luận văn trình bày các kiến thức cơ bản và các bài toán cân bằng, với trọng tâm là dẫn đến khái niệm và các kiểu hàm Gap khác nhau, nghiên cứu về hàm D-gap và giải bài toán bổ trợ. và chỉ ra được cách đánh giá tốc độ của thuật toán
Trang 1[7]
[8]
[9]
[10]
TAI LIEU THAM KHAO
Anh L.Q.,and Khanh P.Q.,On the stability of the solution sets of general
multivalued vector quasiequilibrium problems , Journal of Optimization Theory and Application (2006), in press
Anh L.Q.,and Khanh P.Q., Uniqueness and holder continuity of the solution to multivalued equilibrium problems in metric spaces , Journal of
Global Optimization ,(2006),in press
Anipn A.S, Equilibrium programming: Proximal _ methods, Computational Mathematics and Mathematical Physics, Vol.37 (1997),
pp.1285 — 1296
Auchmuty G., Variational priciples for cariational inequalities, Numerical Functional Analysis and Optimization, Vol.10 (1989), pp.863
— 874
Bao T.Q and Khanh P.Q., 4 projection-type algorithm ƒor
pseudomonotone nonlipschitzian mulvalued variational inequalities, Nonconvex Optimization and Applications , Springer, Vol.77(2005),
pp.113-129
Benson H.Y, Sen A., Interior — point algorithms, penalty methods and equilibrium problems, Computational Optimization and Applications,
Vol 34(2006), pp.155 — 182
Bianchi M., Pini R., Coercivity coditions for equilibrium problems, Journal of Optimization Theory and Applications, Vol 125 (2005), pp.79
-92
Cohen G., Auxiliary problem priciple and decomposition of optimization problems, Journal of Optimization Theory and Applications, Vol.32
(1980), pp.277 - 305
Cohen G., Auxiliary priciple extended to variational inequalities, Journal
of Optimization Theory and Applications, Vol.59 (1988), pp.325-333 Dinh Q.T, Muu L.D and Nguyen V.H, Extragradient methods extended to equilibrium problems (submited)(2006)
Trang 48
Trang 2[H]
[12]
[13]
[14]
[17]
[18]
[19]
[20]
[21]
[22]
Fukushima M., Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problem,
Mathematical Programming, Vol 53 (1992), pp.99 — 110
Hai N.X., and Khanh P.Q , Existence of solutions to general
quasiequilibri -um problems and applications , Journal of Optimization
Theory and Application (2006), in press
Khanh P.Q., Lue D.T., and Tuan N.D.,Local uniqueness of solutions for
equilibrium problems ,Advances in Nonlinear Variational Inequalities 9 (2006), pp.13-27
Konnov I.V, Pinyagina, D_gap functions and descent methods for a class
of monotone equilibrium problems, Lobachevskii J Mathematics, Vol 13
(2003), pp.57 — 65
Konnov I.V, Application of the proximal point methods to non monotone equilibrium problems, Journal of Optimization Theory and Applications,
Vol.119 (2003), pp.317 — 333
Konnov LV, Schaible S and Yao J.C, Combined relaxation method for
mixed equilibrium problems, Journal of Optimization Theory and
Applications, Vol.126 (2005), pp.309 — 322
Konnov IV, and Schaible S., Duality for equilibrium problems under generalized monotonicity, Journal of Optimization Theory and Applications, Vol.104 (2000), pp.395 — 408
Korpelevich G.M, Extragradient method for finding saddle points and
other problems, Matecone, Vol.12 (1976), pp.747 — 756
Lasson T., Patriksson M., A class of gap functions for variational inequalities, Mathematical programming, Vol.64 (1994), pp.53 — 79
Mastroeni G., Gap Functions for Equilibrium Problems, Kluwer
Academic, Neitherlands, 2003
Mastroeni G., On auxiliary principle for equilibrium problems, Technical Report of the Department of Mathematics of Pisa University, Italy
3.244.1258, (2000)
Martinez — Legaz J.E, Sosa W, Duality of equilibrium problems , Journal
of Global Optimization,Springer US, Vol.35 (2006), pp.311 — 319
Trang 49
Trang 3[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
Martinet B., Régularisation d’ inéquations variationelles par approximations successives, Revue Francaise d’automatique et d’ Informatique Recherche Opérationelle, Vol.4 (1970), pp.154 — 159
Marcotte P., Zhu D., Global convergence of descent processes for solving nonstrickly monotone variational inequality, Journal of Optimization Theory and Applications, Vol.94 (2004), pp.677 — 693
Moudafi A., Proximal point algorithm extended to equilibrium problem, Journal of Natural Geometry, Vol.15 (1999), pp.91 — 100
Muu L.D, Nguyen V.H and Strodiot J.J, A linearly convergent algorithm Jor strongly monotone equilibrium problems: application to inexact prox- point methods (submited) (2006)
Nguyen Thi Thu Van, J.J Strodiot and Nguyen V.H, A bundle method for solving equiliblirium problems, Mathematical Programming (2006) (submited)
Noor M.A, Extragradient method for pseudomonotone variational inequalities, Journal of Optimization Theory and Applications, Vol.117
(2003), pp 475 — 488
Noor M.A, and Noor K.I, On equilibrium problems, Applied Mathematics
E-Note, Vol.4 (2004), pp.125 — 132
Peng J.M., Equivalence of variational inequality problems to
unconstrained minimization, Mathematical Programming, Vol.78 (1997), pp.347 — 355
Rouhani B.D, Tarafdar E., Existence of Solutions to some equilibrium
problems, Journal of Optimization Theory and Applications, Vol
126(2005), pp.79 — 92
Yamashita N., Taji K and Fukushima M., Unconstrained optimization reformulation of variational inequality problems, Journal of Optimization
Theory and Applications, Vol.92 (1997), pp.439 — 456