Tìm tất cả các giá trị của m để đường thẳng y= − +x m cắt đồ thị C của hàm số 1 tại hai điểm phân biệt A, B sao cho tiếp tuyến với đồ thị C tại A và B song song với nhau.. 2 điểm Trong
Trang 1SỞ GD VÀ ĐT VĨNH PHÚC
TRƯỜNG THPT LIỄN SƠN
-KỲ THI KSCL THI ĐẠI HỌC NĂM 2011 LẦN THỨ 1
ĐỀ THI MÔN : TOÁN – KHỐI A Thời gian làm bài 180 phút, không kể thời gian giao đề
-I PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 ĐIỂM)
Câu I (2 điểm) Cho hàm số
2 1 2
x y x
+
=
−
(1)
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1)
2 Tìm tất cả các giá trị của m để đường thẳng y= − +x m
cắt đồ thị (C) của hàm số (1) tại hai điểm phân biệt A, B sao cho tiếp tuyến với đồ thị (C) tại A và B song song với
nhau
Câu II (2 điểm)
1 Cho phương trình : 9x+1 − 24.6x+(m+ 1 4) x+1 = 0
(m là tham số) Tìm tất cả các giá trị
m
để phương trình đã cho có hai nghiệm 1 2
,
x x
thỏa mãn 1 2
0
x + =x
2 Giải phương trình : sin 2010x c+ os 2010x= 2 sin( 2012x c+ os 2012x)
Câu III (1 điểm) Tìm giới hạn sau :
( )
1
3 7 4 lim
1
x x
x
+
→−
+
Câu IV (1 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân đỉnh A,
2
AB a=
Gọi I là trung điểm của BC, hình chiếu H của đỉnh S trên mặt đáy (ABC)
thỏa mãn IA= −2IH
uur uuur
, góc giữa cạnh bên SC và mặt đáy (ABC) bằng 600 Tính thể tích khối chóp S.ABC và khoảng cách từ trung điểm K của SB đến mặt phẳng (SAH)
Câu V (1 điểm) Cho
, ,
x y z
là các số thực dương thỏa mãn
x +y +z =
Tìm giá trị lớn nhất của biểu thức : K = 3x2 + 7y+ 5(y z+ +) 7z+ 3x2
II PHẦN TỰ CHỌN (3 ĐIỂM) Thí sinh chọn một trong hai phần (A hoặc B)
A Theo chương trình chuẩn
Câu VIa (2 điểm) Trong mặt phẳng với hệ tọa độ Oxy
1 Cho hai đường thẳng: d1: 2x-y-2=0 ; d2: x+y+3=0 và điểm M=(3;0) Viết phương
trình đường thẳng d đi qua M và cắt hai đường thẳng d1, d2 lần lượt tại A, B sao cho
MA=MB
2 Viết phương trình đường tròn có tâm nằm trên đường thẳng 2x-y-4=0 và tiếp xúc
với các trục tọa độ
Câu VIIa (1 điểm) Trong mặt phẳng (P) cho tam giác ABC và 3 đường thẳng song
song với AB, 4 đường thẳng song song với BC, 5 đường thẳng song song với CA Có
bao nhiêu hình bình hành tạo ra từ các đường thẳng đó
ĐỀ CHÍNH THỨC
Trang 2B Theo chương trình nâng cao
Câu VIb (2 điểm) Trong mặt phẳng với hệ tọa độ Oxy
1 Viết phương trình đường thẳng đi qua điểm M=(2;1) và tạo với các trục tọa độ một
tam giác có diện tích bằng 4
2 Cho elip (E):
2
2 1 9
x y
, parabol (P):
2 2
y x= − x
Chứng minh rằng (E) và (P) cắt nhau tại 4 điểm phân biệt cùng nằm trên một đường tròn, viết phương trình đường
tròn đó
Câu VIIb (1 điểm) Xác định hệ số của số hạng chứa
3 4 5 6
x y z t
trong khai triển
x y z t+ + +
SỞ GD VÀ ĐT VĨNH PHÚC
TRƯỜNG THPT LIỄN SƠN
HƯỚNG DẪN CHẤM KSCL THI ĐẠI HỌC LẦN THỨ 1
MÔN TOÁN – KHỐI A
-(Hướng dẫn chấm có 06 trang)
Câu
I
1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2 1 2
x y x
+
=
−
(1 điểm)
