1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề Toán cho kỳ thi Quốc Gia 2015 có đáp án chi tiết

16 320 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 0,9 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Biết điểm C có hoành độ bằng , tìm tọa độ của các đỉnh A, B... Viết phương trình mặt phẳng trung trực P của đoạn thẳng AB và phương trình mặt cầu tâm O, tiếp xúc với P.. Cán bộ hỏi thi đ

Trang 1

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015

TRƯỜNG THPT CHUYÊN

LÊ HỒNG PHONG – TP HCM

Câu 1.(2,0 điểm) Cho hàm số y = 2x − 1 x +

1

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho

b) Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp điểm có hoành độ x = 1

Câu 2.(1,0 điểm)

a) Cho góc α thỏa mãn: < α < π và sinα = Tính A =

b) Cho số phức z thỏa mãn hệ thức: (1 + i)z + (3 − i)z = 2 − 6i Tính môđun của z

Câu 3.(0,5 điểm) Giải phương trình: log3(x + 2) = 1 − log3 x

Câu 4.(1,0 điểm) Giải bất phương trình: x2 + x + x − 2 ≥ 3(x2 − 2x − 2)

Câu 5.(1,0 điểm) Tính tích phân: I (2xln x)dx

Câu 6.(1,0 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AC = 2a, ACB = 30o, Hình chiếu vuông góc H của đỉnh S trên mặt đáy là trung điểm của cạnh AC và SH = 2a Tính theo a thể tích khối chóp S.ABC và khoảng cách từ điểm C đến mặt phẳng (SAB)

Câu 7.(1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác OAB có các đỉnh A và B thuộc đường thẳng ∆ : 4x + 3y − 12 = 0 và điểm K(6; 6) là tâm đường tròn bàng tiếp góc O Gọi C là điểm

nằm trên ∆ sao cho AC = AO và các điểm C, B nằm khác phía nhau so với điểm A Biết điểm C có hoành độ bằng , tìm tọa độ của các đỉnh A, B

Trang 2

Câu 8.(1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2; 0; 0) và B(1; 1; −1) Viết

phương trình mặt phẳng trung trực (P) của đoạn thẳng AB và phương trình mặt cầu tâm O, tiếp xúc với

(P)

Câu 9.(0,5 điểm) Hai thí sinh A và B tham gia một buổi thi vấn đáp Cán bộ hỏi thi đưa cho mỗi thí sinh

một bộ câu hỏi thi gồm 10 câu hỏi khác nhau, được đựng trong 10 phong bì dán kín, có hình thức giống hệt nhau, mỗi phong bì đựng 1 câu hỏi; thí sinh chọn 3 phong bì trong số đó để xác định câu hỏi thi của mình Biết rằng bộ 10 câu hỏi thi dành cho các thí sinh là như nhau, tính xác suất để3 câu hỏi A chọn

và 3 câu hỏi B chọn là giống nhau

Câu 10.(1,0 điểm) Xét số thực x Tìm giá trị nhỏ nhất của biểu thức sau:

P=

- H ẾT -

ĐỀ THI MINH HỌA - KỲ THI THPT QUỐC GIA NĂM 2015

Môn: TOÁN

Câu 1

(2,0

điểm)

a) (1,0 điểm)

● Tập xác định: D = \{−1}

● Giới hạn và tiệm cận:

lim y =−∞ , lim y =+∞ ; lim y = lim y = 2

Suy ra, đồ thị hàm số có một tiệm cận đứng là đường thẳng x =−1 và một tiệm cận

ngang là đường thẳng y = 2.

