Luận án thạc sĩ toán học chuyên ngành Giải Tích -Chuyên đề : Lời giải chỉnh hóa của phương trình tích phân loại một
Trang 1CI1l(dng3 : Nghi~m Chinh Boa Cua Pht(dng Trlnh Tich Phan Lo1;liMQL
X,Y la cac thong gian Hilbert
Cac cach chinh hoa co the' chia lam 2 lo~i:xc1pxi b~ng loan tit ho~c xc1pxi b~ng khonggwn
3 1 X-. I':ap Xl ang toaD tu' :? b~ ,?
Ta se c6 g~ng xay dt!ng loan tit Ra :Y~X ma Ra la lien t\lCva la xc1pxi A+rhea
nghIa R~ ~ u : =A+g khi a ~ 0 cho m6i g E D(A+); (j day g la dli ki~n chinh xac
Ne'u ta ky hi~u A.=A* A; rhea 2.7.2 ta co: u= A+gse thoa man A.u =A*gdo do
ne'u A.kha nghich ta duc;lcu=k1 A*g ;con khi A.thong kha nghjch ta hi vQngxc1pxi u bdivecto co d~ng Ra (A.)A*g(a >0) vdi Ra (t) la ham s6lien t\lCtren a (A.)~ [a,IIA 112]
(xemO.8) va Ra(t) xc1pxi fer)=lit
Trang phc1nsan day ta se gi<isit
Ra(t) -> lit khi a -~0 cha m6i t > 0 (2)
3-1-1.Dinh Iv: Gi<isit (Ra)a > 0 la hQcac ham s6 tht!clien t\lCtren [0, IIA 112]thoa (2) ,(3) khi do Ra (A.)A*g~ A+gkhi a ~ 0 cha m6i g E D(A+)
Clut'nJ?Ininh
Chung ta chti yr~ng ne'u/~lamQt da thti'c thl :
/~A *A) A* =A* /~AA*).
Da djnh ly xc1pxi weierstrass cha cac ham lien t\lCtren a(A*A) =cr(AA*)
Trang 2(Do (2) , (3) va do dinh ly hQit~lbi ch~n.)
n
Til do SHYfa Pg=Az => g E D(A +) mall thuffn gia thie't g ~ D(A +)
V~y: (Ran (i'\jA' gIn kh6ng h~i II! y(!n .
w(a ,v) +0 khi a +0 cho m6i v > 0
3-1-4 Eli'd~ : Range (AV) ~ Ker (A).L
Trang 3U E (KerA) i va Av x E (KerA) i ~ u -AVx E (KerA) i
II u -xu II ~ w (a,v) II xii (do (4»
Bay giCl d~t ea : =A~g - Xa
3-1-6 Dinh Ii ! Ne'u PgE Range (A V)tuc Pg = A Vxvdi mQt v :2 1 khi do :
.
lieall ~ fw(a, v-1Xa, v)llxll Clui:n!?minI!: f)~t u =A+g~Au =Pg = A.vx= AA*CA.v-I)X
lam ttlong ll1 nhu dinh 19 tren ta cling duc;Jc : u =A +g =A*Av-IX
19-1co : Xa= Ra (A)A*Pg = Rcx(A)A*A x = A*Ra (A)A x
~Ca = A +g - Xa = U - Xa = A* A.v-IX - A*RaCA)A Vx = A*(I - Ra(A)A.)A v-IX
~ II ea 112= (ea , A*(I-Ra(A)A.)A V-IX)
=(Aea , (I - Ra (A)A)A v-IX) ~ II A call II (I - Ra(A.)A)A v-Ixll
~ II call2 S IIAea II II xII w (a , v-I) (*)
19-ico :
A ea = AA*( 1 - Ra(A.)A.)A.v-IX= A*A.v(I - RaCA)A.)x
Do do :II Aea 112=(Aea , A ea) = (A*A ea, ea) = (A ea , eeL)
. Nhu V?y bhng dinh 19 3-1-1 va dinh 19 3-1-2 ta da chI ra duc;Jcr~ng Ra(A)A *g +
A+g khi va chI khi g ED(A+).
