1. Trang chủ
  2. » Luận Văn - Báo Cáo

Định lý KKM - FAN, các kết quả tương đương và áp dụng7_2

3 294 1
Tài liệu được quét OCR, nội dung có thể không chính xác
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Định lý kkm - fan, các kết quả tương đương và áp dụng7_2
Định dạng
Số trang 3
Dung lượng 766,22 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Định lý KKM - FAN, các kết quả tương đương và áp dụng

Trang 1

TÀI LIỆU THAM KHẢO

{[I] Khánh P Q., Giải Tích Đa Trị, Giáo trình Cao học, Đại học Quốc gia TPHCM

[2l Anh L Q Khanh P Q,, Existence conditions in symmetric multivalued vector quasiequilibrium problems, (submitted)

[3] Anh L Q, Khanh P Q, Various kinds of semicontinuity of the solution sets

to symmetric multivalued vector quasiequilibrium problems, J Global Optim

(accepted)

[4] Ansari Q H., Lin Y C, Yao J C, General KKM theorem with applications to minimax and variational inequalities, J Optim Theory Appl 104, 41 - 57, 2000

{5] Chadli O, Chbani Z, Riahi H., Equilibrium problems with generalized monotone

bifunctions and applications to variational inequalities, J Optim Theory Appl

105, 299 - 323, 2000

[6] Chadli O., Riahi H, On generalized vector equilibrium problems, J Global Optim

16, 33 - 41, 2000

[7] Chang S S Zhang Y., Generalized KKM theorem and variational inequalities, J

Math Anal Appl 159, 208 - 223, 1991

[8] Ding X P., Generalized G-KKM theorems in generalized convex spaces and their

applications, J Math Anal Appl 266, 21 - 37, 2002

[9] Fu J Y., Generalized vector quasiequilibrium problems, Math Meth Oper Res 52,

57 - 64, 2000

[I0] Hai N X., Khanh P Q., Existence of solutions to general quasiequilibrium problems and applications, J Optim Theory Appl 133, No 1, 2007, in press

59

Trang 2

{II Hai N X, Khanh P Q, Systems of multivalued quasiequilibrium problems,

Advances in Nonlinear Variational Inequalities 9, 109 - 120, 2006

{12] Hai N X., Khanh P Q,, Systems of set-valued quasivariational inclusion problems,

J Optim Theory Appl 135, No 2, 2007, in press

(13] Hai N X, Khanh P Q, The solution existence of general variational inclusion problems, J Math Anal Appl 328, 1268 - 1277, 2007

{14] Hai N X., Khanh P Q, Quan N H, On the existence of solutions to

quasivariational inclusion problems, (submitted)

{I5] Hu S, Papageorgiou N S., Handbook of Multi- Valued Analysis I, Kluwer Academic,

1997

[16] Kalmoun E M., Riahi H, Topological KKM theorems and generalized vector

equilibria on G-convex spaces with applications, Proc Amer Math Soc 129, 1335

- 1348, 2001

{17] Khanh P Q Luu L M, On the existence of solutions to vector quasivariational

inequalities and quasicomplementarity problems with applications to traffic network equilibria, J Optim Theory Appl 123, 533 - 548, 2004

[18] Khanh P Q, Luu L M, Some existence results for vector quasivariational

inequalities involving multifunctions and applications to traffic equilibrium

problem, J of Global Optim 32, 551 - 568, 2005

[19] Lin K L, Yang D P., Yao J C, Generalized vector variational inequalities, J Optim Theory Appl 92, I7 - 125, 1997

[20] Lin L J, A KKM type theorem and its applications, Bul Austral Math Soc 59,

481 - 493, 1999

[21] Lin L J., Applications of a fixed point theorems in G-convex spaces, Nonlin Anal

46, 601 - 608, 2001

60

Trang 3

(22] Lin L J, Ansari Q H., Wu J Y, Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems, J Optim Theory Appl 117, 121 - 137, 2003

(23] Lin L J Chen H L, The study of KKM theorems with applications to vector

equilibrium problems and implicit vector variational inequalities problems, J Global Optim 32, 135 - 157, 2005

[24] Lin L J, Wan W P, KKM type theorems and coincidence theorems with applications to the existence of equilibria, J Optim Theory Appl 123, 105 - 122,

[25] Luo Q., KKM and Nash equilibria type theorems in topological ordered spaces, J

Math Anal Appl 264, 262 - 269, 2001

[26] Siddiqui A H., Ansari Q H., Khaliq A, On vector variational inequalities, J Optim Theory Appl 84, 171 - 180, 1995

[27] Tarafdar E., A fixed point theorem equivalent to the Fan - Knaster - Kuratowski

- Mazurkiewicz theorem, J Math Anal Appl 128, 475 - 479, 1987

(28] Tarafdar E., On nonlinear variational inequalities, Proc Amer Math Soc 67,

95 - 98, 1977

[29] Tian G., Generalizations of the KKM theorem and the Ky Fan minimax inequality, with applications to maximal elements, price equilibrium and complementarity, J Math Anal Appl 170, 457 - 471, 1992

[30] Zeng L C, Wu S Y, Yao J C, Generalized KKM theorems with applications to

generalized minimax inequalities and generalized equilibrium problems, Taiwanese

J Math 10, 1497 - 1514, 2006

6l

Ngày đăng: 10/04/2013, 12:47

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w