơng hoặc vợt đầu chúng Ngời thắng cuộc là ngời đi nớc cờ sau cùng Tìmthuật toán tối u cho các ngời chơi

260 Thuật toán "Shift by Shift"

Phơng pháp "Shift by shift" của Lal đợc mô tả nh sau:

ak+1 - số n lớn nhất sao cho Bk+1 > 0

Nếu số n nh vậy không tồn tại thì đặt ak+1 =0

262 Lại về thuật toán căn bậc hai

Cho số tự nhiên N Dãy số Pk, Qk đợc định nghĩa nh sau:

P0 - NQ0 = 4

Pk+1 = Pk - 2

Qk+1 = Pk * Qk

Chứng minh rằng (Pk/Qk) > căn bậc 2 của N khi k > vô hạn

263 Tìm số nguyên chứa nhiều số 0 liên tiếp

Chứng minh rằng với mọi số tự nhiên k, tồn tại số n sao cho trong khai triển thập phân của số 2n

chứa k số 0 liên tiếp Cho k<=8 Lập chơng trình tính số tự nhiên n nhỏ nhất thỏa mãn tính chất trên

Lập chơng trình trên máy tính để liệt kê tất cả các số tự nhiên có tính chất trên

Chứng minh rằng 4 số nêu trên là 4 số duy nhất thỏa mãn tính chất vừa nêu

Ví dụ: dãy 1, 2, 3, 1, 2, 1, 3 là đầy đủ bậc 3

Lập chơng trình xây dựng 1 dãy đầy đủ bậc k có độ dài nhỏ nhất (có thể chứng minh đợc chiều dàicủa dãy trên sẽ không nhỏ hơn k(k+1)/2)

267 Xếp các hình vuông

Cho k hình vuông kích thớc a, a, , a với a nguyên (i=1,2, ,k)

Trang 29

Biết rằng a1 + a2 + + ak = m*n.

Lập thuật toán cho biết các hình vuông này có thể xếp kín không chồng lên nhau trong hìnhchữ nhật m x n hay không?

268 Xây dựng dãy từ 2 số cho trớc

Xuất phát từ 2 số tự nhiên cho trớc a,b nhỏ hơn hoặc bằng n ta xây dựng dãy X1, X2, X3, nh sau:

X1 = a, X2 = b, X3 = |a-b|,

Xk = Min(|X1-X2|, |X1-X3|, , |X1-Xk-1|, |X2-X3|, ,|X2-Xk-1|, ,|Xk-2 - Xk-1|)

a Chứng minh rằng đến một lúc nào đó dãy trên sẽ dừng và thu đợc toàn số 0

b Cho trớc số tự nhiên n hãy tính số Pn thỏa mãn tính chất sau:

với mọi a,b<n ta đều có XPn =0

271 Bài toán "Dãy số Hạnh phúc"

Xét dãy số vô hạn về hai phía gồm các chữ số 0 và 1 Cho phép thực hiện phép biến đổi sau:

Trong dãy đã cho, có thể chia thành các "đoạn" dạng "100" hoặc "10" Sau đó thay thế 100 bởi 1; 10bởi 0

Quá trình này cứ tiếp diễn cho đến khi không thể thực hiện đợc nữa Dãy số đầu tiên đợc gọi là

"Hạnh phúc" nếu thuật toán trên cho phép biến đổi vô hạn lần

a) Tìm thuật toán miêu tả cách xây dựng một dãy "Hạnh phúc" nào đó

b) Sau đây là một thuật toán xây dựng dãy "Hạnh phúc":

Vẽ vòng tròn chu vi 1 + ệ 2 , trên đó đánh dấu một cung bất kỳ có độ dài 1 Ta tô màu đen cung này

và một đầu của nó là màu đen, đầu còn lại tô màu trắng Các điểm còn lại của vòng tròn tô màutrắng, đầu tô màu đen của cung đợc đánh số 1

Xuất phát từ số 1 trên ta xây dựng dãy số của ta nh sau: Ta bớc từ vị trí 1 sang hai phía, mỗi bớc có

độ dài 1 Nếu sau mỗi bớc, ở điểm trắng ta đánh số 0, nếu ở điểm đen ta đánh số 1 Bớc đi vô hạn

về hai phía ta sẽ xây dựng đợc dãy vô hạn Dãy này sẽ là dãy "Hạnh phúc"

c) Chứng minh rằng mọi dãy "Hạnh phúc" đều là "Quasi" tuần hoàn, bởi vì với mọi đoạn hữu hạntrong nó đều đợc lặp lại vô hạn lần

d) Hai dãy vô hạn đợc gọi là giống nhau nếu cái nọ thu đợc từ cái kia bằng một phép tịnh tiến Cótồn tại hay không dãy "Hạnh phúc" mà phép biến đổi trên cho ta thu đợc dãy mới trùng với chínhnó?

