1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tài liệu Slide bài giảng môn Lý thuyết xác suất thống kê bằng Tiếng Anh StatisticsLecture2B

23 692 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 23
Dung lượng 920,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Describe relation between 2 qualitative variablesCross table with levels of one variable in rows, levels of the second variable in columns: - The second variable columns is a dependent

Trang 1

C Describe relation between 2 qualitative variables

Cross table with levels of one variable in rows, levels of the second variable in columns:

- The second variable (columns) is a dependent

(descriptive, result, output) variable

Trang 2

Y(1) Y(2) Y(m) X(1) n 1,1 n 1,2 n 1,m M 1

X(2) n 2,1 n 2,2 n 2,m M 2

X(k) n k,1 n k,2 n k m, M k

K 1 K2 K N m

i

j

Trang 3

Table with percentages % across rows: n i j, / M i gives

information about distrribution of “output” variable Y in each level of “input” variable X

Y(1) Y(2) Y(m) X(1) n1,1 / M 1 n1,2 / M 1 n1,m / M 1

X(2) n2,1 / M 2 n2,2 / M 2 n2,m / M 2

X(k) n k,1 / M k n k,2 / M k n k m, / M k

Trang 4

Table with percentages % across columns: n i j, / K j gives

information about distrribution of “input” variable X in each level of “output” variable Y

Y(1) Y(2) Y(m) X(1) n1,1 / K 1 n1,2 / K 2 n1,m / K m

X(2) n2,1 / K 1 n2,2 / K 2 n2,m / K m

X(k) n k,1 / K 1 n k,2 / K 2 n k m, / K m

Trang 5

Table with percentages % in whole samle: n i j, / N gives information about total distrribution in sample

Y(1) Y(2) Y(m) X(1) n1,1 / N n1,2 / N n1,m / N

X(2) n2,1 / N n2,2 / N n2,m / N

X(k) n k,1 / N n k,2 / N n k m, / N

Trang 6

For calculations percentages across rows or across columns

we use in addition the Cells command box and choose

Row or Column respectively

Trang 7

D Describe relation between qualitative variable and quantitative variable

Using cross table with columns present the groups determined

by qualitative variable and Mean value of quantitative

variable taken separately in each group:

Information from the table:

- Mean value of variable is highest, lowest in which group

of variable Y

- Difference between mean values of variable X take in

different levels of variable Y , etc

Trang 8

Examle:

- Qualitative variable Y : “Economic status of household”

- Quantitative variable X : “Food expenditure per capita

in household”,

3.511 4.808 7.105 8.455 9.650

Remark: In the table, instead of Mean value we can use other

statistical parameters of quantitative variable: Median, Min, Max, Standard Deviantion, Range, etc

Trang 9

Using bar chart

Colums of bar chart present statistical parameters of

quantitative variable X (Mean(X), Med(X), Min(X), etc.) in groups of qualitative variable Y:

MAINHA3

4 3

2 1

Trang 10

Using box plot

Box plot is using to compare distributions of quantitative variable in different groups of qualitative variable:

137 68

11080 989

N =

MAINHA3

4 3

2 1

8627 6479

1258 12460 1412 709 3856 12592

1929 549 11474 453 11755 9648 45 9646 10717 3909 12565 7483 12391 4824 10516 2008 11708 3716 10880 9638 10675 9114 12797 3837 12181 8722 11696 3938 10973 3562 10241 6508 11759 4729 239 8136 11738 2511 772 11707 4539 12000 3584 12169 9873 12210 12121 11578

3045 12829

1992

2523 13156 4930 13162 7941 4767

Trang 11

Using SPSS to describe relation between qualitative

and quantitative variables

Trang 12

Char-graph-plot

SPSS : Use command

Graph

Bar

(or Pie or Boxplot … )

Then choose Other summary function, and a suitable

statistical perameter function (mean, median, min, max, etc.)

Trang 13

E Describe relation between 2 quantitative variables

For primary describing relation between 2 quantitative

variables we can use dot (scatter) plot, covariance vµ linear correlation coefficient of two quantitative variables

Trang 14

(a) Scatter plot For quantitative variables X , Y with sample

E =  ( , ),( ,x y1 1 x y2 2), ,( ,x y n n)

Dot plot of sample E is performed by drawing n points

with cordinates ( ,x y : i i)

y

yi

xi

Trang 15

(b) Scatter plot can be used to compare several populations: draw several samples (differently coloured) on a common plot

Notes

(a) Scatter plot providing two-dimentional picture of data represents distribution of data In that plot we can see concentration area of data, see if there are somes outliers, abnormal points, etc

Trang 16

b) Covariance and linear correlation coefficient

(i) For presentation relationship between two quantitative

a and b the following equality always valids:

Cov(X+a,Y+b) = Cov(X,Y) ,

Trang 17

b) Covariance and linear correlation coefficient

ii) Linear correlation coefficient:

r(X,Y) = Cov(X,Y) / ( (X).(Y))

Property:

2) Not depent on measure scale of variables: For all numberr

a , b different from 0 and a.b>0 we have

r(aX,bY) = r(X,Y)

the following is true:

r(X+a,Y+b) = r(X,Y) ,

Trang 18

c) If r(X,Y) close to 0 then X and Y are linearly independent, there is not linear relation between them

Linear correlation coefficient measures the linear

dependence between two variables:

- 1  r(X,Y)  1

r(X,Y) = 1 if and only if Y = aX + b with a > 0 ,

r(X,Y) = - 1 if and only if Y = aX + b with a < 0

b) If r(X,Y) close to 1 (or - 1) then X and Y are very strongly related, can have some linear correlation,

Trang 19

 (X) < (Y)  (X) = (Y)  (X) > (Y)

Trang 20

 (X) < (Y)  (X) = (Y)  (X) > (Y)

Trang 21

Remarks

1) If E(1) and E(2) are two samples then

From r(E(1)) ~ 1 and r(E(2)) ~ 1 does not imply

Trang 22

5) From r(X,Y) ~ 1 and r(Y,Z) ~ does not imply

r(X,Z) ~ 1

r(X,Y) = 0 ,

in spite of

r(X,Y) ~ 1 ,

6) From r(X,Y) ~ 0 and r(Y,Z) ~ 0 does not imply

r(X,Z) ~ 0

Trang 23

Applets

Ch ¬ng 8.1

Ngày đăng: 27/06/2015, 08:23

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w