Va m,;lI1hhon nua ne'uPg E Range(A.* V)\:div :2 1 th1
Ileal! =IIA+ g- Xall ~ jw(a, v -1)w(a, v) Ilxll
Bay giClta chuySn sang xet cho traCInghc;Jpg'6la du ki<$nkh6ng chinh X3.Cthoa :
IlgJ - gll s 8 ;8 >0
.5 - * '6
E>~t: Xa = Ra (A)A g
Ntu X: hQit~ltheo mQtnghlan~lOdo v€ nghi<$ms6 co chuffnnho nha'tA+gkhi8 +0,ta noi
nghi<$mxa'p xi 0 tren la nghi<$mchinh hoa clla phuong trlnh Noi chinh X3.Chon no la
nghi<$mchinh h6a ne'u chQnduc;Jcthalli s6 chInh hoa a ph~lthuQc8 gQila a =a(8) sao cho :
Trang 29
Trang 4hm R ( ) * 0
ma con la vi~c chQn chugn cho khong gian va chQn a(o) cila thalli s6 chinh hoa
GQiC la h~ng s6 thoa ItRa (t)1 ~ C2 vdi t E [°, IIAII2J ; a >0 (5)
Clu'cng l11Jnh: Ta co : A (xa - x~ ) =A Ra(A.)A*(g - gO)
Trang 5Clutnf! minh :
Taco:
A + g - x ~(O) II ~ IIA + g - x a II + IIxa( 0) - x~(0)
~ IIA + g - Xal/ + oc.Jr(a(o)) (Do b6 d€ 3-1-7)
l<;1ido dinh 193-1-1 ta co Xa«5)-+A+g khi 0 -+0 va do gia thie't Iim 0.jr(a(5»
Bay giO ta xet de'n khai nit$m chinh hoa ye'u do cac di€u kit$n khong m<;1nhcua 02r(a(0))
Ta gQi xifp xl {x~(O)}Iii weakly regular u€u eho mill day (0,) -> 0 ta c6: x :[0 nJ :A + g
Ta da co do dinh Iy 3-1-8 Iim 0.Jr(a(5»0-+0 =0 la di€u kit$n dll clla s\f hQi tl,lm<;1nhclla X~(o)
u-x at8n) =u-x a(8n) +x a(8n) -x at8n)
Do di€u kit$nOil-+ 0 ta da co (xem dinh Iy 3-1-1) xa( 0n) -+ u Khi n -+ 00
x at 0 n) - xa(0n)-+ 0
Khi n -+ 00
La'yZ E KerA ta co :
Trang 31
Trang 60I~ 002a(o)R a(o) (a(o)P =00 Khi d6 3 day o vdi 0,,->0 va g'"thoa ligon - gll ~ 0 n sao
Trang 7II 11
2
=> x -xon -02 -2R / -02/ R /
= o~a(on)Ra(o ) (a(on)f ~n 00 Khi n -t 00
=>fIxal(o ) ~n 00=>xa(o ) KhonghOit~lye'un .
xa ph~l thuOc VaG Ra(t).
Bay giG ta xem m<)t cach chinh hoa voi mOt Ra (t) C~lth6
1,
va ham so' chi t6c dO hOi t\l khi c10la m«x, v) = av voi 0 < v s; 1
Celeh chinh hoa nhu v~y gQi la each chinh Tikhonov.
cl!c ti6u clla phie'm ham Fa (x) = "Ax - gll~ + allx"~ gQi la phiS-m h~lll1Tikhonov.
3-2.Cach chlnh boa Tikhonoy :
3-2-1 Dinh If :
Gi,l stYA la 1-1 va Range A=Y; GQi A* loan ttYlien h<;Jpcua A khi do Va> 0,
phuong trlnh Aa + A*Ax = A*g luon co nghi~m duy nha't Xa, ph~l thuOc lien t\lc VaGg va Xa
la ctfcti6u Cllaphie'm ham Fa (x) = !lAx- gll~ + alJxll~
Trang 33
Trang 8ClucnR minh :
X6t roan tti a : X x X -t R.
'"
(u,v) -t a( u, v) + (A Au,v) =a (u,v) + (Au, Av)
. Ta tha'y a la song tuye'n tinh
la(u, v)l::; al(u, v)j +1(Au,Av)1
::; allull.llvll+IIAull.IIAvll
sallull.livII+c21lull.livII lIa(u, v)11s(a + C2 )11uI1.livII
ta tha'y L la phie'm ham tuye'n Hnh lien t9c.
Do d6 :ip d~1DgLax Milgram ( xem 0.10) ta thu duQc
T6n t(;liduy nha't u EOX sao rho a (u,v) = L(v) \I V EOX.
Tuc a(u,v) + (A"'Au,v) = (A"'g, v) \I v EOX
Ta co : (aI + A A)x = 0 =>(ax +A Ax,x) = 0
=> a IIxl12+ ( A'"Ax,x) = 0 => allxJJ2+IIAxl12 =0 => IIxii =0 => x=O.
