1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tài Liệu Các Chuyên Đề Toán Học ( Cực chất) tích phân

8 304 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 171,69 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Trang 1

MËT SÈ Kž THUŠT "CHUÈI" M€ TA TH×ÍNG GP KHI I TœM NGUY–N H€M HOC TNH TCH PH…N

Th½ dö 1 : T¼m nguy¶n h m A1 =

Z

dx (x + 1) (x + 2)

Ta gi£ sû r¬ng : 1

(x + 1) (x + 2) =

α

x + 1 +

β

x + 2

Ta i t¼m 2 h» sè α , β theo hai c¡ch nh÷ sau :

C¡ch 1 : α = lim

x→−1

x + 1 (x + 1) (x + 2) = limx→−1

1

x + 2 =

1

−1 + 2 = 1

β = lim

x→−2

x + 2 (x + 1) (x + 2) = limx→−2

1

x + 1 =

1

−2 + 1 = −1 C¡ch 2 :

Cho x = 0 ta câ : 1

(0 + 1) (0 + 2) =

α

0 + 1 +

β

0 + 2 ⇔ 1

2 = α +

1

x = 1 ta câ : 1

(1 + 1) (1 + 2) =

α

1 + 1 +

β

1 + 2 ⇔ 1

6 =

1

2α +

1

Do â m  ta suy ra 2 h» sè α , β b¬ng c¡ch i gi£i h» :

α + 1

2β =

1 2 1

2α +

1

3β =

1 6

(

α = 1

β = −1 C¡ch 3 :

Ta gi£ sû r¬ng : 1

(x + 1) (x + 2) =

α

x + 1 +

β

x + 2

(x + 1) (x + 2) =

α (x + 2) + β (x + 1) (x + 1) (x + 2) =

x (α + β) + 2α + β (x + 1) (x + 2) C¥n b¬ng c¡c h» sè 2 v¸ m  ta câ h» :

(

α + β = 0 2α + β = 1 ⇔

(

α = 1

β = −1

Do â m  ta suy ra : 1

(x + 1) (x + 2) =

1

x + 1 − 1

x + 2 Vªy :

Z

dx (x + 1) (x + 2) =

Z

dx

x + 1 −

Z

dx

x + 2 = ln |x + 1| − ln |x + 2| + c = ln

x + 1

x + 2

+ c Th½ dö 2 : T¼m nguy¶n h m A2 =

Z

x + 2

x (x − 2) (x + 5)dx

Ta gi£ sû r¬ng : x + 2

x (x − 2) (x + 5) =

α

x +

β

x − 2 +

χ

x + 5 C¡ch 1 :

α = lim

x→0

x (x + 2)

x (x − 2) (x + 5) = limx→0

x + 2 (x − 2) (x + 5) =

0 + 2 (0 − 2) (0 + 5) = −

1 5

β = lim

x→2

(x − 2) (x + 2)

x (x − 2) (x + 5) = limx→2

x + 2

x (x + 5) =

2 + 2

2 (2 + 5) =

2 7

χ = lim

x→−5

(x + 5) (x + 2)

x (x − 2) (x + 5) = limx→−5

x + 2

x (x − 2) =

−5 + 2

−5 (−5 − 2) = −

3 35 C¡ch 2 :

Cho x = −1 ta câ : −1 + 2

−1 (−1 − 2) (−1 + 5) =

α

−1 +

β

−1 − 2 +

χ

−1 + 5 ⇔ −α −

1

3β +

1

4χ =

1 12

x = 1 ta câ : 1 + 2

1 (1 − 2) (1 + 5) =

α

1 +

β

1 − 2 +

χ

1 + 5 ⇔ α − β +1

6χ = −

1 2

Trang 2

x = 3 ta câ : 3 + 2

3 (3 − 2) (3 + 5) =

α

3 +

β

3 − 2 +

χ

3 + 5 ⇔ 1

3α + β +

1

8χ =

5 24

º t¼m ÷ñc c¡c h» sè α , β , χ ta gi£i h» ph÷ìng tr¼nh :

