Luận văn thạc sĩ toán học -chuyên ngành Toán Giải Tích-Chuyên đề :Đánh giá lớp phép biến hình Á bảo giác lên vành khăn bị cắt theo các cung tròn đối xứng quay
Trang 1Lu(m van Th(lc sj Toan h(Jc - Tntclng Thu(1n 28
Chuang 5
cA C DANH GIA LOP HAM G
Trang chu'ang nay, chung toi danh gia cae d£;lilu'cjngd~c tru'ng cha mi~n chuffn cling nhu' moduli cua cae lOp ham G Vi~c danh gia ban kfnh
Q (g), 9 E G, dong m9t vai tro quail trQng trang vi~c danh gia cae d£;li
lu'cjngkhac, VI the' chung Wi b~t dftu voi danh gia nay
Dinh Iy 5.1 VcJicae giG thief va ky hi£lu iJ ehLtdng 2, V9 E G, ta e6
K
(1+ S~~) r' < Q(g) < /i-*,
trong d6 dang thue trai xdy ra khi B = Bo va g(w) = alwIK-1w,w E
1 1
B, Ibl= 1.
(5.1)
Chung minh Ap d\lng b6 d~ 4.1 cha PBHKABG ngu'cjcf =g-l, 9 E G,
ta co
2
> 81 (Q~g))K+ps (doR(g) < 1)
Tli day, suy fa c~n du'oi cua Q(g)
(5.2)
Trang 2Khi B = Bo va g(w) = alwIK-1w, la! = 1 thl d~ng thuc Kay fa.
7r12 > 7rQ2 (g) {l K .
Q(g) < {l-K.
Tli day, nhd [14, c6ng thuc 2.5], ta co d~ng thuc Kay fa khi B = Bo
Ne'u {l = 1 thl daub gia c~n tfen Ia hi~n nhien va d~ng thuc kh6ng
(5.1) dzt(fc v ief dztcJi d(lng
( P8)
-if
suy ra
Deing thac (5.3) ho(ic (5.4) xdy ra {:} B = Bo va g(w) = alwIK-1w, w E
B, lal = 1.
5.2 Danh gia c~n dtioi ban kinh R(g)
K
M~t khac, ta con co dinh 19 sail:
Dinh Iy 5.2 V6i caegid thiefva ky hi?u iJchztdng 2, \/9 E G va 8 > 0,
ta co cae danh gia:
R(g) >
1f
R(g) >
(82 - p8 81{l KI2 ) If .
(5.5)
(5.6)
Trang 3Cluing minh Thea (5.2), voi 8 > a
(
1
)
1<
(
1
)
1< -*
Suy fa
<-81 + p8
Vi 81 + p8 = 82 - 8(B), ta co (5.5).
M~it khac, tli (5.7) va (5.1), ta co
2
(
1
)
1<
82 > 81 (1'*)K + p8 R(g) Tli day suy fa (5.6).
Blob Iy 5.3 VJi cae gia thitt va ky hi£1u(J chZlcJng2, 'l/g E G, ta co
1
-x Q(g) < J-L
)
,
RK(p, Iwl,q) < Ig(w)1< RK (p, 1~I,q) - RK (p, 1;I,q
-K
(qK <)RK(p,d,q) < R(g) < RK (p,~,q) - RK (p,~,q)
RK(p,d,q)RK (p,~,q) < Q(g).
(5.7)
D
(5.8)
(5.9)
(5.10)
Cluing minh Ap d\lng bfft d~ng thuc phai cua (4.20) cha PBHKABG
Iwl < t voi t = T [v, Ig(w) I*",q]
Do do, theo dinh nghla cua hai ham sf{ ph\! T(p, r, 8) va R(p, t, 8),
E G va Vw E B, ta co
1
Ig(w)IK = R(p, t, q)
Trang 4va rhea tinh don di~u (3.11) cua ham R(p, t, s), ta co
R(p, t, q) > R(p, Iwl, q).
Tli do suy ra c~n duoi cua Ig(w) I trong (5.8).
M~t khac, ta nh~n duQc tli ba't d~ng thlic trai cua (4.20), \:/g E G va
\:/w E B,
Tli do tu'dng t1/ nhu' tren, \:/gE G va \:/w E B, ta co
-k
(
.
)
Ke't hcjp voi (5.1), suy ra cac c~n tren cua Ig(w) i trong (5.8).
Tu'ong t1/, nho ba't d~ng thlic (4.22), ta co th~ chi ra cac ba't d~ng thlic (5.9)
f)anh gia c~n du'oi (5.10) d6i voi Q(g) duQc suy ra tr1/c tie'p t11(5.9)
D
H~ qua 5.2 Tit (3.24), ta nh(m du(lc cac danh gia ddn gilln.
v fii cac gill thief va ky hi~u iJ chuang 2, \:/gE G, ta co
4-*lwIK < Ig(w)1 < 4{fQ(g) C~I) K < 4*p-k C~I) K,
( )
( )
K
4_2f,' (q:r < Q(g).
(5.11) (5.12)
(5.13) (5.14)
Tit (3.12) va (3.16), ta thfly rling cac h~ slf chi phl:l thuQc vaa K va p trang (5.11)-(5.14) la tot nh{{t.
Chzl y 1 Truong hcjp cac thanh ph~n bien o-jthoai hoa thanh p di~m
roi r(;lc,hi~n nhien danh gia (5.11) vftn con dung ne'u ta thay cac da'u <
bdi < Nhu' v~y, bAng cach thac tri~n lien t\lC ham z = 9 (w) t(;lip di~m
Trang 5bien dfi nell, ta thffy (5.11) v~n con dung cho PBHKABG d6i xung quay
p lfin z =g( w) mi~n nhi lien B nQi tie'p tfong hlnh vanh khan q < Iwl < 1
leD hlnh vanh khan Q < Izi < 1
Chu j 2 (5.14) co th~ s~c hon (5.4) khi q -+ 0, C -+ 0 vdi di~u ki~n
d = canst va -" q = canst.
c
H~ qua 5.3 TruiJng hC;p C1, C2 va cac CJjlan ll1c;tla cac dl1(Jng tran
Iwl = Qt, Iwl = 1 va cac nhat cdt tren duiJngtran Iwl = R', ta co cac
, 1
,1
RK (p,R', Q') < R < K (Q~, ' )
Trang (5.15) dling thac traixay ra {::}B = Bo, g(w) = alwIK-1w, w E
1 1
B, Ibl= 1
(5.16)
Chang minh Th~t v~y, khi do q = M1 = Q', C = d = R', J.t = J" S(B) = 7r(1 - Q'2), 81 = 7rQ'2, 8 = O.
Do do, ap d1;lngdinh 19 5.1, ta nh~n du'Qc(5.15), cling vdi di~u ki~n xay fa ding thuc
H~ qua 5.4 Ktt hC;p(5.2) vai (5.9), ta tim l(Ii c(ln dual cila Q(g) co thi sdc h(Jn (5.1) nhu sau
(
1
)
1<
(
1
)
1<
82 > 81 Q(g) + p8 R(g)
(
1
)
1<
( K ( q ) -k)-k
> 81 Q(g) + p8 R p,~, q J.t
Suy ra
Q(g) >
(
82 - p8.R2 (p,~, q) J.t~
) -~
Trang 6H~ qua 5.5 Tit (5.9) va (5.10), ta nh(m dLt(le,nhiJ (3.12) va (3.17), cae
danh gia sau day ddi vai Ide d{j h{ji I¥ ctla R(g), ~i~i va Q(g) lrong eae
tntiJng h(lp gifJi h(ln
K1f2 1- R(g) < 1- RK(p,d,O) ~ K[l- R(p,d,O)] ~ 1 8
2p n p(l-d)
khi d -+ 1, tlle la R(g) -+ 1 khi d -+ 1.
1 - Q(9) R(g) < 1- RK (P, c'CJ 0)
~ !{
[1- R (p, ~,O)] ~ K1f28
C 2p In p(l-~)
khi ~ -; I, tlic fa ~i:i -; 1 khi ~ -; 1.
1-Q(g) < 1-RK(p,d,0)RK(p,~,0)
2p In p(l-d) 2p In p(l-~) khi d -+ 1 va ~-+ 1
e
FJanh giG (5.19) n6i r2ing Q(g) ddn tdi 1 ntu d -+ 1va :l -+c 1.
5.4 Danh gia g6c md j3(g)
(5.17)
(5.18)
(5.19)
R5 rang ta luan co 0 < {3(g)< 21f, 9 E G, tuy nhien ta mu6n co danh gia
p
t6t hdn trong nhfi'ng tru'ong hejp nao do Mu6n v~y ta dung phu'dng phap
dQ d~li-di~n tich hay con gQi Ia dQ dai Qtc tri do Ahlfors va Beurling [1]
d~ xu'ong nam 1950, giup giiH quye't nhi~u bai toan t6i u'u trong PBHBG
Md rQng phu'dng phap do cho PBHKABG, ta co b6 d~ sau:
B6 d~ 5.1 Trong m(lt phdng z eho hlnh ehil nh~t
D = {z = x + iyl 0 < x < a, 0 < y < b}.
Trang 7Gia sa ham so' W = j(z) th1!c hi~n mQt PBHKABG hlnh chTl nh(lt D ZenmQt ta giac Gong H cila m(it phdng W saD cho cac dlnh 0, a, a + ib
va ib cila D ztm Zufft tu(jng ang V(ji cac dlnh WI, W2, W3 va W4 cila H GQi r ZahQ cac cung r trong H noi cc;mhWIW2wJi c(;mhW3W4cila H.
GiGsa co ham dQdo p = p(w) > 0 lien tf:lC trong H saD cho
0 < Ip(r) = lp,dW, < 00, V"{ E r
va
0 < SetH)= JJHP2dudv < 00, W = u +iv.
lJ(it
l p = inf l p(r )
fEr
Khi do, ta co
1 a 2
Sp(H) > K blpo Ddng thac (j (5.20) co thl xay ra.
(5.20)
W4
D ,Dx
WI
W3
Hinh 5.1: PBHKABG hlnh chu nh?t D Jen tu giac cong H.
Chang minh *Tru'dng h<jp K = 1
D~t
5x=Dn{zl~z=x}varx=j(5x), O<x<a.
Thea giii thie't, ta co
a
Sp(H) = JJD p21f'(zWdxdy = J dx 1. p21f'(z)12Idyl.
0
Trang 8Theo ba't d~ng thuc Schwarz I, ta nh~n du'QC\Ix E (0, a)
L pV(zWldyll, Idyl> (L pl!'(z)lIdyl)2,
va do foxIdyl = b > 0 Denco
Do do, d€ y1x E f, ta co
SetH) > i J (l plf'(z)lIdYI) dx= i J (1 pldwl) dx
a 12
0
*Tru'ong hQp K > 1
Xet T/ = h(w) la PBHBG tu giac H leD hlnh chii'nh~t
D' = {'TJ= S + itI 0 < s < a', 0 < t < b'}
sao cho cac dlnh WI, W2, W3 va W4 cua H l~n hiQt tu'ong umg vdi cac dlnh 0, a', a' + ib' va ib' cua D'.
Ap dvng chung minh tren cho anh x~ ngu'Qch-I, ta co
a' Sp(H) > bll~.
M~t khac, anh x~ h0 f la PBHKABG hlnh chii'nh~t D leD hlnh chii' nh~t D' Den co
a' 1 a
-> b' - K b.
IBilt dAng thuc co d~ng
!<g(X))'dx !<h(X))'dx;' Ug(x)h(x)dx ) ,
trong do giii thie't g(x), h(x) lien t\lc teen do~n [Xl, X2]va dAng thuc xiiy fa khi va chi khi g(x) = Ch(x),
X E [Xl, X2], C = canst.
Trang 9Tli do co (5.20).
f)~ng thuc (j (5,20) co th€ xay fa, ch~ng h~n khi H tIling voi D',
a'
) 2 'b'
P W = va b = b" ~t v~y, 1 0 K b P = K b = a =
B6 d~ 5.2 Trang m(it phang z eho miin
E = {zl rl < Izi < r2, 'PI < arg z < 'P2}.
Gia sit ham sa W = j(z) thl;tehi<fnmQt PBHKABG mi€n E Zen ~Qt
ta giac Gong H cila m(it phang w sao cho cae dlnh Zl = rl ei'P2, Z2 = ei'Pl, Z3 = r2ei<pl va Z4 = r2ei'P2cila E tan Zuqt tuang ring vdi cae dlnh
WI, 'W2, W3va W4cila H GQi r fa hQ cae cung "( trong H m5'i C(mh WIW2
vdi qmh W3W4cila H.
Vai cae ky hi<fup, lp("(), "( E f, lp, Sp(H) nhu trong b6 d€ 5.1, ta co
Sp(H) > ~ 'P2 -r:ll~,In- (5.21)
rI
Dang thric (j (5,21) co thi xay ra.
Z4
!r) A'f) 1/'?2 Z 3
01"\ 1'9, Z2
WI
W2
i In r2
rl ~-!.pi + i In r2
rl
~6x
0 -x
~ -\PI
Hinh 5,2: PBHKABG mi~n E Jen tti' giac cong H.
Trang 10Chang m inh Qua phep bie"n d6i
z = x + iff = rp2+ i In~ = (rp2 - rp)+ i In ~, z = reirp,
mĩn E se bie"n thanh hlnh chITnh~t
D = {z= x+ iYI 0 < x< 'P2 - 'p" 0 < y < In ~: } ,
d' , d?
Iftn htCjt túong ling vdi Zl, Z2, Z3 va Z4, va cac cling Arp,6x, 1rptúong ling
vdi nhau nhú tfong hlnh 5.2.
Dinh Iy 5.4 V cJieae giG thilt va ky hi<fu iJ ehu(Jng 2, V9 E G, wEB va
0 < q < M1 < C < d < m2 < M2 = 1, ta co eae bat dang thue:
21r- p{3I 2 m2 + p{3 I 2~ + p{3 I 2 m2 < Ks (B)
trong do
(5.22)
(5.23)
fi dudv .
Spa (B) = 2 2' W=ỨlV.
BU +V
Dang thac (j (5.22) co thl xay rạ
Chang minh f)~t
Arp= A n {zI arg z = rp}
va vdi m6i j (j = 0, ,p - 1), d~t
Qlj = {z
Q2j = {z
Q3j = {z
} ,
} ,
R < Izi < 1, ex+ (2j - 1)7r < argz < -a + (2j + 1)7r
} .
Trang 11Hinh 5.3: PBHKABG mi~n chuffn A len mi~n B ling vdi (p= 2)
bie'n thanh H1j co mQt c~nh tren C1 va mQt c~nh tren c2, Q2j bie'n thanh H2j co mQt qmh n~m tren C1 va mQt c~nh n~m tren O"j,Q3j bie'n thanh H3j co ffiQtqlllh nam tren (J"jva mQt c~nh nam tren c2.
n6i C1 vdi C2, n6i C1 voi O"j,n6i O"jvoi C2 va gia sa co p = p(w) > 0
lien t\1Ctrong B sao cho
0 < lp(1k) = 1 pldwl < 00, 'V1k E fk (k = 1,2,3)
"fk
va
Hkj
£)~t
lkp = inf Ip(1k) (k = 1,2,3).
"fkEfk
D~ dang tha"y rang
'\pEfi -£1+(2j+ 1)~::;<p::;a+(2j+l)~
Tit do, ap dvng b6 d.; 5.2 cho mi.;n Q'j, yiJi p( w) = I~I' wEB, co
1 20: 2
!{ -yllp < Sp(H1j).
In-Q vdi
m2
1
1
fvh
Trang 12tuc Hi
2'if - p{3 In2 m2 < pK Sp(HI),
In-Q
(5.24)
VI 2po;= 2'if - p{3.
1
A.pEfz (X+(2j-l)~:::;'P:::;-(X+(2j+l)~
(
'if
)
2 -0;
1 P Z2 < Sp(H2j).
-Q
vdi
c
.
J 1
C
l2p = Inf lp(12)= _
I I
idwi = In M '
Ml
tile IiI
p{3
In2~ < pKSp(H2j).
M1-
In-Q
(5.25)
f3 ~ U f(A'P) vdi r3 = U 1'1"
A<pEf3 (X+(2j-l)~:::;'P:::;-(X+(2j+l)~
(
'if
)
2 -0;
1 P Z2 < Sp(H3j).
-R
vdi
mz
l
d
Trang 13tuc Ia
~InIn- d < pKSp(H3j).
R
pK(Sp(H1j) + Sp(H2j) + Sp(H3j)) = KSpo(B)
(5.26)
ta nh~n duqc (5.22)
Danh gia (5.23) duqc Suy fa tu (5.22) va h~ qua 5.2
Ne'u B = Bo, tuc ml = M1 = q, C = d = r, m2 = M2 = 1 va ne'u
thl
K
t ". (5 22) - 21r - PP1 2 1
+ PP 1 2 r + PP 1 2 1
- 21r - PP1 2~ PP 1 2 RK PP 1 2~
- In -1 n QK + In -R n QK + In -1 n RK
= I{2(21r - pp) In Q + I{2p{3In Q + K2p{3ln R
= 21rK2 In Q = 21rK In QK = 21r!{In q'
K ?
5
J dudv
ve phal ( 22) = K U +v2 2
q<lwl<l
- K J J ~d:2de = K J de J ~~= 27rKln~.
Chl1j 3 Cac bftt dAng thuc (5.22) va (5.23) v~n con dung khi m2 < M1
ho~c C< M1 ho~c m2 < d ne'u ta Iftn Iuqt d~t In :~ = 0 ho~cIn ;1 = 0
di~n Hch cae t~p con cua B khong thoa gia thie't dinh 195.4
Trang 14H~ qua 5.6 Vlii cae gid thief va ky hi~u iJ chu(Jflg 2, V9 E G, wEB va
27r
thac hiln nhien 0 < {3(g) < -, ta co danh gia cho {3(g), Vg E G:
p
(
2
)] }
K 2 I 1I 415 c
Chu y 4 Khim2 = 1, M1 = q, ta xet
27r
[
J(2In.! In (4~s )
]
27r
[
K2InlIn (4js
)]
- 27r
[
1 - K21n (4~q'J)
]
(
2
)
K2 In 411 s
D~t C = In-1 qd , trong tru'onghQpd = canst, cho q -+ 0, C -+0
q
saG cho ~ = canst, thl C -+ O. V~y 27r> {3(g)> 27r(1 - C), tile c~n
du'dicua {3(g)trong h~ qua 5.6 Ia ffiQtdaub gia s~c, it ra cho tru'onghQp
da neUe