Luận án thạc sĩ toán học chuyên ngành Giải Tích -Chuyên đề : Lời giải chỉnh hóa của phương trình tích phân loại một
Trang 1Clllfdng 1 : D<;tiClfdng V~ Phudng Trlnh Tich Phan
CHUaNG I:
1-1 Cae phu'o'ng trlnh Heh phan Fredholm va Volterra:
1-1-1 Dinh nghIa:
(i) Phuong trlnh rich phan Volterra loc;tihai la phuong trinh co dc;lI1g:
<p(x)= rex)+ Af;k(x,y)<p(y)dy
Trang 00 <p(x) Ia gn ham; f(x), k(x,y) la cac ham cho iniac va AIa h~ng s6.
(ii) Phuong trlnh rich philn Fredholm 10i;lihai la phuong trlnh di;lng:
<p(x)= rex)+ Afn k(X,y)<p(y)dy
Trang 00
. f(x) Ia ham s6 cho truac xac dinh Vx E n
. k(x,y) cho truac xac oinh Vx,y E n va gQiIii nhan clla phuong trlnh
. <p(x)Ia gn ham tren n
. T~p n co th€ Ia khoang bi ch?n, h<;fpClla mQt s6 hUll hi;ln cac khoang bi ch?n
ma khong co di€m chung.T6ng quat hen n co th€ Iii mQtmien cua khong gian da chien ho?c h<;fphuu hi;lllclla cac mien nhu v~yma khong co di€m chung;n clingco the Ia mQtm~tbi ch?n.
. Ala mQttham s6
(ii) Phuong trlnh rich philo Volterra IOi;limQtIa phuong trlnh di;lng:
f;k(x,y)<p(y)dy = rex)
Trong do k(x,y) da bie't Ia nhan clla phuong trInh, f cho iniac va <p(x)Ia gn ham
(iii) Phuong trlnh Fredholm Ioi;limQtIa phuong trlnh di;lng:
fn k(x,y)<p(y)dy = rex)
. Trongdo k(x,y)xac d~nhV x, YEn; f(x)cho iniac; <pIa gn ham
. Trong chuting nay ta chi khao sM cae phuong trlnh Ioi;lihai
1-1-2 Baitoan ehlnh khong ehlnh:
Dinh nghIa: Cho A Iii anh X(;1tll' khong gian lOpo X de'n khong gian tapa Y; xet phuong trlnh Au=g trang do g E Y gQi Iii da ki~n; u Iii go Phuong trlnh Au=g gQi Iii "chinh" ne'u 3 dieu ki~n san du<;fcthoa man:
(a) Cho m6i g E Y dell t6n tC;1i U E X nghi~m dung Au:::g
(b) Nghi~m u Iii duy nha't
(c) Nghi~m u ph~l thuQc lien t~lCviio g
Ne'u phuong trlnh Au=g khong thoa mQt trong ba dieu ki~n ireD ta noi no Iii
phLidng trlnh "khong chinh".
Nhan xet:
. Phuong trlnh Au=g chinh hay khong chinhcon phl,lthuQcVaG.khonggian nghi~m, khong gian du ki~n
. Ne'u phuong trlnh Au=g chinh thl A Iii song anh vii k' lien t~lC
. Ne'li gia thie't X,Y la cac khong gian Banach vai chugn /1./1 , Ala loan tU'tuye'n tlnh tll' X c1e'nY vii phuong trlnh Au=g khong thoa (c)
Trang 2Truong h<jpA don anh => :3Al :RangeA + X
A-I kh6ng lien t\lC <d :3 (gn\l c RangeA saG cho gn ~ 0
nhung Al (gn) ~O (n ~oo) Tuc la :3(un)nc X saG cho Aun ~ 0 nhung Un~O
(n ~oo )
Truong h<jpA kh6ng don anh
Xet A: XI KerA + RangeA ; A don anh
[u] I~ Au
Trang do XI KerA la kh6ng glaDthuong du<jctrang bi chu§'n
II[u JilT =inf{ IlwII;w E [u J}= inf lilt+ ill
t E KerA Nghi~m u kh6ng plW thuQc lien tuc vaG g <dA -I kh6ng lien t\lC- - I
<d:3(gn)nc Range A saG cho gn -+0 ma A- gn ~ (n -+00)
<d:3(un)nc XI KerA saGcho A [un]= Aun= gn -+ 0 va
A A un= [un]~ 0