Trang 30

2) Tất cả các số trên biểu đồ đều khác nhau từng đôi một

Với mỗi số n, tìm giá trị nhỏ nhất của an sao cho biểu đồ trên tồn tại (a1 = 1, a2= 3, a3 = 8, a4 =20, ) Với giá trị an đó, tìm tất cả các biểu đồ tơng ứng

274 Biểu đồ số chữ nhật đặc biệt

Xét biểu đồ gồm n x n số xếp thành hình vuông n x n Biết rằng:

1) Tất cả các số trong biểu đồ là số tự nhiên khác nhau từng đôi một (vị trí góc trái dới chứa số 0) 2) Mỗi số bằng tổng của hai số nằm ở chân của 2 véc tơ có đỉnh là số đã cho

a Với mỗi n, tính giá trị nhỏ nhất an sao cho biểu đồ trên tồn tại (a1 =1, a2 =3, a3=15, a4=60, a5

=231)

b Với giá trị an đó lập tất cả các biểu đồ tơng ứng

c Xét biểu đồ tổng quát kích thớc m x n

(a23=6, a24=10, a25=15, a34=28, a44=60)

275 Biểu đồ số hình khối đặc biệt

Cho hình hộp kích thớc m x n x k Các mũi tên qui định chiều nh hình vẽ

Tính chất của biểu đồ giống trong bài 274

a) Tính giá trị nhỏ nhất có thể có đợc của Amnk

b) Với giá trị đó của Amnk thiết lập tất cả các biểu đồ tơng ứng

276 Bảng số 9 x 9

Hãy xếp các số 1,2,3, 81 vào bảng 9 x 9 sao cho:

1) Trên mỗi hàng các số đợc xếp theo thứ tự tăng dần (từ trái qua phải)

Hãy tìm một lát cắt chấp nhận đợc với số k là cực đại

278 Lát cắt số tổng quát

Xét bài toán tổng quát của bài 277 với xâu ký tự:

12 m12 m 12 m với 1 <= m<= 9

(n bộ 12 m)

279 Trò chơi chia 2 đống sỏi

Trên mặt đất có hai đống sỏi Hai ngời chơi trò chơi sau: Mỗi ngời đến lợt mình có quyền vứt đi 1

đống và chia đống còn lại thành 2 đống sỏi con Ngời thắng cuộc là ngời đi đợc nớc cuối cùng Tìm thuật toán tối u cho các ngời chơi

280 Trò chơi chia các đống sỏi

Trên mặt đất có một số đống sỏi Hai ngời chơi trò chơi: Mỗi ngời đến lợt mình phân chia tất cả các

đống sỏi có số sỏi lớn hơn 1 làm hai phần Trò chơi dừng lại khi toàn bộ các đống sỏi chỉ còn 1 viên.Ngời đi đợc nớc sau cùng sẽ thắng cuộc

Tìm thuật toán tối u cho các ngời chơi

281 Tìm giá trị cực tiểu của các biểu thức

Trong các bài sau, tìm giá trị nhỏ nhất của biểu thức S, ở đây các biến X0, X1, X2, , Xn, Y0, Y1, ,

Yn chạy trên các số tự nhiên và chúng phải khác nhau từng đôi một

Trang 31

282 Trò chơi nối điểm trên mặt phẳng

Trên mặt phẳng cho trớc n điểm bất kỳ Hai ngời chơi trò chơi sau: Mỗi ngời đến lợt mình cần nốihai điểm nào đó bằng một đờng cong bất kỳ và đánh dấu thêm một điểm nữa trên đờng cong này,luật chơi nh sau:

+ Các đờng cong không đợc cắt nhau

+ Từ mỗi điểm có không quá 3 đờng đi ra

+ Ngời thắng cuộc là ngời kẻ đợc đờng cong cuối cùng

a) Chứng minh rằng trò chơi trên sẽ dừng sau hữu hạn bớc

b) Tìm thuật toán tối u cho mỗi ngời chơi

283 Tính giá trị một biểu thức

Giả sử W, T là các hoán vị của 1,2 , n

Lập chơng trình tính tất cả các giá trị có thể có đợc của d(W,T)