0,25

Sự biến thiên:

- Chiều biến thiên: y' = > 0 ∀x ∈ D

Suy ra, hàm số đồng biến trên mỗi khoảng (−∞; −1) và (−1;+∞)

- Cực trị: Hàm số đã cho không có cực trị

0,25

L ưu ý: Cho phép thí sinh không nêu kết luận về cực trị của hàm số

- Bảng biến thiên:

x – ∞ – 1 + ∞

2

+

) (

(

Trang 3

y'

y

+ + + ∞ 2 2 – ∞

0,25

Đồ thị (C):

0,25

b) (1,0 điểm)

Suy ra hệ số góc k của tiếp tuyến là: k = y'(1) = 0,25

Do đó, phương trình của tiếp tuyến là: y = (x − 1) + ;

0,25

3 1

hay y = x −

4 4

0,25

Câu 2

(1,0

điểm)

a) (0,5 điểm)

Ta có: A = = tanα.cos2 α= sinα.cosα= cosα (1)

0,25 2

cos2 α= 1 − sin2 α= 1 − 3 = 16 (2)

y

− 1

− 1

2

½

Trang 4

π 4

Vì α∈ ;π nên cosα< 0 Do đó, từ (2) suy ra cosα =− (3)

Thế (3) vào (1), ta được A

0,25

b) (0,5 điểm)

Đặt z = a + bi, ( a, b ∈ ); khi đó z = a − bi Do đó, kí hiệu (∗) là hệ thức cho

trong đề bài, ta có:

(∗) ⇔ (1 + i)(a + bi) + (3 − i)(a − bi) = 2 − 6i

(4a − 2b − 2) + (6 − 2b)i = 0

0,25

{

4a − 2b − 2 = 0 a = 2

⇔ ⇔ {

6 − 2b = 0 b = 3

Do đó | z | = 22+ 32 = 13

0,25

Câu 3

(0,5

điểm)

● Điều kiện xác định: x > 0. (1)

● Với điều kiện đó, ký hiệu (2) là phương trình đã cho, ta có:

(2) ⇔ log3(x + 2) + log3 x = 1 ⇔ log3(x(x + 2)) = log3 3

0,25

x2 + 2x − 3 = 0x = 1 (do (1)) 0,25

Câu 4

(1,0

điểm)

● Điều kiện xác định: x ≥ 1 +

Với điều kiện đó, ký hiệu (2) l

3 (1)

à bất phương trình đã cho, ta có: 0,25 (2) ⇔ x2 + 2x − 2 + 2 x(x + 1)(x − 2) ≥ 3(x2 − 2x − 2)

0,50

Do với mọ

(3) ⇔

x(x− 2)(x + 1) ≥ x(x − 2) − 2(x + 1)

(x + 1)) ≤ 0 (3)

( x(x− 2) − 2

i x thỏa mãn (1),

ta có

x(x− 2) ≤ 2 (x + 1)x2 − 6x − 4 ≤ 0

⇔ 3 − 13 ≤ x ≤ 3 + 13 (4)

Kết hợp (1) và (4), ta được tập nghiệm của bất phương trình đã cho là:

1 + 3; 3 + 13

0,25

) (

(x +1) x(x−2) +

x x− + x + > nên

Trang 5

Câu 5

(1,0

điểm)

Ta có: I = ∫2x3dx + ∫ln xdx (1)

0,25

Đặt I1 = ∫2x3dx và I ln xdx Ta có:

1 2

I1 = x4 =

0,25

22

x1 − ∫xd(lnx) = 2ln2 − dx = 2ln2

0,50

Câu 6

(1,0

điểm)

Theo giả thiết, HA = HC = AC = a và SH ⊥ mp(ABC)

Xét ∆v ABC, ta có: BC = AC.cos ACB = 2a.cos30o = 3a.

0,25

Do đó SABC = AC.BC.sin ACB = 2a 3a.sin30o =

3

1 Vậy VS.ABC = SH.S ABC = 1 2a 3 a2 = 6a

3 a2

0,25

2

Vì CA = 2HA nên d(C, (SAB)) = 2d(H, (SAB)) (1) Gọi N

là trung điểm của AB, ta có HN là đường trung bình của ∆ABC

Do đó HN // BC Suy ra AB ⊥ HN Lại có AB ⊥ SH nên AB ⊥ mp(SHN) Do đó

mp(SAB) ⊥ mp(SHN) Mà SN là giao tuyến của hai mặt phẳng vừa nêu, nên trong

mp(SHN), hạ HK ⊥ SN, ta có HK ⊥ mp(SAB)

Vì vậy d(H, (SAB)) = HK Kết hợp với (1), suy ra d(C, (SAB)) = 2HK (2)

0,25

Trang 6

Vì SH ⊥ mp(ABC) nên SH ⊥ HN Xét ∆v SHN, ta có:

1 1 1 1 1 = + = + HK2 SH2 HN2 2a2 HN2

∆ABC nên HN =

Vì HN là đường trung bình của

Do đó 2 = 2 + 2 = 2 Suy ra HK =

(3)

HK 2a 3a 6a

Thế (3) vào (2), ta được d (C , (SAB))

0,25

Câu 7

(1,0

điểm)

Trên ∆, lấy điểm D sao cho BD = BO và D, A nằm khác phía nhau so với B Gọi E là

giao điểm của các đường thẳng KA và OC; gọi F là giao điểm của các đường thẳng

KB và OD

Vì K là tâm đường tròn bàng tiếp góc O của ∆OAB nên KE là phân giác của góc

OAC Mà OAC là tam giác cân tại A (do AO = AC, theo gt) nên suy ra KE cũng là

đường trung trực của OC Do đó E là trung điểm của OC và KC = KO

Xét tương tự đối với KF, ta cũng có F là trung điểm của OD và KD = KO Suy ra

∆CKD cân tại K Do đó, hạ KH ⊥ ∆, ta có H là trung điểm của CD

Như vậy:

+ A là giao của ∆ và đường trung trực d1 của đoạn thẳng OC; (1) + B

là giao của ∆ và đường trung trực d2 của đoạn thẳng OD, với D là điểm đối xứng

của C qua H và H là hình chiếu vuông góc của K trên ∆ (2)

0,50

Vì C ∈ ∆ và có hoành độ x0 = (gt) nên gọi y0 là tung độ của C, ta có:

4 + 3y0 − 12 = 0 Suy ra y0 =−

12 6

Từ đó, trung điểm E của OC có tọa độ là ; − và đường thẳng OC có

2

2

a

BC =

66

11

a

2 66

11

a

=

Trang 7

5 5

phương trình: x + 2y = 0.

Suy ra phương trình của d1 là: 2x − y − 6 = 0.

Do đó, theo (1), tọa độ của A là nghiệm của hệ phương trình:

{

4x + 3y − 12 = 0

2x − y − 6 = 0

Giải hệ trên, ta được A = (3; 0)

0,25

Gọi d là đường thẳng đi qua K(6; 6) và vuông góc với ∆, ta có phương trình của d là:

3x − 4y + 6 = 0. Từ đây, do H là giao điểm của ∆ và d nên tọa độ của H là nghiệm của

hệ phương trình:

{

4x + 3y − 12 = 0

3x − 4y + 6 = 0

Giải hệ trên, ta được H = ; Suy ra D = − ;

6 18

Do đó, trung điểm F của OD có tọa độ là − ; và đường thẳng OD có

5 5 phương trình: 3x + y = 0.

Suy ra phương trình của d2 là: x − 3y + 12 = 0.

Do đó, theo (2), tọa độ của B là nghiệm của hệ phương trình:

{

4x + 3y − 12 = 0

x − 3y + 12 = 0

Giải hệ trên, ta được B = (0; 4)

0,25

Trang 8

Câu 8

(1,0

điểm)

3 1 1 Gọi M là trung điểm của AB, ta có M = ; ; −

2 2 2

Vì (P) là mặt phẳng trung trực của AB nên (P) đi qua M và AB = (−1; 1; −1) là một

vectơ pháp tuyến của (P)

0,25

Suy ra, phương trình của (P) là: (−1) x − + y − + (−1) z + = 0

hay: 2x − 2y + 2z − 1 = 0

0,25

22 + (−2)2 + 22 2 3

0,25

Do đó, phương trình mặt cầu tâm O, tiếp xúc với (P) là: x2 + y2 + z2 = hay 12x2

Câu 9

(0,5

điểm)