<d:3 (Un)k(tav§'n ky hi~u la (un)n) saG cho IluJ ~ Co > 0 vn
Tom l~i ne'u X,Y la cac kh6ng glaD Banach; A tuye'n tinh
Au=g kh6ng thoa (c) <d :3(un)neX: Aun -+ 0 nhung un~o
Bay gio ta xet cac phuong trlnh Volterra va Fredholm lo~i hai
(xemO.l)
1-2 Phuong trlnh Volterra lo~dhai:
1-2-1 Giib quyet:
Nhu ta c1abie't phll'ongtrlnh Volterra lo~i hai co d~ng :
(p(x)=[(x) + AJ<~k(x,y)(p(y)dy (1)
trang do ta giii thitt them
. (p(x)la §'nham . f(x)la ham cho trude,xae djnh bi eMn va kha tichI [a,b]
. k(x,y) la §'nham 2 bien
k(x,y) kha tich ireD [a,b] x [a,b]
k(x,y) bi eMn ireD [a,b] x [a,b]
. Ala h~ng s6 Bay gio ta se tlm each gi?liquye't bai to<lnireD Xet h1nhvu6ng a :::;s :::;x; a :::;y :::;x x beftk5' va e6 dinh; x E [a,b] . Ta dinh nghla ham
{
k(x, y) key, s) (p(s) Mx(s,y)=
0
khi a:::;y:::;x;a:::;s:::;y khia:::;y:::;x;y:::;s:::;x
va giii SL((p(s)la khii llch ireD [a,b]
khi do (xem [2]) ta co :
Trang 3[
x
} X[
x
]
X
[
}
JJMx(s,y)ds y = J JMx(s,y)dy ds= J JMx(s,y)dy+ JMx(s,y)dy s
[Sk(X,y)k(y'S)<P(S)dS}y = f
[fk(X,y)k(y'S)dY ]
<P(S)dS
(2)
Chli Y rhng neu (1) co nghi~m <p(x) khil tichkhi do :
<p(x) =rex) + A !k(X, Y{ fey) + A.!k(Y,S1P(S)dS}Y
[
y
}
<p(x)=f(x)+"'Jk(x,y)f(y)dy+", J Jk(x,y)k(y,s)<p(s)ds y
[
X
}
= f(x)+ "'Jk(x,y)f(y)dy + ",2I Jk(x,y)k(y,s)dy (s)ds
Y
"
=rex) + "';k(x,y)f(y)dY + '" ;l!k(X,S)k(S,y)dS (y)dy
= rex) + '"Jk(x, y)f(y)dy + ",2Jk1(x, y)<P(y)dy
(3) x
Jk(x, s )k(s, y)ds
Trongdo kl(x,y) = y g<;>i1a nhan 1~p (iterated kernel) cuak(x,y)
. Xct ham s() Pix,s) xac dinh tren hlnh vuong: y5, x 5,b; y 5,s 5, b y c() dlnh tren [a,b]
{ k(x, s).k(s, y)
Py(x,s)=
0
Do giil thie't v~ nhan k(x,y) d~n de'n sl1t6n t?i clla
l
b
}
khi y5, x 5,b; y 5,s 5,x khi y 5,x 5,b; x < s 5,b
va
JP (x,s)ds= JP(x,s)ds + IP (x,s)ds
x
= JP (x,s)ds
y "
y x
= Jk(x,s)k(s,y)ds = kl (x,y) y
Trang 4=> !l!py (X,S)d+ ~ J~kl (x,y)dx
y L~li tie'p t\lC thay the' cp(y)= f(y)+ Afk(y,s)cp(s)ds VaG(3)
va dung (4) ta thu du'c;Jc a
(4)
(p(x)=rex) + Afk(x, y)f(y)dy + A2 fk 1(x, y)f(y)dy + A3fk2 (x,y)(p(y)dy
x voi k2(x,y)= fk(x,s)k1(s,y)ds do
y L~p l~li c{lch thay the' CJlren san 11Uln ta dlic;Jc
(p(x)=f(x)+AHk(x,y)+Ak 1(x,y)+ +An-lk n- 1(x,y)]f(y)dY+An+1 fk n(x,y)cp(y)dy (5)
x trongdo k (x,y)= fk(x,s)k11 n- I(s,y)ds voiko=k (6)
y GQi M 1a ch~n tren cua Ik(x,y) I tren tam giac a ~ y ~ x; a ~ x ~ b, khi do:
Ikl (X,y)! ~ flk(x,s)llkCs,y)lds <M2Ix-yl
y
Ik2 (x, y)1~ flk(x, s)llki (s, y)lds = fikes, x)1fk(s, t)k(l,y)dtlds
=> k2(x,y) < fM.M2Is-ylds = M Ix-yl
M11 + 1
1 1
11
kn (x,y) <. n!x-y
GQi m 13 ch~n lren Clla I (p(x) I ;X E [a,b] khi do:
n+1
(
A fkn (x,y)(p(y)dy < x- a m - MIAllx- al)n + 1
De y rAng (MIAllx- al)n+ 1 1ah9 s6 thli (n+1) cua chu6i hQit\l tUY9td6i va (h~ucho
(n + I)!