−α − 1

3β +

1

4χ =

1 12

α − β +1

6χ = −

1 2 1

3α + β +

1

8χ =

5 24

α = −1

5

β = 2 7

χ = − 3 35 C¡ch 3 :

Gi£ sû r¬ng : x + 2

x (x − 2) (x + 5) =

α

x +

β

x − 2 +

χ

x + 5

x (x − 2) (x + 5) =

α (x − 2) (x + 5) + βx (x + 5) + χx (x − 2)

x (x − 2) (x + 5)

x (x − 2) (x + 5) =

x2(α + β + χ) + x (3α + 5β − 2χ) − 10α

x (x − 2) (x + 5)

C¥n b¬ng c¡c h» sè 2 v¸ m  ta câ h» :

α + β + χ = 0 3α + 5β − 2χ = 1

−10α = 2

α = −1 5

β = 2 7

χ = −3 35

Do â : x + 2

x (x − 2) (x + 5) = −

1 5x +

2

7 (x − 2) − 3

35 (x + 5) Vªy :

Z

x + 2

x (x − 2) (x + 5)dx = −

1 5

Z

dx

x +

2 7

Z

dx

x − 2− 3

35

Z

dx

x + 5

= −1

5ln |x| +

2

7ln |x − 2| −

3

35ln |x + 5| + c Th½ dö 3 : T¼m nguy¶n h m A3 =

Z

x2 (−3x2− 2x + 5) (x + 1)dx

Ta c¦n nhî ph÷ìng tr¼nh bªc 2 câ d¤ng : ax2

+ bx + c câ 2 nghi»m x1, , x2 th¼ ÷ñc biºu di¹n d÷îi d¤ng : ax2+ bx + c = a (x − x1) (x − x2)

Do â ta vi¸t : −3x2− 2x + 5 = −3 (x − 1)x +5

3



Ta gi£ sû r¬ng : x2

(−3x2− 2x + 5) (x + 1) = −

x2

3 (x − 1)



x + 5 3



(x + 1)

x − 1+

β

x + 5 3

x + 1

α = lim

x→1

2(x − 1)

3 (x − 1)



x +5 3



(x + 1)

= lim x→1

2 3



x + 5 3



(x + 1)

= − 1

16

β = lim

x→− 5

3

−

x2x +5

3



3 (x − 1)



x + 5 3



(x + 1)

= lim x→− 5 3



2

3 (x − 1) (x + 1)



= −25 48

χ = lim

x→−1

2(x + 1)

3 (x − 1)



x + 5 3



(x + 1)

= lim x→−1

2

3 (x − 1)



x +5 3



= 1 4 C¡ch 2 :

Trang 3

Cho x = 0 ta câ : x2

(−3x2− 2x + 5) (x + 1) =

α

x − 1 +

β

x +5 3

x + 1 ⇔ −α + 3

5β + χ = 0

x = 2 ta câ : x2

(−3x2− 2x + 5) (x + 1) =

α

x − 1 +

β

x + 5 3

x + 1 ⇔ − 4

33 = α +

3

11β +

1

x = 3 ta câ : x2

(−3x2− 2x + 5) (x + 1) =

α

x − 1 +

β

x + 5 3

x + 1 ⇔ − 9

112 =

1

2α +

3

14β +

1

º tø â m  ta câ h» :

−α + 3

5β + χ = 0

α + 3

11β +

1

3χ = −

4 33 1

2α +

3

14β +

1

4χ = −

9 112

α = − 1 16

β = −25 48

χ = 1 4 C¡ch 3 :

Gi£ sû r¬ng : x2

(−3x2− 2x + 5) (x + 1) = −

x2

3 (x − 1)



x + 5 3



(x + 1)

x − 1 +

β

x +5 3

x + 1

2

3 (x − 1)



x + 5 3



(x + 1)