284 Đờng đi ô tô

Có N thành phố (với các tọa độ vị trí (Xi, Yi), i=1,2, , N) Một chiếc ô tô cần đi từ thành phố A đếnthành phố B (A, B - các thành phố trong số N thành phố trên Biết rằng nếu ô tô chất đầy bình xăngthì sẽ đi đợc m km và nếu rẽ qua một thành phố bất kỳ nó có thể chất lại đầy bình xăng)

Lập thuật toán và chơng trình đi của ô tô đi từ A đến B sao cho phải rẽ vào ít thành phố khác nhất

285 Tìm đờng đi tối u của ô tô

Trên một đờng vòng (khép kín) có n thành phố xếp theo thứ tự là A1, A2, An

Xuất phát từ một thành phố nào đó, một ô tô gọi là "đi một vòng" nếu nó từ thành phố đã cho đi theo

đờng trên, qua tất cả các thành phố theo một hớng nhất định và cuối cùng trở lại thành phố ban đầu Giả sử số xăng dự trữ ở các thành phố trên là X1, X2, Xn và giả sử ô tô nếu đi từ Ai đ Ai+1 (i<n) sẽtốn Pi lít xăng, và từ An đ A1 tốn Pn lít xăng (Hai chiều tốn xăng nh nhau)

Biết rằng P1 + + Pn= X1 + + Xn

Lập thuật toán và lập chơng trình để tìm ra thành phố Ak và hớng đi sao cho một ô tô, với thùngxăng rỗng, xuất phát từ thành phố Ak đi theo hớng đã định thì sẽ đi đợc đúng một vòng và quay về vịtrí cũ (tất nhiên với thùng xăng rỗng)

286 Bài toán "Tam giác Pascal"

Tam giác số Pascal đợc định nghĩa nh sau:

Với số tự nhiên n cho trớc lập thuật toán cho biết chỉ số của hàng đầu tiên của tam giác Pascal chứa

số n đã cho (chú ý hiệu quả của thuật toán)

287 Bài toán xây dựng k - lát cắt

Cho trớc số tự nhiên đợc ghi dới dạng thập phân

An An-1 A1 A0

Ta gọi một k-lát cắt (k<n+1) là một phép chia xâu chữ số trên làm k phần bất kỳ

Ví dụ: sau miêu tả một 3-lát cắt của số 32676:

32 | 6 | 76

Mỗi k lát cắt sẽ sinh ra k số tự nhiên Trong ví dụ trên 3 số đợc sinh ra là 32, 6 và 76 k lát cắt đợcgọi là chấp nhận đợc nếu lát cắt này sinh ra k số khác nhau từng đôi một

Hãy xây dựng thuật toán cho phép tìm ra đợc một k lát cắt chấp nhận đợc với k là cực đại

Với số k cho trớc, tính xem tồn tại bao nhiêu k lát cắt chấp nhận đợc của số tự nhiên đã cho

288 Xâu ký tự ABC

Hãy xây dựng một xâu ký tự bao gồm các chữ A, B, C và thỏa mãn các điều kiện sau:

+ Có độ dài bằng n cho trớc

+ Không có hai xâu liền nhau nào giống nhau

+ Chứa ít ký tự B nhất (trong số các xâu thỏa mãn 2 tính chất trên)

289 Quan hệ "bao hàm" theo cơ số q

Cho hai số tự nhiên n, m Ta nói n "chứa" m (và viết n>m) nếu thỏa mãn tính chất sau:

Tồn tại số tự nhiên q, 2<= q <= N sao cho nếu viết n, m dới dạng khai triển theo cơ số q thì m sẽ thu

đợc từ n bằng cách xóa đi một số chữ số nào đó

a) Hãy xây dựng thuật toán cho biết giữa n, m cho trớc có tồn tại hay không quan hệ "chứa"

b) Trong yêu cầu của bài trên số N là cho trớc Kết quả ra sao nếu ta bỏ đi điều kiện q<N (nh vậychỉ giữ lại điều kiện 2<=q)

Trang 32

290 Bài toán "Square Union"

Cho hình chữ nhật kích thớc n x m Hãy xây dựng một phủ của hình chữ nhật trên bởi một số hìnhvuông (< k) sao cho phần thừa ra có diện tích nhỏ nhất (điều kiện hạn chế k là cần thiết, nếu k đủlớn thì bài toán trở nên vô nghĩa)