mQi x E [a,b]:
eMIA(x- a)1 = I ~MA(X - a)I)11
n =0 n!
Trang 5do d6 x
rim An+lfk (x,y)(p(y)dy=O
Nhu V?y ne'u (1) c6 nghi~m cp(x)kh.1 Hch till d6 la nghi~m duy nha't va nghi~m d6 duQc cho bCiicong thuc :
x cp(x)=rex) + AfK(x, y,A)f(y)dy
a
00
Trong d6 K(X,y,A) = k(x,y)+ LAnk n(x,y)
n = 1
Bay giG ta chI dn chung minh r~ng cp(x)da xac dinh Citren la nghi~m clla (1)
y Thay cp(y)=fey) + AfK(x,y, A)f(s)ds vao ve' ph.1iClla(1) ta duQc
a
rex) + AJk(x, Y)
[
f(Y) + A}K(X, y, A)f(S)dS
]
dY
[
y
]
=f(X)+Afk(x,y)f(y)dY+A2 fk(x,y) fK(y,s,A)f(s)ds dy
[
X
]
.
=rex) + Alk(X, y)f(y)dy + A l !k(X, y)K(y,s, A)dy f(s)ds
l
x
1
=rex) + Afk(x, y)f(y)dy + A2f fk(x,s)K(s, y, A)ds f(y)dy
= rex) + AIIk(x, y) + AJ k(x,s)K(s, y, A)dsl(y)dY
X l
j
=f(X)+Af
.
k(X,Y)+Afk(x,s)(k(s,y)+ L.Ankn(s,y)c1s f(y)dy
x
= rex) + Af[k(X,y) + Akl(x,y) + A2k2(x,y)+a + Ankn (x, y) + ]f(Y)dY( Do (6) )
x
=rex) + AfK(x, y, A)f(y)dy = (p(x)
a Nhu ta da bie't Citren phliong trlnh Au=g chInh hay ldlong chInh plWthuOcra't nhi€u vao khong gian nghi~m, khong gian dITki~n
San day ta se xet tinh chlnh clla phuong trlnh Volterra lo~i hai trong trLiGnghQpkhong gian nghi~m va kh6ng gian dli ki~n la L2([a,b]
Chliyr~ng \j f E L2([a,b]) ; ap d~lngba't ddng thuc Holder (xem 0.15) voi p=2; q=2 va voi
g=1 va do ~l[a,b]<oo(~LladO do Lebesgue) nen /Ifill S Ilf/llllgl12 =/If/l2~b- a <00
Trang 6nen f E L([a,bJ)
Tuong l1fne'u k E L\[a,b]x [a,b]) => k E L([a,b]x [a,bJ)
VI vh ke't qua v~ nghi~m (p(x) d tren v~n con dung trong truong hQp
fE L\[a,bJ)
do ke't qua d tren ta tlm duQC dllY nh:1'tnghi~m cp(x)
00
VIk.(x,y) EO:r}([a,b]x [a,b]); L APkn(x,y) la hQi tuy~t d6i va d~u; L2([a,b]) d§y
n = 1
u nen: JK(X,y,A)f(y)dy E L2[a,b] do do cpEI}[a,b]
a
Bay gio ta se chang minh s1fph~l thllQClien t~lCclLa nghi~m vao dli li~u f ta th:1'y
x (p(x)=rex) + AJK(x,y, A)f(y)dy
a
va san nay trong chuang 2 ta se chang minh:
X
fH AJK(x,y,A)f(y)dy va lien tuctrenL2[a,b]
a Ben ta co ngay (Pph~lthuQelien t~levan di1li~u f
Phuong trlnh Volterra 10~1ihai (p(x)=rex) + Afk(x,y, A)f(y)dy
a khi xet f E L2([a,bJ)va (PEr}([a,b]), (Pla gn
x
co nghi~m duy nhftt (p(x)=rex) + AJK(x, y, A)f(y)dy
a
K(X,y,A) = k(x,y)+ LAnk n(x,y)
n = 1
13.chu6i hQi t~ltuy~t d6i va nghi~m (P la lien t~lCtheo dli li~u f Nhu V?y phuong trinh.