= α



x +5 3



(x + 1) + β (x − 1) (x + 1) + χ (x − 1)



x +5 3



(x − 1)



x +5 3



(x + 1)

⇔ x2 = x2(α + β + χ) + x8

3α +

2



+ 5

3α − β −

5

C¥n b¬ng c¡c h» sè 2 v¸ ta câ h» :

α + β + χ = 1 8

3α +

2

3χ = 0 5

3α − β −

5

3χ = 0

α = − 1

16

β = −25 48

χ = 1 4

Do â m  ta câ :

x2

(−3x2− 2x + 5) (x + 1) = −

x2

3 (x − 1)x +5

3



(x + 1)

16 (x − 1)− 25

48x + 5

3

4 (x + 1) Suy ra :

Z

x2 (−3x2− 2x + 5) (x + 1)dx = −

1 16

Z

dx

x − 1− 25

48

Z

dx

x +5 3

+ 1 4

Z

dx

x + 4

= − 1

16ln |x − 1| −

25

48ln

x +5 3

+ 1

4ln |x + 4| + c Th½ dö 4 : T¼m nguy¶n h m A4 =

Z

x − 1 (x2+ 4x + 5) (x2− 4)dx

Ta c¦n chó þ r¬ng ph÷ìng tr¼nh : ax2+ bx + c = 0 vîi ∆ = b2− 4ac < 0 th¼ ta vi¸t :

ax2+ bx + c = a (x − x1) (x − x2)trong â : x1 = α + βi, x2 = α − βi, i2 = −1

Do â m  ta câ : x2+ 4x + 5 = (x + 2 + i) (x + 2 − i)

Ta gi£ sû r¬ng :

x − 1

(x2+ 4x + 5) (x2− 4) =

x − 1 (x + 2 + i) (x + 2 − i) (x2− 4) =

α

x + 2 + i+

β

x + 2 − i+

χ

x − 2 +

δ

x + 2

α = lim

x→−2−i

(x − 1) (x + 2 + i) (x + 2 + i) (x + 2 − i) (x2− 4) =x→−2−ilim

x − 1 (x + 2 − i) (x2− 4) = −

13

34 − 1

34i

Trang 4

β = lim

x→−2+i

(x − 1) (x + 2 − i) (x + 2 + i) (x + 2 − i) (x2− 4) =x→−2+ilim

x − 1 (x + 2 + i) (x2− 4) = −

13

34+

1

34i

χ = lim

x→2

(x − 1) (x − 2) (x2+ 4x + 5) (x − 2) (x + 2) = limx→2

x − 1 (x2+ 4x + 5) (x + 2) =

1 68

δ = lim

x→−2

(x − 1) (x + 2) (x2+ 4x + 5) (x − 2) (x + 2) = limx→−2

x − 1 (x2+ 4x + 5) (x − 2) =

3 4

Do â m  ta câ : x − 1

(x2+ 4x + 5) (x2− 4) =

−13

34− 1

34i

x + 2 + i +

−13

34 +

1

34i

x + 2 − i +

1 68

x − 2+

3 4

x + 2

= −13x − 27

17 (x2+ 4x + 5)+

1

68 (x − 2)+

3

4 (x + 2) C¡ch 2 :

Gi£ sû r¬ng : x − 1

(x2+ 4x + 5) (x2− 4) =

αx + β

x2+ 4x + 5 +

χ

x − 2 +

δ

x + 2 Cho x = 0 ta câ : 1

5β −

1

2χ +

1

2δ =

1 20

x = 1 ta câ : 1

10α +

1

10β − χ +

1

3δ = 0

x = 3 ta câ : 3

26α +

1

26β + χ +

1

5δ =

1 65

x = 4 ta câ : 4

37α +

1

37β +

1

2χ +

1

6δ =

1 148

º tø â m  ta câ ÷ñc h» :