Ngoai ra do aI + A'"Ala tuye'n tinh V?y aI + A'"A la 1 - 1.
Sv phi,!thuQc lien t~!C:
Ta chi dn chung minh ne'u ax + A'"Ax = z -> 0 thl x -t 0
Ta co : ax + A"'Ax= z =>(ax + A'"Ax,x) = (z, x)
=>allxll +(A Ax,x)=(z,x)=>allxll +IIAxll-=(z,x)::;llzll.llxll
Trang 34
Trang 9=>aIlxf ~ Ilzll.llxll=>allxll~ Ilzll
Cho z -+ 0 => a Ilxll -+ 0 => x -+ O.
Ta co:
= flAx- gl12 -IIAX a - gl12+aCllxf -llx a 112)
ma : A Axu - A g + axu = 0 => Fu(x) - Fu(xu) ;::O.
NgliQc l?i ta cling tha'y Fu co day nha't mQt c\fc lieu xac dinh bdi 1"(0) =0 vdi mQi w
Dieu nay phli hQp vdi Xu= (A -I-a1)-1 A*g
Vdi ham chi t6c dQ w(a,v) = av nhli da noi d tn~n
3-2-2 H~ (jua :
. Ne'uA+gE Range(A.V)vdi O<vsl khi do IIA-I-g- xa 1/=8(av)
Ne'uA+gE Range(A*)khidoI/A +g-xa 1/=8(a1/2)
Trang 35
Trang 10(Jd§y IIA+g-Xa II~o(av) chI al~oIIA+:~Xa II ~C*O
IIA+g-Xa II~e(al/2) chI al";oIIA+iaXa II =c"o
Clucng minh Tli 3-1-7, ta SHYfa:
IIA+ g - X~(o)lI:s:; IIA+ g - Xex(o)11+llx~(o) - Xex(o) II
:s:;IIA+ g - x ex(o)11+ o.I.J;(ex)
:s:;IIA+ g - x ex(o) II+ !r-a
L~i do 3-2-2 0 tnSn
Neu chQn a = Ko vdi K 1ah~ng du'ongva A+g E Range (A*) , ta ou'<;fc :
IIA+g- Xex(o)11 =8(01/2)
=> IIx~(o) A+gll=8(01/ 2) (1). Neu chQn a =Ko2/(2 V+l) va Alg E Range (1\") vdi O<v:s:;1 thl:
Trang 11Va nhu v~y t6c dQ hQi tt,lnhanh nha't rhea ht%qua nay la 8(02/3), n6 xay ra khiA+gERange (A) va a =A02/3 ung voi v=1.
Ta dii giai quytt duQc va'n de t6c dQ hQi t~l( trong cach chinh h6a clla Tikhonov )d?t duQc t6i da la 8(02/3)
.Bay gio ta chungto ding t6c dQ.d6khongth~ cao hdn m1'a
(A + aI)ea = (1\ + aI) (xa- u) = (A + aI)xa - (A + aI)u
= (A + aI) (A + aIrlA*g - (A + aI)u
va Xa=(A + aIr A g = (A + aIr A Pg = 0 .
Trong 3-2-2 ntH cho v=1, ta tha'y A+g E Range (A) tIll IIA+ g - Xall=8(a) NguQc I~lihay xet djnh 19 salt :
3-2-5 Dinh Iv :
Ntu g ED(A+)va IIA+g- xu!1= O(a) khi d6 A+gERange (A).
ClUtllJ!minh GQi {un, VII,Jln} la singular system cua A
Trang 12Nen Ra(A )A* h(>i t\l de'n A+ va IIA+- Ra (A)A *11 = 8(a) (Xern [1])
Do d6 ntu chQn a = C li ta ou<;1cfix ~ x~11=8(a)
Trang 38
Trang 13T [2] - h? ~ ,.!,.!
d A
hA'
]' 0 ('>.2/3) h ., h h 5
thoa JIg- g 811~ 8 Khi do A ph,h co h,;ll1g hull l1<;1n,
Trang [4] cling chi r~ng : Ne'u u E Range(A V)vdi 0< v ~ 1
('>.) C'>.2/(2v+l) , ',.!, bA 0 ('>.2v/(2v+l» kh' d' A ' h h
-h
VI V?y sall day ta chi xet truong hQpA co Iwng vo h~n.