Volterra la phuong trlnh chinh trong cae di~u ki~n ds cho
1-3 Phu'(fng trlnh Fredholm loai hai :
Nhu ds bie't phuejngtrlnh Fredholm lo~i hai co d~1l1g:
(p(x) = rex)+ Afn k(x, y )(p(y)dy
trong e1c)ta giii thie't them
lex) la ham so'kha richtren n
k(x,y) cho truoc xae dinhtren n
k(x,y) la kha richtren n
k(x,y) la bi eh~ntren n
. Ala mQttham so'
Bay giOta se tim each giiliquye'tphuongtdnh nay Clingnhud6i voi phuongtrlnhVolterra ntu co nghi~m(p(x)kha richva thoa (7)khi do :
(7)
i:JH KH Tv N!-\I EN
THlf \lIEN
'
00353
(p(y) = f(y)+Afnk(y,s)cp(s)ds
Trang 7Thay vaa (7) ta duQc :
<p(x)= rex) + A fk(x,y)[f(y) +Afo key,s)<p(s)ds]dy (8)
0
Da gia thie't v~ nhan k(x,y) ta co k(x,y).k(y,s).<p(s)Ia bi ch~n va kha Hchrhea s voi x,y c6
dinh trong 0 va kha rich rhea y voi x,s c6 dinh trong 0 khi do:
f uo k(x,y)k(y,s)<p(s)ds]dy = f [fk(x,y)k(y,s)dy]<p(s)ds
Nhuvh:
(8) <=><p(x)= rex)+ A fk(x,y)f(y)dy + A2 f [k(x,y) fk(y,s)<p(s)ds]dy
= f(x) + A f k(x, y)f(y)dy + A2 f [ f k(x, y)k(y ,s)dy ]<p(s)ds
= rex)+ A fk(x,y)f(y)dy + A2 f [fk(x,s)k(s,y)ds]<p(y)dy
D~t k2 (x,y)= fok(x,s)k(s,y)ds ta duQC:
<p(x)= rex) + A fk(x,y)f(y)dy + A2 f k2 (x,y)<p(y)dy
TiYk(x,s)k(s,y) kha rich rhea x (s,y c6 dinh) va kha rich rhea y (x, s c6 dinh) Den k2(x,y)Ia kha rich rhea x (y c6 djnh) va kha Hch thea y (x c6 dinh) B~ng ca~h I~p 1:;J.ieach thay the' nhu lIen ta co th0 thie't I?p duQcham <p(x)thaa phuong trlnh (7) cling thoa phuong trlnh :
<p(x)= rex)+ A f k(x,y)f(y)dy + A2 f k2 (x,y)f(y)dy +A3 f k3 (x,y)<p(y)dy T~'ang
k3(x,y)= Jok2(x,s)k(s,y )ds
San n- Ifin thay the' nhu tIeD ta duQC :
<p(x)=f(X)+Af k(x,y)f(y)dY+A2 f k2 (x,y)f(y)dy+ +An f k (x,y)f(y)dy
+ An+ 1 f k l(x,y)<p(y)dy (9)
0 n+
trong do kn+J(x,y)=Jokn(x,s)k(s,y)ds voi { nk1(x,y) = k(x,y)= 1,2,
aday b~ng phuong pilar qui n?p ta co m6i kn(x,y)Ia kh<irich thea y ( x c6 dinh ).