1

5β −

1

2χ +

1

2δ =

1 20 1

10α +

1

10β − χ +

1

3δ = 0 3

26α +

1

26β + χ +

1

5δ =

1 65 4

37α +

1

37β +

1

2χ +

1

6δ =

1 148

δ = −2

5β + χ +

1 10 1

10α −

1

30β −

2

3χ = −

1 30 3

26α −

27

650β +

6

5χ = −

3 650 4

37α −

22

555β +

2

3χ = −

11 1110

α = −13

17

β = −27 17

χ = 1 68

δ = 3 4

Do â : x − 1

(x2+ 4x + 5) (x2− 4) =

−13x − 27β

17 (x2+ 4x + 5) +

χ

68 (x − 2) +

4 (x + 2) C¡ch 3 :

Gi£ sû : x − 1

(x2+ 4x + 5) (x2− 4) =

αx + β

x2+ 4x + 5 +

χ

x − 2 +

δ

x + 2

⇔ x − 1 = (αx + β) x2− 4+ χ x2+ 4x + 5(x + 2) + δ x2+ 4x + 5(x − 2)

⇔ x − 1 = x3(α + χ + δ) + x2(β + 6χ + 2δ) + x (−4α + 13χ − 3δ) + (−4β + 10χ − 10δ)

C¥n b¬ng c¡c h» sè 2 v¸ ta câ h» :

α + χ + δ = 0

β + 6χ + 2δ = 0

−4α + 13χ − 3δ = 1 4β − 10χ + 10δ = 1

δ = −α − χ

β + 6χ + 2 (−α − χ) = 0

−4α + 13χ − 3 (−α − χ) = 1 4β − 10χ + 10 (−α − χ) = 1

δ = −α − χ

−2α + β + 4χ = 0

−α + 16χ = 1

−10α + 4β − 20χ = 1

α = −13 17

β = −27 17

χ = 1 68

δ = 3 4

Trang 5

Do â : x − 1

(x2+ 4x + 5) (x2− 4) =

−13x − 27

17 (x2+ 4x + 5) +

1

68 (x − 2) +

3

4 (x + 2) Vªy :

Z

x − 1 (x2+ 4x + 5) (x2− 4)dx = −

13 34

Z 2x + 54

13

x2+ 4x + 5dx +

1 68

Z

dx

x − 2 +

3 4

Z

dx

x + 2

= −13

34

Z

(2x + 4)

x2+ 4x + 5dx −

1 17

Z

dx

x2+ 4x + 5 +

1 68

Z

dx

x − 2+

3 4

Z

dx

x + 2

= −13

34

Z d x2+ 4x + 5

x2+ 4x + 5 − 1

17

Z

dx (x + 2)2+ 1 +

1 68

Z

dx

x − 2+

3 4

Z

dx

x + 2

= −13

34ln

x2+ 4x + 5 − 1

17arctan (x + 2) +

1

68ln |x − 2| +

3

4ln |x + 2| + c Th½ dö 5 : T¼m nguy¶n h m A5 =

Z

x

x3+ 1dx

Ta gi£ sû r¬ng : x

x3+ 1 =

x (x + 1) (x2− x + 1) =

α

x + 1 +

β

x − 1

2−

√ 3

2 i

x −1

2 +

√ 3

2 i

α = lim

x→−1

x

x2− x + 1 = −

1 3

β = lim

x→ 1

2 +

3

2 i

x (x + 1)



x − 1

2+

√ 3

2 i

 = 1

6−

√ 3

6 i

χ = lim

x→12−

3

2 i

x (x + 1)



x − 1

2−

√ 3

2 i

 = 1

6 +

√ 3

6 i

Do â : x

x3+ 1 = −

1

3 (x + 1) +

1

6−

√ 3

6 i

x − 1

2−

√ 3

2 i +

1

6+

√ 3

6 i

x − 1

2+

√ 3

2 i

3 (x + 1) +

x + 1

3 (x2− x + 1) C¡ch 2 :