Không gian mẫu Ω là tập hợp gồm tất cả các cặp hai bộ 3 câu hỏi, mà ở vị trí thứ nhất

của cặp là bộ 3 câu hỏi thí sinh A chọn và ở vị trí thứ hai của cặp là bộ

3 câu hỏi thí sinh B chọn

Vì A cũng như B đều có C103 cách chọn 3 câu hỏi từ 10 câu hỏi thi nên theo quy tắc

nhân, ta có n(Ω) = (C103 )2

0,25

Kí hiệu X là biến cố “bộ 3 câu hỏi A chọn và bộ 3 câu hỏi B chọn là giống nhau”

Vì với mỗi cách chọn 3 câu hỏi của A, B chỉ có duy nhất cách chọn 3 câu hỏi giống

như A nên n(Ω

X ) = C103 .1 = C103

n(X ) C103 = 13 = 1

Vì vậy P(X) = =

n( ) C10 120

0,25

Câu 10

(1,0

điểm)

Trong mặt phẳng với hệ tọa độ Oxy, với mỗi số thực x, xét các điểm A(x; x + 1) ,

B 2 ; − 2 và C − 2 ; − 2

OA OB OC

Khi đó, ta có P = + + , trong đó a = BC, b = CA và c = AB

0,25

3 1

3 1

Trang 9

a b c

Gọi G là trọng tâm ∆ABC, ta có:

OAGA OBGB OCGC 3 OAGA OBGB OCGC

P = + + = + + , aGA bGB cGC 2 am a bm b cm c

trong đó m a , m bm c tương ứng là độ dài đường trung tuyến xuất phát từ A, B, C của

∆ABC

0,25

Theo bất đẳng thức Cô si cho hai số thực không âm, ta có

am a =

b + c a + b + c

Bằng cách tương tự, ta cũng có: bm b và cm c

Suy ra P

2 2 2 (OAGA + OBGB + OCGC ) (1)

a + b + c

0,25

Ta có: OAGA + OBGB + OC.GC ≥ OAGA + OBGB + OC.GC (2)

OAGA +OBGB +OCGC

= (OG +GA).GA+ (OG +GB).GB + (OG +GC).GC

Từ (1), (2) và (3), suy ra P ≥ 3

Hơn nữa, bằng kiểm tra trực tiếp ta thấy P = 3 khi x = 0

Vậy min P = 3

0,25

1 3 2 2

2 3 a b + c a

3 3

2 3

2 3

Trang 10

LẦN 1 - NĂM 2015 MÔN TOÁN

(Thời gian làm bài 180 phút không kể giao đề)

Câu1 (2 điểm) Cho hàm số y = 2x 1

(C)

x 2

1 Kháo sát sự biến thiên và vẽ đồ thị hàm số (C)

2 Viết phương trình tiếp tuyến với đồ thị hàm số (C) biết hệ số góc của tiếp tuyến bằng -5

Câu2 (0.5 điểm) Giải bất phương trình: log3(x – 3 ) + log3(x – 5 ) < 1

2

Câu3 (1 điểm) Tính tích phân: I = x x 1dx

1

Câu 4 (1 điểm) Cho hình chóp S.ABCD có đáy là hình thang vuông tại A, D, SA vuông

góc với đáy

SA = AD = a , AB = 2a

1 Tính thể tích khối chóp S.ABC

2 Tính khoảng cách giữa AB và SC

Câu5 (1 điểm) Trong không gian O.xyz cho A(1;2;3), B(-3; -3;2 )