Trong uinh ly 3-2-3, ne'li chqn a =K 5213 ta duQc t6c de) he)i t~l 0(52/3).
Bay gio ta chi ra r~ng do la dip de)t6t nha't co the duQC,
= Au + a(8)u - A g =a(8)u + A (Au - g )
=> (A+a(8)I)(u- x~(8»=a(8)U + A'" (g-gO)
=> a(8)u =( A +a(8)I)(u - x~(8» + A'" (gO- g)
3-2-7 Dinh Iv :
Gia sti A khong co hi;tnghuu hi;tnva lIu- x~(8)11 =0(82/3) khong phV thue)c gO
thoa jig - g811~ 8 Khido u=0
Clutng minh Gqi {un, vn, ~ln}la Singular System Clta A
Do A khong co hi;tng huu hi;tnnen /-l"~ 00 khi n~ 00.
Trang 14( B~ng each lam Wong ttf nhu' trong dinh 1;' 3-2-5 )
a(o)6- 2/3 ~ 0 khi 0 ~ O( VIaCe) cling ca'p VOL0)n
Do giil thie't Ilu- x:1(0)= 0(02/3) VOLg;; thoa Ilg- gOII~ 0 Hen trong tru'ong h<;Jpd~c bi~t
khi g= gO,ta cling phai colin - xa(o)11 = 0(02/3) Hen(*) => 0 21 Va 1;' V~y n=o.
Bay gi(J ta lien h~ vdi 3-2-3 cho tUng tru'ong hQp v=1, tue la t6c dQ d?t du'Qct6tnha't
3-2-8.Dinh ly :
thuQc gOtho a I/g- gO /I~ 8 KhidoU E Range (A.)
Clu'tng minh
Trang 40
Trang 15D?t {un, vn, ~ln}la Singular System cua A va gi<isii' gO=(1 + o)g (ta co th€ gi<isii'Jigil=1)
Trang 16Dinh ly tIen cho ke't qua la t6n t<;lia d€ D(a,gO) =ova do a + D(a;gO) la tang nen
stj t6n t<;lia thch D( a,gO) = o la duy nha't
Bay giGc1?tr(a,go):= g8,-Ax~
Trang 17Khi do sai s6 giua u thoa Au=g ( chli Y g E RangeA) vdi xO :a
lilt - x~r =!lu112 + IIX~112 - 2(u,x~ )
ma do (3), ta co : x~ = ~ A*{ a,gO) nen
=llul12+llx~112- ~({a,gO),g)
= !lu112+ Ilx~112 - ~ ( {a, gO), g- gO + gO)
=liltf + Ilx~112 + ~ ({a, gO), gO - g) - ~ ({ex, gO), gO)
Ilu-x~r ~lluf+llx~112 - ~({ex,gO),gO)+ ~D(ex,gO)
Tu' day v6 san ta d~t :
E( a,gO)=lluf +llx~112- ~({ a,gO),gO)+~ D(a,gO)
3-2-2 Dinh IS":
Ne'u g, gOthoa (1), khi do E(a, gO)la be nha't khi va chi khi D(a, gO)=o
Clutl1g 111[1111:
Chli yr~ng D(a, gO)> 0 'l/a > 0, m~t khac :
(a,gO)=AX~ -gO =0 chomQta>O
Nhu'ngbdi (2), ta co : xO ex= (1\+alt 1A*gO=0
=> 02 =jigo- gr = jigo1/2 +Ilgf> Ilgf + 02
Trang43
Trang 18Do ham a ~ D(a,gO) tang Hen
Do d6 E(a,gO) d~t min khi va chi khi D(a,go) = 0
Bay giG ta thie't l~p nghiem chinh h6a ki€u discrepancy
=> +~(ol + 02 S 02 +"Ilof=> Ilx~(o)11 S 11011 \16>0
"
Do d6 m6i day (on)h0i t~lve 0 t6n t~i day con ta v~n ky hi~u la (on)sao cho : (4)
0nX(0 )
Trang 190L,;lido A la compact nen Axa(on) hQit\l m:;tnhve Ay (xem 0.9)
d d6 y la nghi~m c6 chuiin be nha't , tuc y =u
Nhu' v~y m6i day con Clla
0(xa(o n» chua day con hQi t\l ytu ve u va tu d6On
Djnh ly du'oi c1aycho mQt ch~n tren cua a(o) khi chQntheo ki€u discrepancy
3-3-4 Dinh Ii ; Ntu a(o) thoa D(a(o),gO)= 0
Trang 20IlgOII-O=llgOII-llr(a(o),gO)II~ IlgO-r(a(o),gO)11
=>llgOII- 0 ~ IlgO- (gO - Ax~(o))11 ==IIAX~(o)11
L?i do (3) ta co :
a(O)IIAx~(o)11=\lAA* r(a(o),gO)\I
=>IIAX~(o)11~ IIAf Ilr(a(o),gOll/a(o)