GQi M Ia ch~n lIen clta Ik(x,y) ItIeD 0 tuc Ik(x,y) Is:M Vx,y E 0
TiYkn+l(X,y)= Jokn(x,s) k(s,y)ds
tac6:lkll+](x,y) IS:MII+l.yntrongdoYlad<)daclla 0
Gia su m Ia gia trj !dn hon ch~n tren Clla If(x) Iva l<p(x)Itreri 0
khi do IAIiJokll(x,y)f(y)dyIs: IAMYIII.m
tiYdo tren co sa dang thuc (9) vdi gia thie't r~ng n~CX).Ta ke't lu?n r~ng ne'u nghi~m <p(x)
t6n t?i thl bf{td~ng thu'c IAMY1<1phai duQCthaa man Khi do nghi~m kha rich <p(x)la duy
nha't va b~ng m<)tchu6i h<)it9 tuy~t d6i, dell :
(10)
Trang 8<p(x) =rex) + L: Anfk (x, y)f(y)dyn aday k1=k
Ta co th€' viet nghi~m nay dudi d~ng: <p(x)=f(x)+ AfK(x,y,A)f(y)dy
0
Trang do K(x,y) la t6ng clla mQt chudi hQi t~ltuy<%td6i, dell vdi A thaa dieu ki<%n
IAMY 1<1 (j tren :
00
K(x,y,A)= L An-lk n(x,y)
n=1
Bay giG ta chung minh <p(x)=rex) + AfK(x,y, A)r(y)dy la nghi~m cua phuong trlnh (7)
kn+l(X,y)= Sokn(x,s) k(s,y)ds
= f f fk(x,sl)k(s l,s2)k(s2,s3) k(s - 1's )k(s ,y)ds l ds
~
n l~n
=S{~k(x,s)k(s,y) ds
t6ng quat hcln kn+p(x,y)= Sokn(x,s)kp(s,y)ds
Tli do va tli (11) ta co :
K(x,y,A)= ~ An-lkn(x,y) =k(x,y)+Ak2(x,y)+A2k3(x,y)+
n-l
=k(x,Y)+Af k(x,s)k(s,y)ds+A f k(x,s)k2(s,y)ds+
=k(x,Y)+Af k(x,s)[~(s,Y)+Ak2(S,y)+ ~s
0
K(x,y, A)= k(x,y) + Afk(x,s)K(s,y, A)ds (12)
0
= k(x,y) + AfK(x,s, A)k(s,y)ds
0
(chti y k1=k)
Bay giG ta se chi 1'ane'u K(x,y,A)thoa (12) till <p(x)nhudil noiatren se thaa (7) Thay the'
<p(x)a tren vaa ve' phai clia (7) ta duQc ve' phai clia (7) thanh
rex) + 1 b k(x Y{fey) + 1 bK(Y,s, 1 )f(S)dS}Y
= rex) + Afk(x,y)f(y)dy + 1.,2f k(x,y)[ fK(y,s,A)f(s)ds]dy
= rex)+ A fk(x,y)f(y)dy + 1.,2f [f(k(x,y)K(y,s,A)dy]f(s)ds
Trang 9=f(x)+ A Jk(x,y) + A2 J [Jk(x,s)K(s,y,A)ds]f(y)dy
~ f(x) +Ieb[k(x,y) +Ie bk(x,S)k(S,y, Ie)ds }(Y)dY
=f(X)+AJK(x,y,A)f(y)dy (do(12))
n
=<p(x)trong di~ll ki~n A dti nho sao cho IAMV 1<1 Cling nhu d6i vcJi phuong trlnh Volterra cong thuc nghi~m :
(p(x)=f(x)+ AJK(X,y,A)f(y)dy
n
00
K(X,y,A)= L An-lk n(x,y) (k1=k)
n = 1
la chu6i hQit~ltuy~t d6i va d~u.
cling v~y VI~l(n) la hUllh:'-1I1nett f E L\n) thif E L(n)
do v~y (PE L\n)
. Theo tren (Pla nghi~m duy nha't
. Va nghi~m<pph~lthuQclien t~lCvao du ki~nf
trong d6
Phuong trlnh Fredholm lo~i hai la phuong trinh chinh trong truong h<;fpkhong gian nghi~m
la L\n) va khong gian du li~u la L2(n) VIkhi d6 t6n t~i duy nha't nghi~m <pEL\n) ph~l thuQc lien t~lc theo diI li~u.f
Nhu V?y trong C<:1c di~u ki~n thich h<;fpcac phuong trlnh tich phan lo~i hai la chinh
Trong cac chuang san ta se chi xet v~ phuong trlnh tich phan lo~i mOt