Gi£ sû : x

x3+ 1 =

α

x + 1 +

βx + χ

x2− x + 1 Cho x = 0 ta câ : 0 = α + χ

x = 1 ta câ : 1

2 =

1

2α + β + χ

x = 2 ta câ : 2

9 =

1

3α +

2

3β +

1

Do â m  ta câ h» :

α + χ = 0 1

2α + β + χ =

1 2 1

3α +

2

3β +

1

3χ =

2 9

α = −1

3

β = 1 3

χ = 1 3 Vªy : x

x3+ 1 = −

1

3 (x + 1)+

x + 1

3 (x2− x + 1) C¡ch 3 :

Ta công gi£ sû r¬ng : x

x3+ 1 =

α

x + 1 +

βx + χ

x2− x + 1

⇔ x = α x2− x + 1+ (βx + χ) (x + 1)

Trang 6

C¥n b¬ng c¡c h» sè m  ta câ h» :

α + β = 0

−α + β + χ = 1

α + χ = 0

α = −1

3

β = 1 3

χ = 1 3 Vªy :

Z

x

x3+ 1dx = −

1 3

Z

dx

x + 1 +

1 6

Z

2x + 2

x2− x + 1dx

= −1 3

Z

dx

x + 1 +

1 6

Z

2x + 1

x2− x + 1dx +

1 6

Z

dx

x2− x + 1

= −1 3

Z

dx

x + 1 +

1 6

Z d x2− x + 1

x2− x + 1 +

1 6

Z

dx



x −1 2

2 + 3 4

= −1

3ln |x + 1| +

1

6ln

x2− x + 1 + 1

3√

3arctan

2x − 1

3 + c Th½ dö 6 : T¼m nguy¶n h m A6 =

Z

dx

x8+ 1 Gi£ sû r¬ng : x8+ 1 = x4+ px2+ 1 x4− px2+ 1= x8+ 2 − p2x4+ 1

çng nh§t 2 v¸ ta ÷ñc : 2 − p2= 0 ⇔ p = ±√

2

⇒ x8+ 1 = x4+√

2x2+ 1 x4−√2x2+ 1

Ta câ : x4+√

2x2+ 1 = x2+ qx + 1 x2− qx + 1= x4+ 2 − q2x2+ 1

çng nh§t 2 v¸ ta câ : 2 − q2 =√

2 ⇔ q = ±p2 −√

2

⇒ x4+√

2x2+ 1 =x2+p2 −√

2x + 1 x2−p2 −√

2x + 1

Ta câ : x4−√2x2+ 1 = x2+ rx + 1 x2− rx + 1= x4+ 2 − r2x2+ 1

çng nh§t 2 v¸ ta câ ÷ñc : 2 − r2

= −√

2 ⇔ r = ±p2 +√

2

⇒ x4−√2x2+ 1 =



x2+p2 +√

2x + 1

 

x2−p2 +√

2x + 1



Do â m  ta câ :

x8+ 1 =



x2+p2 −√

2x + 1

 

x2−p2 −√

2x + 1

 

x2+p2 +√

2x + 1

 

x2−p2 +√

2x + 1



x8+ 1 =

1 8

p

2 −√ 2x + 2

x2+p2 −√

2x + 1

+1 8

−p2 −√

2x + 2

x2−p2 −√

2x + 1

+1 8

p

2 +√ 2x + 2

x2+p2 +√

2x + 1

+

+1

8

−p2 +√

2x + 2

x2−p2 +√

2x + 1

Ta chó þ :

Z

dx

ax2+ bx + c =

1 a

Z

dx

x2+ b

ax +

c a , 4ac − b2> 0

= 1

a

Z

dx



x − −b 2a

2 +

 p

4ac − b2 2a

2 = 1 a

Z

dx

°t : p = −b

2a, q =

√ 4ac − b2 2a , x = p + qt

Do â : (1) = 1

aq

Z

1

t2+ 1 dt =

2

2

Z

1

t2+ 1 dt =

2

2 arctan t

Trang 7

= √ 2

4ac − b2arctan√2ax + b

4ac − b2 + C Trong â ta °t : t = x − p

2ax + b

√ 4ac − b2 L¤i câ :