=>IlgO - 0 ~ IIAf Ilr(a(o),gOll/a(O)
=>IIgO - 0 ~ IIAf o/a(o)
Bay giOta xet de'n t6c dQhQi t\l Ta gicisu nghi~m co ChUaHnha nha't u E Range(A*)
3-3-5 niHil Iv :
No'lIlI E Range A * ; khi d611n- x~(o)11=8(15)
Clurng minh do U E Range(A*), gici su u=A *w
Taco'
H(8) - f +~(8t- 2(X~(8)'uHluI12
IIX~(8)- tf s 2(U-X~(8)'U) ~ 2(U-X~(8)'A 'w)
=>IIX~(i;) - f ~ 2(A(u - x~(O)), w) ~ 2(g- AX~(6)' w)
~ 4ollwll
Ne'u A hUll h~ll1chien ta co th€ thu du'<;Ict6c dQ 8(0)
Th~t v~y trong tru'ong h<;lpnay, A + la bi ch?n (do 2.7.3)
Trang 46
Trang 21=>liLt - x~(8)11 ~ IIAllllg- g8 + g - AX~(8)1I
=>liLt- x~(8)11 ~ IIA+11(lig - g811+ IIg8 - AX~(8)")
BZit{un, VII'~ln} la singular system CllaA
Ne'u A khong co Iwng huu h~n => lim /l =00
xa(8 n)-u= (A+a(8n)I)- A*g n -/l}v}
= (A+a(8 n)I)-IA*g+ (A+a(8 n)I)-lA*o n nH - /l lYl
Trang 22aC6 n ) 16 n ::;IIAf1Cllg n - 6 n ) = IIAfICllul + 6 nun 11- 6 n )
aC6 )
n -+oo 6n
d lIen
Nhu v~y voi cac cach chinh hoa b~ng loan tll' d?c bi~t la each Tikhonov thl t6c dQ hQi t\,l
t6i dad~1tdtic;icla 2/3 (cho A khong co h?ng hUllh?n) va voi kieu discrepancy ta d?t dtic;ic t6c dQ Y2.Bay gio ta xet de'n kieu chinh hoa b~ng khong gian.
3-4 Xa'p Xlhuu hall chi~u :
MQt cach ttf nhiende xa'p xi nghi~m co chufln nho nha't trong t~p nghi~m least squares
La di tIm nghi~m co chufln nho nha't trong t~p nghi~m least squares solution cua phtiong
(5 day Amla thu hyp clla A len khong gian con hUllh?n chi~u Vmclla X
Ta se gia SlYrhng cac kh6ng gian con hUllh?n chi~u Vmthoa :
Va gia sll'r~ng (2) co duy nha't nghi~m least squares solution tuc la KerA (1 VOl= {a}
Ta gia sa g E D(A+) va chli y r~ng Amco d?ng huu h?n Hen Range AmhUllh:;mchi~u
c:> Y = Range AmEB(Range Aml tt'rdo g E D(Ar/)
.
Ta quan tam de'n stf hQi W cua A./ g -> A+g khi m ->00
£)~t Rm:= A+ ,PnA d day Pm Ja phep chie'u trtfc giao clia kh6ng gian Y Jen A(Vm).
Chli Y rhng :
Rn? = A+PmAA+mA = A+PmPmPOlA = Rm
Tt'rdo Rillla mQtloan ill'chie'u (co the kh6ng trtfc giao).
K€t qua sau day chi ra r~ng A./g -+A+gttiong dtiong voi stf bi ch?n deu cua day (Rm)
Trang 48
Trang 233-4-1 Binh Iv:
Clu{:nz minh :
Hilbert Range(A +) = (KerA)l
A~rZmll+m-A+gIHIRmZm-RmA+gll+m -A+gll
~ \Rmil + I~Izm - A + gll -+ 0 khi m -+ ex)
Tu d6 SHYra : IIRml1= 1 (xem 0.8)
Trang 24D~t u:= L n-Ie n va g:=Au
Trang 25San day la m<)tcach xa'p xi duQc d€ xua't bdi Seidman
Gia sa {HI, uz, }c Rang(A) la hQ cac vectd d<)cl~p l~p tuye'n tinh va Span {UI, uz, } la tru m~t trong Rangt: (A) Ta dinh nghla toan ta I'm: y~ RI1lsao cho rmy:=((y,
T UI),"',(y, unJ)
D~t Vm= Span {A'" UI, A'"Uk",,} va dinh nghla Am: X~Rm bdi
Am : = I'I1lA; D?t XI1l:= AI1l+rlllg
G >0,
II
ESao cho IIA z - A g <-
2
L~i do gia thie't Span {Ui, Uz, , Un, }tru m~t trong Range (A) nen 3 M.