1 Viết phương trình mặt cầu đường kính AB

2 Tìm điểm M nằm trên trục hoành sao cho M cách đều hai điểm A, B

Câu6 (1 điểm) Giải phương trình: 2sin2x - cos2x = 7sinx + 2cosx – 4

Câu7 (0.5 điểm ) Gọi T là tập hợp các số tự nhiên gồm 4 chữ số phân biệt được chọn từ

các số 1, 2, 3, 4, 5, 6, 7 Chọn ngẫu nhiên 1 số từ tập T

Tính xác suất để số được chọn lớn hơn 2015

Câu8 (1điểm) Trong mặt phẳng Oxy cho tam giác ABC vuông tại A B, C là hai điểm đối

xứng nhau qua gốc tọa độ Đường phân giác trong góc B của tam giác có phương trình x + 2y - 5= 0 Tìm tọa độ các đỉnh của tam giác biết đường thẳng AC đi qua K(6;2)

9x2 9xy 5x 4y 9 y 7

Trang 11

Câu9 (1 điểm) Giải hệ phương trình 2

Câu10 (1 điểm) Cho a, b, c thuôc đoạn [1;2] Tìm giá trị nhỏ nhất của biểu thức

P = 2 a b 2

c 4 ab bc ca

- Hết -

Họ và tên thí sinh ……… Số báo danh………

Trang 12

HƯỚNGDẪNCHẤMĐỀKIỂMTRAKHẢOSÁTCHẤTLƯỢNGÔNTHITHPT

Trang 13

tuyến tại M có dạng: y = k(x- x0) + y0 , y’ 5

x 2 2

0.25

Hệ số góc k = -5 y’(x0) = -5 (x0 – 2)2 = 1 x0 = 3 hoặc x0 = 1 0.25 Với x0 = 3 thì M(3;7) phương trình tiếp tuyến là y = -5x + 22 0.25 Với x0 = 1 thì M(1;-3) phương trình tiếp tuyến là y = -5x + 2 0.25 Câu 2 Giải bất phương trình: log3(x – 3 ) + log3(x – 5 ) < 1 (*)

ĐK: x > 5

(*) log3(x – 3 )(x - 5) < 1 (x – 3 )( x - 5) < 3 0.25

x2 – 8x +12 < 0 2 < x < 6 Kết hợp ĐK thì 5 < x < 6 là nghiệm của bất phương trình 0.25

Tính tích phân: I = x x 1dx

1 Đặt

Đổi

x 1 = t thì x = t2 + 1 , dx = 2tdt x

= 1 thì t = 0 ; x = 2 thì t = 1

0.25 cận :

I = 2 1 t2 1 t2dt = 2 1 t4 t2 dt

0.25

t5 t3 1 16 = 2 ( ) =

5 3 0 15

0.5

Câu 4

1 Tính thể tích khối chóp S.ABC

Trang 14

SA vuông góc với mp đáy nên SA là đường cao của khối chóp, SA = a

Trong mặt phẳng đáy từ C kẻ CE // DA, E thuộc AB suy ra CE vuông góc với

AB và CE = DA = a là đường cao của tam giác CAB

0.25

Diện tích tam giác là S = CE.AB = a2

2 Tính khoảng cách giữa AB và SC

Ta có AB//DC nên d(AB, SC) = d(AB, SDC) Trong mặt phẳng (SAD) từ A kẻ

AH vuông góc với SD (1), H thuộc SD

Ta có DC vuông góc với AD, DC vuông góc SA nên DC vuông góc với

mp(SAD) suy ra DC vuông góc AH (2)

Từ (1) và (2) suy ra AH vuông góc với (SDC)

AH = d(AB, SDC) = d(AB, SC )

0.25

Trong tam giác vuông SAD ta có 1 2 1

2 1

2 2

0.25

Câu 5

1

Gọi I là trung điểm của AB thì I(-1; ; ) là tâm mặt cầu Bán kính mặt cầu

Phương trình mặt cầu (x+1)2 +(y + )2 +(z )2 = 21/2



0.25

2 M nằm trên trục hoành nên M(x;0;0) MA(1-x ;2;3) , MB (-3-x;-3;2) 0.25

M cách đều A , B tức là MA2 = MB2 Hay

(1-x)2+13 = (-3-x)2+13 x = 1

Câu 6 Giải phương trình : 2sin2x - cos2x = 7sinx + 2cosx – 4

4sinxcosx – 2cosx +2sin2x - 1– 7sinx + 4 = 0 2cosx(2sinx -1) + 2sin2x -7sinx +3 = 0