Z

xdx

ax2+ bx + c =

1 2a

Z

2ax + b − b

ax2+ bx + cdx =

1 2a

Z

2ax + b

ax2+ bx + cdx −

b 2a

Z

1

ax2+ bx + c dx

= 1

2aln

ax2+ bx + c − b

2a

Z

dx

ax2+ bx + c + C Vîi : a = c = 1, ∆ = 4 − b2 > 0 ta câ :

Z

Ax + B

x2+ bx + 1dx = A

Z

xdx

x2+ bx + 1 + B

Z

dx

x2+ bx + 1

= 2B − Ab√

4 − b2 arctan√2x + b

4 − b2 + A

2 ln

x2+ bx + 1 + C

Do â : A6.1 = 1

8

2 −√ 2x + 2

x2+p2 −√

2x + 1

dx =

=

p

2 +√ 2

8 arctan

2x +p2 −√

2

p

2 +√ 2 +

p

2 −√ 2

16 ln



x2+p2 −√

2x + 1



+ C1

A6.2= 1

8

Z −p2 −√

2x + 2

x2−p2 −√

2x + 1

dx =

=

p

2 +√ 2

8 arctan

2x −p2 −√

2

p

2 +√ 2

p

2 −√ 2

16 ln



x2−p2 −√

2x + 1+ C2

A6.3=

2 +√ 2x + 2

x2+p2 +√

2x + 1

dx =

=

p

2 −√ 2

8 arctan

2x +p2 −√

2

p

2 −√ 2 +

p

2 +√ 2

16 ln



x2+p2 +√

2x + 1



+ C3

A6.4=

Z −p2 +√

2x + 2

x2−p2 +√

2x + 1

dx =

=

p

2 −√ 2

8 arctan

2x −p2 −√

2

p

2 −√ 2

p

2 +√ 2

16 ln



x2−p2 +√

2x + 1+ C4

Do â m  ta câ : A6 = A6.1+ A6.2+ A6.3+ A6.4

C¡ch 2 :

Ta câ : x8

+ 1 = 0 ⇔ x8 = −1 = cos (π + k2π) + i sin (π + k2π)

⇒ x = cos



π + k2π 8



+ i sin



π + k2π 8



, vîi : k = 0, , 7

Ta câ : sinπ

8 = sin

8 = cos

8 =

1 2

p

2 −√

2, sin3π

8 = sin

8 = cos

π

8 =

1 2

p

2 +√

2 , cos5π

8 = cos

8 = −

1 2

p

2 −√

2 ,

Do â m  ta câ :

Z

dx

1 + x8 = −1

8

3

X

k=0



ln



x2− 2x cos



(2k + 1) π 8



+ 1



× cos



(2k + 1) π 8



+

Trang 8

+1 4

3

X

k=0

arctan

x sin(2k + 1) π

8

1 − x cos(2k + 1) π

8

× sin



(2k + 1) π 8



+ C, k = 0, , 7

... + 5) + βx (x + 5) + χx (x − 2)

x (x − 2) (x + 5)

x (x − 2) (x + 5) =

x2(? ? + β + χ) + x (3 α + 5β − 2χ) − 10α

x (x − 2) (x + 5)

CƠn bơng...

x (x − 2) (x + 5) =

α

x +

β

x − +

χ

x +

x (x − 2) (x + 5) =

α (x − 2) (x + 5) + βx (x +...

x→0

x (x + 2)

x (x − 2) (x + 5) = limx→0

x + (x − 2) (x + 5) =

0 + (0 − 2) (0 + 5) = −

1

Ngày đăng: 06/07/2015, 14:27

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w