Tiết 57: Kiểm tra chơng IIII/ Mục tiêu kiểm tra: Kiểm tra mức độ đạt chuẩn KTKN trong chơng trình môn Hình học 9 sau khi học sinh học xong chơng III, cụ thể: * Kiến thức: Biết khái niệm
Trang 1Tiết 57: Kiểm tra chơng III
I/ Mục tiêu kiểm tra:
Kiểm tra mức độ đạt chuẩn KTKN trong chơng trình môn Hình học 9 sau khi học sinh học xong chơng III, cụ thể:
* Kiến thức: Biết khái niệm độ dài cung tròn, góc nội tiếp, góc ở tâm, góc tạo bởi tiếp tuyến
và dây cung , công thức tính độ dài cung tròn, đờng tròn, hình tròn, hình quạt., tứ giác nội tiếp
* Kỹ năng:
- Phát hiện góc nào là góc nội tiếp, dộ dài cung
- Tính đợc: số đo của góc ở tâm, góc tạo bởi tiếp tuyến và dây cung theo cung bị chắn, độ dài cung tròn, đờng tròn, hình tròn, quạt tròn
- Tìm đợc điều kiện để chứng minh tứ giác nội tiếp đờng tròn
- Biết vẽ hình, ghi GT + KL theo yêu cầu bài toán
* Thái độ: Giáo dục ý thức tự giác, tích cực làm bài
II/ Hình thức kiểm tra:
Tự luận
III) MA TRẬN ĐỀ KIỂM TRA:
Trang 2IV)THI Ế T L Ậ P C U H Â Ỏ I THEO MA TR Ậ N
Bài 1(2 ®) :Cho hình vẽ sau:
a) Xác định góc ở tâm ,góc nội tiếp đỉnh C ,
góc tạo bởi tia tiếp tuyến và dây cung
b) Viết biểu thức tính số đo góc ở câu a theo
cung bị chắn rồi so sánh các góc đó
Tên Cấp độ
chủ đề
Cấp độ thấp Cấp độ cao
Chủ đề 1
Các loại góc với
đường tròn.
-Nhận biết góc ở tâm, góc nội tiếp,gãc t¹o bëi tia tiÕp tuyÕn
vµ d©y cung -Chỉ ra mối quan hệ của các loại góc trên với cung bị chắn trong một đường tròn và so sánh các loại góc đó
Vận dụng góc nội tiếp
để chứng minh
Số câu
Số điểm Tỉ lệ %
2 2
2 2,0
4 4,0 40%
Chủ đề 2
Liên hệ giữa cung
và dây.
- Biết tìm mối liên hệ giữa cung và dây
Số câu
Số điểm Tỉ lệ %
1 1,5
1 1,5 15%
Chủ đề 3
Tứ giác nội tiếp
Cung chứa góc
C/m được một tứ giác nội tiếp dựa vào tổng hai góc đối diện
Vận dụng quỹ tích cung chứa góc tìm quỹ tích 1 điểm
Số câu
Số điểm Tỉ lệ %
1 2
1 1
2
3 30%
Chủ đề 4
Công thức tính độ
dài đường tròn, diện
tích hình tròn Giới
thiệu hình quạt tròn
và diện tích hình
quạt
tròn
Nắm được công thức tính độ dài cung tròn, dt hình quạt tròn để tính
độ dài và diện tích.
Số câu
Số điểm Tỉ lệ %
1 1,5
1 1,5 15%
Tổng số câu
Tổng số điểm
Tỉ lệ %
2 2,0 20%
1 1,5 15%
4 5,5 55%
1 1 10%
8 10 100%
m
60 ° D
A
C O
B
Trang 3Bài 2: (3,0 đ)
Cho (O;3cm), hai đường kính AB và CD,
sđ BC=600 (hình vẽ)
a)So sánh hai đoạn thẳng BCvàBD(có giải thích)
b)Tính chu vi đường tròn (O), diện tích hình quạt
tròn OBmD (lấy π = 3,14)
Bài 3: (5,0 đ)
Cho nửa đường tròn tâm (O), đường kính BC, Lấy điểm A trên cung BC sao cho AB < AC
D là trung điểm của OC, từ D kẻ đường thẳng vuông góc với BC cắt AC tại E a) Chứng minh: tứ giác ABDE nội tiếp được đường tròn, xác định tâm
b) Chứng minh: BAD = BED
c) Chứng minh: CE.CA = CD.CB
d) Trên tia đối của tia AB lấy điểm M sao cho AM = AC Giả sử không có điều kiện
AB < AC, tìm quỹ tích điểm M khi A di chuyển trên nửa đường tròn tâm O
Hết
-V)ĐÁP ÁN ĐỀ KIỂM TRA:
Bài 1:
a) -Góc ở tâm là: AOB
-Góc nội tiếp đỉnh C là : ACB
-Góc tạo bởi tia tiép tuyến và dây cung là : BAx
b)ACB = BAx =
2
1
sđ AB AOB = sđ AB
Bài 2:
a)(1,5đ)Sđ BmD = 1800 – sđ BC – 600 =1200
0,5 đ
⇒ BmD > BC 0,5 đ
suy ra BD > BC
0,5 đ
b) C = 2πR
0,5 đ
Trang 4C = 2.3,14.3 = 18,84 cm
0,25 đ
Sq =
2
360
R n
π
0,5 đ
Sq =
2
2
3,14.3 120
9, 42
360 = cm
0,25 đ
Bài 3:
a) Tứ giác ABDE có BAE = 900 (giảithích)
0,5 đ
BDE = 900
0,5 đ
BAE + BDE = 1800
Suy ra tứ giác ABDE nội tiếp đường tròn
0,5 đ
Tâm của đường tròn là trung điểm I của BE
0,5 đ
b) Trong đường tròn tâm I đk BE có
BAD và BED cùng chắn cung BD
suy ra BAD = BED
1 đ
c) Xét 2 tam giác: ∆ACD và ∆BCE có
C chung
0,25đ
CAD = CBE (cùng chắn cung DE của (I;
2
BE
) 0,25đ
suy ra ∆ACD ∆BCE (g-g)
0,25đ
CA CD
CB CE
0,25đ
0,25 đ
d) (yêu cầu hs tìm quỹ tích dựa vào cung chứa góc, không yêu cầu chứng minh, và giới hạn)
Trong tam giác ACM có:
CAM = 900 ( ABC = 900)
AC = AM (gt)
M
I
E
D
B
A
Trang 5Suy ra AMC = 450 hay BMC = 450 0,25 đ
Suy ra M luôn nhìn BC cố định dưới một góc không đổi bằng 450 0,25 đ
* Chú ý: Mọi cách giải khác đúng đều đạt điểm tối đa.