a TXĐ : D R= \ 2{ }
b Sự biến thiên
* Chiều biến thiên
, ( )2
5
2
x
−
= < ∀ ≠
−
, suy ra hàm số nghịch biến trên (−∞ ;2)
và (2; +∞)
* Cực trị : Hàm số không có cực trị
0.25
* Các giới hạn :
2 1
2
x y
x
+
−
, suy ra y=2 là tiệm cận ngang của đồ thị
2 1 lim lim
2
x y
x
+
−
, suy ra x=2
là tiệm cận ngang của đồ thị
0.25
* Bảng biến thiên
x −∞ 2 + ∞
y 2
−∞
+∞
2
0.25
Trang 3c Đồ thị
Giao Ox tại
1
;0 2
−
; giao Oy tại
1 0;
2
−
Tâm đối xứng I =( )2; 2
-14 -12 -10 -8 -6 -4 -2
2 4 6 8 10 12 14
x
y
0.25
2 Tìm tất cả các giá trị m để đường thẳng
y= − +x m
cắt đồ thị (C) tại hai điểm
phân biệt A, B sao cho tiếp tuyến của (C) tại A và B song song với nhau (1 điểm)
Xét phương trình :
2 1
x
x m
+ = − + ⇔
2
x mx m x
0.25
Đường thẳng
y= − +x m
cắt (C) tại hai điểm phân biệt A, B khi và chỉ khi phương trình (*) có hai nghiệm phân biệt khác 2
2
m
0.25
Giả sử A, B có hành độ là 1 2
,
x x
thì 1 2
,
x x
là hai nghiệm phân biệt của (*) Tiếp tuyến với đồ thị (C) tại A và B song song với nhau
, do 1 2
x ≠ x
0.25
Trang 4Theo viet thì
2
m
x + =x
, khi đó ta được :
2
m
m
− = ⇔ =
(loại) Vậy không có giá trị nào của m thỏa mãn yêu cầu bài toán
0.25
Câu
II 1 Tìm m để phương trình 9x+1 − 24.6x+(m+ 1 4) x+1 = 0
(1) có 2 nghiệm 1 2
,
x x
thỏa mãn
x + =x
(1 điểm)
(1)
Đặt
1
3 2
x
t
+
= ÷
, do x R∈
nên t>0
, (1) trở thành
t − + + =t m
(2)
0.25
Nhận xét :
1 2
9 4
t t
, trong đó 1 2
,
t t
là 2 nghiệm của phương trình (2)
0.25
Do đó phương trình (1) có nghiệm 1 2
,
x x
thỏa mãn 1 2
0
x + =x
khi và chỉ khi phương trình (2) có 2 nghiệm dương 1 2
,
t t
thỏa mãn
1 2
9 4
t t =
5
4 0
4
1
Kết luận :
5 4
m=
là giá trị cần tìm
0.5
2 Giải phương trình : sin 2010x c+ os 2010x= 2 sin( 2012x c+ os 2012x)
(*) (1 điểm)
Phương trình (*)
sin x 1 2sin x cos x 1 2 cos x 0 sin x c os2x cos x c os2x 0
( 2010 2010 )
0.5
,
4 2
x π kπ k Z
0.25
Trang 5Kết luận : Phương trình đã cho có nghiệm là
,
4 2
x= +π kπ k Z∈
Câu
III
Tìm giới hạn :
( )
1
3 7 4 lim
1
x x
I
x
+
→−
=
+
(1 điểm)
Ta có
( )
x
I
+
0.25
( )
3 1
2
1
x
e
x
+
−
+
0.5
Câu
IV
Hình chóp S.ABC… (1 điểm)
Ta có IAuur= −2uuurIH⇒
H thuộc tia đối của tia IA , IA = 2IH
BC = AB 2 = a
; AI= a; IH= 2
IA
= 2
a
AH = AI + IH = 2
3a
0.25
5 45
cos
2 2
HC AH
AC AH
AC
Vì SH ⊥( ABC)⇒
0
60 ))
(
;
2
15 60
tan 0 a HC
0.25
6
15 2
15 )
2 ( 2
1 3
1
3
2
a a
a SH
S
)
(SAH
BI SH
BI
AH BI
⊥
⇒
⊥
⊥
1 ) (
; ( 2
1 )) (
; ( 2
1 ))
(
; (
)) (
;
BI SAH
B d SAH
K d SB
SK SAH
B d
SAH K
0,25
B A
S
K
I
C
H
Trang 6V Tìm GTLN của biểu thức K = 3x2 + 7y+ 5(y z+ +) 7z+ 3x2
với
, ,
x y z
là các số thực dương thỏa mãn
x +y +z =
(1 điểm)
Ta có :
K ≤ x + y z+ = x + y z+
0.25
Xét hàm số :
f x =x + −x x∈ −
Có :
( )
( )
'
2
4 2
2 3
x
f x x
x
−
( )
1 3; 3
x x
f ( )± 3 = 3;f ( )0 = 2 6; f ( )± = 1 5
Suy ra
3; 3
∈ − = ± = ⇒ f x( ) ≤ ∀ ∈ −5 x 3; 3
0.5
Khi đó ta được
, dấu “=” xảy ra khi x=y=z=1 Vậy maxK =3 10 đạt được khi x=y=z=1