0.25

2cosx(2sinx -1) + (sinx -3)(2sinx – 1) = 0 (2sinx -1) (sinx + 2cosx – 3) =0

0.25

sinx = Hoặc sinx + 2cosx – 3 =0

Ta có: sinx + 2cosx – 3 =0 vô nghiệm vì 12 +22 < 32

0.25 Phương trình tương đương sinx = 1 x= k2 hoặc x= 5 k2

0.25

Trang 15

Câu 7 Số phần tử của tập hợp T là A74 = 840

Gọi abcd là số tự nhiên gồm 4 chữ số phân biệt được chọn từ các chữ số 1,2,3,4,5,6,7

và lớn hơn 2015

Vì trong các chữ số đã cho không chứa chữ số 0 nên để có số cần tìm thì a 2 0.25

Vậy có 6 cách chọn a Sau khi chọn a thì chọn b,c,d có A63 cách chọn

6A63 6 Xác suất cần tìm là P = 4 =

Câu 8 Điểm B nằm trên đường thẳng x + 2y – 5 = 0 nên B(5 – 2b ; b)

B ; C đối xứng nhau qua O nên C(2b – 5 ; - b ) và O thuộc BC

Gọi I là điểm đối xứng của O qua phân giác góc B suy ra I(2;4)

0.25

BI (2b – 3 ; 4 – b ) , CK (11 – 2b ; 2 + b)



Tam giác ABC vuông tại A nên BI.CK = 0 - 5b2 + 30b – 25 = 0

b= 1 hoặc b= 5

0.25

Với b= 5 thì B(- 5, 5 ), C(5 ; -5) suy ra A( 31;17 )

5 5

0.25

x y 2 1 9 x y 7x 7y (2)

Đk : x y 0 Nếu x = y thì (2) vô nghiệm nên x > y

(2) x y 2 - 7x 7y + 1 – [3(x- y )]2 = 0

2 6x 6y

1 3x 3y 1 3x 3y 0 x y 2 7x 7y

0.25

x y 2 7x 7y

x > y 0 nên 2 1 3x 3y > 0 suy ra 1–3x + 3y =0

Trang 16

Thay y = x – vào phương trình (1) ta được

9x2 + 9x(x - ) + 5x – 4(x - = 7

18x2 – 8x + 6x -

(9x – 4 ) 2x 23 9x 33 1 = 0 x = 94 vì x > 0

Với x = thì y = Vậy hệ có nghiệm (x;y) = ( ; ) 0.25

Câu 10

a b 2 Cho a, b, c thuôc đoạn [1;2] Tìm GTNN của P = 2

c 4 ab bc ca

c 4 ab bc ca c 4 a b c 4ab

a b 2 2 = ac bc 2

Ta có 4ab (a + b)2 nên P

0.25

Đặt t = a b vì a, b , c thuộc [1;2] nên t thuộc [1;4] c c

t2 4t2 2t

Ta có f(t) = 2 , f’(t) = 2 2 > 0 với mọi t thuộc [1;4] 4 4t t 1 4t t

0.25

Hàm số f(t) đồng biến trên [1;4] nên f(t) đạt GTNN bằng khi t = 1 0.25

Dấu bằng xảy ra khi a = b ; a b = 1, a,b,c thuộc [1;2] a =b = 1 và c =2

c

Vậy MinP = khi a =b = 1 và c = 2

0.25

(MỌI CÁCH GIẢI ĐÚNG ĐỀU CHO ĐIỂM THEO THANG ĐIỂM TƯƠNG ỨNG)

1

3 ) + 9

1

3

x

+ 9 1

3

x - 3 = 0

Ngày đăng: 18/06/2015, 16:02

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w