Va U E Span {Ui, ,um}, m~ M sao eho Illl-~1 < ~I~I
Do d6:
IIA* U - A + glls IIA * U - A * zll +IIA *z - A + gll sIIA * 1IIIu - zll + ~ < G
.
Ta c6 U E Span {Ui,"",Um}=> A"'u E Span{A'" ui, ,A'" um}= VI1lvoi m~ M
(5 day Qm la phep chie'u tn1c giao Clla X tren Vm.
Ne'u ta ky hit$uPia phep ehie'u tn1c giao cLiaY tren Range(A)
Khi d6 ta co AmA+ g = rmA A+g = rmPg=rmg
Tli Iud c Range (A) va bdi(4)tae6:
XI1l = A+I1lI'lllg = A+11l AI1l A+g = Q .1A + g
(ker Am)
Tuy nhien (KeI'Am)1-= {z EX: (z,x) = 0 v x thoa Amx= O}
= { Z EX: (z,x) = 0 v x thoa (Ax, Uj)=O;i = 1, ,m}(do dinh nghla Am)
= { Z EX: (Z,X)= 0 V x thoa (x, A"'xud=O;i = 1, ,m}'"
.
=Span {A Ui ; i=1,2 m }=VIII
(5)
(6)
Trang 26=> Q l =QIII
(ker Aill )
tue 1a XIII=QIII A+g
L?i do (5) ta SHYra chi<;1e XIII~ A+gkhi m ~ 00
Boi (6), (7) va (4) ta tha'y XIII;la veeto duy nha't thoa :
ChLi.yr~ng boi (8) ta eo:
(Axlll,uj) = (g,Uj) => (Axlll - g,Uj) = 0
=> (Axm - Plllg,Uj)= 0; i = 1,2, ,m
Pm 1a phep chie'u tntc giao tu Y 1en span {Ul, ,Um}
Ne'u (XIll)co day con v~nky hi~u 1a(xlII)hQiW ye'u
w
=> AxlII~ Az (do A compact xem 0.9)
L:;ti co PllIg~ Pg(do span {Ul,UZ,"'} trlt m~t trong RangeA)
l
Nen (9) => Az - Pg E RangeA n RangeA
Tuc 1ahlnh ehie'u cua g tren RangeA n~m trong RangeA
=> g E RangeA + (RangeAY =D(A +) (trai gia thie't)
V~y (xm) khong co day con hQi t~lye'u
Khi do ta co danh gia sai so':
lIu-Xmll =IIA *y -QmA +gl
::;II(I-Qm~ *IIIIYII ::;Ymllyll
(9)
.
Trong do : Ym =11(1-Qm)A*11
Cling gi6ng n1ni cae phliong phap trlioe day,bay ta ehuySn sang trliong h<;1pdii' ki~n
nhi~u gO thoa IIgO- gll ::;(j va cae vecto Uj da noi de'n trong dinh nghla cua rill 1a
cae veetcJ don vi khido
Ilr g- r g"ll ::;(j trong do11
11
1a chuc1n Euc1ide tren Rill
f)~t x; = A; rmgO Laco b6 de san:
3-4-4 na (1~:
Trang 52
Trang 27Xet tich vo huang ("')1II1atieh vo huang Euclide trong Rm
0 day a:= (al, "alll)T thaa d~ng thlie Mma= rmg,
Chli yr~ng Mlllia ma tr~n d6i xling khong SHYbien do
Tuong tit ta Gm tha'y:
3-5 Cblnb boa biJ'ixa'p XlRitz:
Ta gilt sa (Vol) 1a day tang cae khong gian con hUllh1;lnchien eua X ma hQpeua
Tren khong gian hii'u h1;lnchien VIII
Neu {VI,V2" ,VII(III)} 1a mQt co sa cua VIIIkhi do :
(1)
Trang 53