0.25
Câu
VIa
1 Viết phương trình đường thẳng … (1 điểm)
Giả sử A=(m;n) thì B=(6-m;-n), do A nằm trên d1 và B nằm trên d2 nên :
11
3
m
n
=
Suy ra
11 16 7 16
A= B= −
0.5
Ta có
( )
4 32 4
AB= − − = −
uuur
và phương trình đường thẳng cần tìm là
8(x− − 3 1) (y− = ⇔ 0) 0 8x y− − 24 0 =
0.5
2 Viết phương trình đường tròn (1 điểm)
Gọi I và R là tâm và bán kính đường tròn (C) cần tìm
Trang 7Do I nằm trên đường thẳng 2x y− − =4 0 nên I có tọa độ dạng I=(a a;2 − 4)
Do đường tròn (C) tiếp xúc với các trục tọa độ nên d(I;Ox)=d(I;Oy)=R
4
2 4
2 4
3
a
=
0.5
Với a=4
thì I=(4;4), R=4 và phương trình đường tròn (C) là ( ) (2 )2
x− + y− =
Với
4 3
a=
thì I=
; ,
3 3 R 3
và phương trình đường tròn (C) là
− + + =
0.5
Câu
VIIa
Tìm số hình bình hành … (1 điểm)
Có 3 trường hợp sau
*Hình bình hành có 2 cạnh đối song song với AB, 2 cạnh đối còn lại song song
với BC Trường hợp này có
2 2
3 4 3.6 18
hình bình hành
0.25
*Hình bình hành có 2 cạnh đối song song với BC, 2 cạnh đối còn lại song song
với CA Trường hợp này có
2 2
4 5 6.10 60
hình bình hành
0.25
*Hình bình hành có 2 cạnh đối song song với CA, 2 cạnh đối còn lại song song
với AB Trường hợp này có
2 2
5 3 10.3 30
hình bình hành
0,25
Câu
VIb
1 Viết phương trình đường thẳng đi qua điểm M=(2;1) và tạo với các trục tọa độ
một tam giác có diện tích bẳng 4 (1 điểm)
Gọi k là hệ số góc của đường thẳng d cần tìm (k≠
0), suy ra phương trình d có dạng : y=k(x-2)+1 hay y=kx+1-2k
Đường thẳng d cắt Ox tại
2 1
;0
k A
k
−
= ÷
, cắt Oy tại B=(0;1 2 − k)
0.5
Diện tích tam giác OAB bằng 4
2 1 8 k 1 2 8
k
−
2k 1 8k 4k 4k 1 8k 4k 4k 1 8k 0
0.5
Trang 8( 2 ) ( 2 )
3 2 2 2
1 2
k
k
=
=
Vậy có 3 đường thẳng thỏa mãn đó là :
3 2 2
2 1 2
;
1
2 1 2
y= − x− +
2
9
x
P y x= − x E +y =
(1 điểm)
Xét hệ phương trình
2
2 2
2
1 9
y x x
x y
= −
Đặt f x( ) = 9x4 − 36x3 + 37x2 − 9
có
f − = f = − f = f = − f =
( ) ( )1 0 0; ( ) ( )0 1 0; ( ) ( )1 2 0; ( ) ( )2 3 0
, suy ra f(x)=0 có 4 nghiệm phân biệt, tức (*) có 4 nghiệm phân biệt, suy ra (P) và (E) cắt nhau tại
4 điểm phân biệt
0.5
Tọa độ các giao điểm của (P) và (E) thỏa mãn hệ (I)
9 9 16 8 9 0
9 9 0
Chứng tỏ các giao điểm đó cùng nằm trên một đường tròn có phương trình như
trên
0.5
Câu
VIIb Tìm hệ số của số hạng chứa
3 4 5 6
x y z t
của khai triển ( )18
x y z t+ + +
(1 điểm)
Xét khai triển ( )18 ( ( ) )18
x y z t+ + + = + + +x y z t
Số hang chứa
3
x
là 15 3 ( )15
18
C x y z t+ +
0.25
Xét khai triển ( )15 ( ( ) )15
y z t+ + = y+ +z t
Số hạng chứa
4
y
là 11 4 ( )11
15
C y z t+
0.25
Xét khai triển ( )11
z t+
Số hạng chứa
5 6
z t
là
6 5 6
11
C z t
0.25
Trang 9Vậy hệ số của số hạng chứa
3 4 5 6
x y z t
của khai triển ( )18
x y z t+ + +
là
15 11 6
18 15 11 514594080
C C C =
0.25
Lưu ý : Trên đây chỉ là một cách giải, nếu thí sinh trình bày theo cách khác mà đúng
thì cho điểm tương ứng với điểm của đáp án trên