291 Biểu đồ số tam giác đặc biệt

Xét biểu đồ hình vẽ

Tại mỗi điểm đặt một số thỏa mãn các điều kiện:

- Mọi điểm ở bên trong tam giác lớn sẽ bằng tổng của 3 số mà từ đó có mũi tên đến điểm đã cho

- Tất cả các số trên biểu đồ đều khác nhau từng đôi một Rõ ràng số A đứng ở tâm tam giác sẽ là sốlớn nhất

a) Tính giá trị nhỏ nhất có thể có của số A (với n cho trớc)

b) Với giá trị đó của A hãy xây dựng tất cả các biểu đồ tơng ứng

292 Thuật toán 0-1

(Xây dựng xâu nhị phân thỏa mãn các điều kiện của bài 178, hay còn gọi là thuật toán u tiên 0) Xây dựng xâu nhị phân không lặp bậc n, chứa mọi xâu con độ dài n và có độ dài nhỏ nhất

1) Xây dựng n-1 ký tự 1

2) u tiên 0 nếu có thể, bổ sung vào bên phải số 0 (mà không phá vỡ tính không lặp)

Nếu thành công, quay lại bớc 2 Nếu không thành công, thực hiện bớc tiếp theo

3) Xét việc bổ sung vào bên phải số 1 (không phá vỡ tính không lặp)

Nếu thành công, quay lại bớc 2

Nếu không thành công: Dừng lại

Hãy chứng minh rằng thuật toán trên thực sự sẽ xây dựng đợc xâu nhị phân không lặp đầy đủ bậc n

và có độ dài nhỏ nhất

293 Phân hoạch tam giác

Cho đa giác lồi n đỉnh A1, A2 An (cho biết tọa độ của các đỉnh này) Ta nói có một phân hoạchtam giác nếu kẻ đợc n-3 đờng chéo không cắt nhau của đa giác trên Trọng lợng của phân hoạch tamgiác trên theo định nghĩa là tổng chiều dài của n-3 đờng chéo đó

a) Tính xem có bao nhiêu phân hoạch tam giác của đa giác trên

b) Lập thuật toán thực hiện trong thời gian O(n3) để tìm ra phân hoạch tam giác với trọng lợng nhỏnhất

294 Tô màu cubic trong khối lập phơng

Cho hình lập phơng n x n x n gồm n3 cubic 1 x 1 x 1 Hãy tô màu các cubic này bởi hai màu đen,trắng sao cho số các đờng thẳng đồng màu (là đờng thẳng đi qua n cubic có cùng màu) là nhỏ nhất

295 Thuật toán tính tích ma trận

Cho n ma trận A1, A2, , An ở đây Ak có kích thớc Rk-1 x Rk Hãy lập thuật toán tính ma trận tích A

= A1 x A2 x x An

Chú ý: chỉ dùng O(n3) phép toán

296 Bài toán chở đồ qua sông

Có n cặp vợ chồng cùng đợi để qua sông Chỉ có một con thuyền nhỏ trên đó chỉ có thể chở đợc 2ngời Hãy tìm cách đa cả n cặp vợ chồng này qua sông biết rằng n ông chồng này có tính cả ghennên không có ai muốn để vợ mình đứng một mình với một ngời đàn ông khác

297 Phân tích và xử lý biểu thức

Viết chơng trình xử lý một biểu thức toán học bao gồm:

- Các biến gồm các chữ cái La tinh A đ Z (các chữ in thờng và in hoa coi nh đồng nhất)

- Các phép toán: + , - , * , /

- Ngoặc: (,)

- Các hàm chuẩn: sin, cos, ln, tg, exp, Sqr

- Các số nguyên hoặc thực thông thờng

Yêu cầu:

a) Nhập từ bàn phím một biểu thức bất kỳ

b) Phân tích và đa ra các biến yêu cầu cho giá trị từ bàn phím

c) Thông báo kết quả giá trị của biểu thức trên

298 Sắp xếp các hộp rỗng (đề thi Quốc tế IOI lần thứ nhất)

Cho 2N hộp xếp cạnh nhau Trong chúng có hai hộp rỗng xếp liền nhau, N-1 hộp chứa chữ A, N-1hộp chứa chữ B

Ngày đăng: 08/07/2015, 16:43

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w