1. Trang chủ
  2. » Luận Văn - Báo Cáo

dùng hàm D-Gap giải bài toán cân bằng 7_2_2

3 368 2
Tài liệu được quét OCR, nội dung có thể không chính xác
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Dùng hàm d-gap giải bài toán cân bằng 7_2_2
Định dạng
Số trang 3
Dung lượng 1,19 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

luận văn trình bày các kiến thức cơ bản và các bài toán cân bằng, với trọng tâm là dẫn đến khái niệm và các kiểu hàm Gap khác nhau, nghiên cứu về hàm D-gap và giải bài toán bổ trợ. và chỉ ra được cách đánh giá tốc độ của thuật toán

Trang 1

[7]

[8]

[9]

[10]

TAI LIEU THAM KHAO

Anh L.Q.,and Khanh P.Q.,On the stability of the solution sets of general

multivalued vector quasiequilibrium problems , Journal of Optimization Theory and Application (2006), in press

Anh L.Q.,and Khanh P.Q., Uniqueness and holder continuity of the solution to multivalued equilibrium problems in metric spaces , Journal of

Global Optimization ,(2006),in press

Anipn A.S, Equilibrium programming: Proximal _ methods, Computational Mathematics and Mathematical Physics, Vol.37 (1997),

pp.1285 — 1296

Auchmuty G., Variational priciples for cariational inequalities, Numerical Functional Analysis and Optimization, Vol.10 (1989), pp.863

— 874

Bao T.Q and Khanh P.Q., 4 projection-type algorithm ƒor

pseudomonotone nonlipschitzian mulvalued variational inequalities, Nonconvex Optimization and Applications , Springer, Vol.77(2005),

pp.113-129

Benson H.Y, Sen A., Interior — point algorithms, penalty methods and equilibrium problems, Computational Optimization and Applications,

Vol 34(2006), pp.155 — 182

Bianchi M., Pini R., Coercivity coditions for equilibrium problems, Journal of Optimization Theory and Applications, Vol 125 (2005), pp.79

-92

Cohen G., Auxiliary problem priciple and decomposition of optimization problems, Journal of Optimization Theory and Applications, Vol.32

(1980), pp.277 - 305

Cohen G., Auxiliary priciple extended to variational inequalities, Journal

of Optimization Theory and Applications, Vol.59 (1988), pp.325-333 Dinh Q.T, Muu L.D and Nguyen V.H, Extragradient methods extended to equilibrium problems (submited)(2006)

Trang 48

Trang 2

[H]

[12]

[13]

[14]

[17]

[18]

[19]

[20]

[21]

[22]

Fukushima M., Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problem,

Mathematical Programming, Vol 53 (1992), pp.99 — 110

Hai N.X., and Khanh P.Q , Existence of solutions to general

quasiequilibri -um problems and applications , Journal of Optimization

Theory and Application (2006), in press

Khanh P.Q., Lue D.T., and Tuan N.D.,Local uniqueness of solutions for

equilibrium problems ,Advances in Nonlinear Variational Inequalities 9 (2006), pp.13-27

Konnov I.V, Pinyagina, D_gap functions and descent methods for a class

of monotone equilibrium problems, Lobachevskii J Mathematics, Vol 13

(2003), pp.57 — 65

Konnov I.V, Application of the proximal point methods to non monotone equilibrium problems, Journal of Optimization Theory and Applications,

Vol.119 (2003), pp.317 — 333

Konnov LV, Schaible S and Yao J.C, Combined relaxation method for

mixed equilibrium problems, Journal of Optimization Theory and

Applications, Vol.126 (2005), pp.309 — 322

Konnov IV, and Schaible S., Duality for equilibrium problems under generalized monotonicity, Journal of Optimization Theory and Applications, Vol.104 (2000), pp.395 — 408

Korpelevich G.M, Extragradient method for finding saddle points and

other problems, Matecone, Vol.12 (1976), pp.747 — 756

Lasson T., Patriksson M., A class of gap functions for variational inequalities, Mathematical programming, Vol.64 (1994), pp.53 — 79

Mastroeni G., Gap Functions for Equilibrium Problems, Kluwer

Academic, Neitherlands, 2003

Mastroeni G., On auxiliary principle for equilibrium problems, Technical Report of the Department of Mathematics of Pisa University, Italy

3.244.1258, (2000)

Martinez — Legaz J.E, Sosa W, Duality of equilibrium problems , Journal

of Global Optimization,Springer US, Vol.35 (2006), pp.311 — 319

Trang 49

Trang 3

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Martinet B., Régularisation d’ inéquations variationelles par approximations successives, Revue Francaise d’automatique et d’ Informatique Recherche Opérationelle, Vol.4 (1970), pp.154 — 159

Marcotte P., Zhu D., Global convergence of descent processes for solving nonstrickly monotone variational inequality, Journal of Optimization Theory and Applications, Vol.94 (2004), pp.677 — 693

Moudafi A., Proximal point algorithm extended to equilibrium problem, Journal of Natural Geometry, Vol.15 (1999), pp.91 — 100

Muu L.D, Nguyen V.H and Strodiot J.J, A linearly convergent algorithm Jor strongly monotone equilibrium problems: application to inexact prox- point methods (submited) (2006)

Nguyen Thi Thu Van, J.J Strodiot and Nguyen V.H, A bundle method for solving equiliblirium problems, Mathematical Programming (2006) (submited)

Noor M.A, Extragradient method for pseudomonotone variational inequalities, Journal of Optimization Theory and Applications, Vol.117

(2003), pp 475 — 488

Noor M.A, and Noor K.I, On equilibrium problems, Applied Mathematics

E-Note, Vol.4 (2004), pp.125 — 132

Peng J.M., Equivalence of variational inequality problems to

unconstrained minimization, Mathematical Programming, Vol.78 (1997), pp.347 — 355

Rouhani B.D, Tarafdar E., Existence of Solutions to some equilibrium

problems, Journal of Optimization Theory and Applications, Vol

126(2005), pp.79 — 92

Yamashita N., Taji K and Fukushima M., Unconstrained optimization reformulation of variational inequality problems, Journal of Optimization

Theory and Applications, Vol.92 (1997), pp.439 — 456

Ngày đăng: 10/04/2013, 11:56

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm