luận văn này, khảo sát bài toán moment và tìm cách chỉnh hóa một số bài toán moment cụ thể.
Trang 1Chuang II: MQt s6 b~liloan quy v~ b~liloan moment
CmJONG II: MOT SO BA.I TOAN QUY VE BA.I TOAN MOMENT
2.1 Bai toaD bie'n d6i Laplace ngu'o'c :
Xet bai loan: TIm ham u khi bie't bie'n d6i Laplace cua no t~i cac di~m nguyen :
B~t t = e-x.Khi do x=-lilt
r u(x).e-kxdx = ru(x).e-x e-kx+xdx
= ru(x).e-x e-(k-,)xdx
= !w(t).tkdt Voi wet)=t lie-lilt)
M~t khac do x ~ 0 => 0 < e-x ::; 1 => 0 < t::; 1
V~y (2.1) dU<;1Cvie't l~i thanh: lw(t).tkdt= f-lk+1 k = 0,1,2,
Bay la bai loan moment Hausdorff mQt chi~u ma ta d3: gioi thi~u d phftn
2.2 Bai toon "hiet "glide thai gian:
Xet phuong trlnh nhi~t ~u - Ut=0 V (x, y, t) E R2 X R+.d day ta chQn dQ d~n nhi~t la 1 va u=u (x,y, t) la nhi~t dQ t~i di~m (x, y) vao thai di~m t
Ta xet bai loan xac dinh phan bo nhit$t dQ tC).ithdi di~m t = 0, u(x,y,O)= v(x,y) khi bier phan bo nhi~t dQ tC).ithai di~m t =1, u(x,y,l)
Truoc he't, ta xet bai loan thu;%nxac dinh phan bo nhi~t dQt~i thai di~m t >0, u(x,y,t) khi bier phan b6 nhi~t dQ t~i thai di~m t= 0, u(x,y,O).Ta co, u la nghi~m
cua h~ phuong trlnh:
{
~u-Ut=0 V (x,y,t) E R2 X R+
Voi ~u = UXX+ Uyy
5
Trang 2Chuang II: MQt 56 bfli loan quy v€ bfli loan moment
{
-(X-~)2+(Y-1])2
} 4JZ"(t - -r) 4(t - -r)
{
}
-8JZ"(t- -r)- 4(t - r)
[
(X-~)2+(Y-'7)2
]
exp -1
1
4(t - r)
8Jl"(t-r)
(x-~)-[
(X-~)-+(Y-'7)-]
-2(t - r) 4(t - r)
~
- (x - ~)2 + (y -11)2
}
(x - ~)2
{
- (x - ~)2 + (y -11)2
}
Tu'dng tlj:
~
(X-~2 +(Y-11)2
}
(y_~2
{
(X-~)2 +(Y-11f
}
~
G -~ 1 (x-4)- +(y-'7t
4;r (t - r)2 4(t -
[
- (X-~)2+(y-~2
]
exJ- (X-~)2+(y_~2
}}
.
(t - -r) 4(t - -r)2 L 4(t- -r)2
} 4n(t - -r)2 L 4(t- -r)2
(x _~)2 +(Y-11)2
[
(x _~)2 +(y - ~2
]
Tli cae ke't qua lIen ta du'<;1C:
Xet u=u (~, 7J, T )
. (2.2)
Ne'u u If!nghit%mcua ht%(1) thl:
U;;;;(1;,17, r) + U1/1l(~, '7, r) -ur (~, 77,r) = 0 ' (2.3)
(Do ~u - ut= 0)
Trang 3Chuang II: MQts6 bfli roan guy v~ bfli roan moment
Xet tru'ong vec to:
F(~,11,1) = (u G; - u~G,uGIl - ullG, uG) (2.4) Taco:
divF = u;G; + uG;; - u;G; - UqqG+ u'!G'!+uG,!,! - u'!G'! - u'!'!G + u,G + ltG,
= uG;; - u;;G + uG,!'l- u'!'!G+ u,G + uG,
= u(Gq; + G'!17+ G,) - G(Uq; + U'l'!- u,)
(2.5) V~y divF =0
f)~t 0 C R3 la miSn dinh boi I ~I ~ R , I 11 I ~ R 0 <1"< t -E ; 0 < E < t
Ta co bien cua 0 la ao =ao~ u aoll u aD,
Trang do: ao;; aoll; aD, l~n lu'Qtla cac m<';itvuong goc vdi cac tr\Ic
0~,01l, 01:
->
Ky hi<$u: n la phap vec td ngoai cua a 0
Khi do tu (2.4) va (2.5) va do dinh Iy divergence ta co:
l'
l -£
~
-R
11
7
Trang 4Chuang II: MQts6 b~liroan quy v~ bai roan moment
ldiv F = f(F , n) + f(F , n) + f(F , n)
ao" ao" ao,
= f f(uGq - UqG) 1~=Rd7]dT
~
(vi n = (1,0,0))
~
(vi n = (-1,0,0))
>
(vi n = (0,1,0))
- f f(uG" - u/]G) I,,=-Rd~dT + f f(uG )Ir=t-e d7]d~
~
(vi n=(O,-l,O))
>
(vi n = (0,,0,1))
-R -R
(2.6)
* Nhan xet:
{
( j:: 2 , 8,,( t - T)' x - 4').exp - x-, 4(1- r) ) + (y - '7)2}
2 Ta co th€ giii sa : li, li~, liT]bi ch:;in boi C > 0 vi nhic$t GQcung nhu GQbie'n thien cua nhic$tGQkhong th€ tang ra vo h?n
Voi cae giii thuye't tren, ta se chung minh:
t-E: R
1~ f fcuGq) Iq=:tRdryd,=0
0 0
lim r-&r (u.G ) <- dlld1: = 0
R~"'! ",,-:tR
Trang 5ChuangII: MQt so bfli toan guy v~ bai toan moment
(-Ii R
lim f feuG,,) I - dc;dr= 0
0 -R
(-Ii R
1~ f Jeu"G)1,,=:tR dc;dr =0
0 -R
Xet If SeLiG;) j;=:tRd17dr~ f f(uGq)lq=:tRd17~r
{
}
f fu(:tR, 17,r) x+ 2 exp - x+ , - Y-17 2 d17ldr
< t-fE clx:+ RI _(X+R)2
{
00 _(Y-Il)2
}
0 TCt-"C -00 11 "C (do gia thuyet lul::; c )
~
I-IE: clx:+~I.e- ~(~~;~
f Ie-;~~:~' d 'I}
d r
8.1Z"E -00
0
(do gia thuyet 1:< t -8 ~ (t-1:)2> 82 => , < :;-)
(do 1:>0 Den e 4(I-r) ~ e 41 , e 4(I-r) ~ e~
< c~lx +:R I
_(x+R)2
00 (.1'-'7)2
(d A"?'
h A- a Y - 17)
0 uOl leD tU-00 " ang cae u<;it = 2~
V~y ta co:
t-E R
(t - )
9
Trang 6Chuang II: MQtso bfii toan guy v~ bfii roan moment
Cho R ~ 00thl v€ phai cua bat a~ng thuc tren ti€n v~ 0, \;f t >0
V~y 1~ f feu G;;) 1;;=:tR d7]dr = 0
Xet IIJ f (u;;G) 1;;=:tRdTJdr s clJ IIGI~=+RdTJdr
(do gia thuy€t IUqI::; C)
t-E R
- c f f 1 _(X+R)l -(Y-'l)C
.e 4(t-1:) e 4(t-,) d d
-(.dR)l t-f: 00 -(Y-IOl
(do't < t - E => t - 't > E va 't > 0 nen
_(X:tR)2 _(X:tR)2
e 4(t-,) < e 4t )
C _(X:tR)l t-E 00 {y_~)2
S 4m::.e 4t 0f f-00e -;;-.d11d't
_(Y-'l)l _(y_q)2 (do 't > 0 nen e 4(t-t) < e :it
< ~.e 4t Ji f fe-al dadr
2JZ"£ 0 -00
T' _(Y-'l)2
(do d6i bi€n a = 11l2 t trong -T'.fe 4t d11)
-2m:: .e 4t .(t - E) Jn = c-ft~ I .e_(X+R)2 4t (
(2.7)
Trang 7Chuang]I: !v19ts6 bai roan ~ v~ bai roan moment
r: _(X+R)2
I
-V~y ta c6: 1 lR (u~G) I~=:':RdlldT I::; 28-J; e 4t (t - 8).
Cho R d~n den vo cling thi ve phch cua bat d£ng thlic tren d~n den 0 ,
V t >0
(-f: R
0 -R
(2.8)
Do vai tro cua uG~ va uGll nhu' nhau, u~G va UllG nhu' nhau nen ta cling
c1uQC:
{-f: R
lim f f eu GJ 1 - d~dT = 0
R-,>oo 'I 1]-t.R
va 1~ f f(uI]G) 11]=t.R d~dT = 0
Til' (2.7), (2.8), (2.9), (2.10) suy fa:
t-E R
Ji~oo f f(u Gi; - ui;G) 1~=:tRdYjd1 = 0
0 -R
1~ f feuGl] -UI]G) 1'7=t.Rd~dT=O
Bay giG ta xet hai rich phan cu6i cib (2.6)
Theo dinh 1;' hQitv bi ch~n ta c6:
Ji~ f f(u G) 1,=odYjd~ = f fG(x,Y,~,Yj,t,O).U(~,Yj,O)dlld~
(dung ham d~c tru'ng)
00 00
= f fG(x, y,~, TJ,t,O).v(x, y )dTJd~ (do u(x,y,O) :=v(x,y»
-<XJ -00
] !
8H.V\H.Tl!N~:!E;.,j\
- ~ I l"' Ii)
- n~~~-1
Trang 8ChuangII: MQtso b?ti roan guy v~ b?tiroan moment
Tu'dngtV :
R R
Ji-Too fJ(uG) 1'=1-8dl1d~
CD oc
= f fCCx,y,C;,TJ,t,t-E).UCC;,TJ,t-E)dTJdC;
-00 -,x
Ta chung minh ke't qua sau:
00 00
lim f fG(x, y,~, 11,t, t - E).U(~, 11,t - E)dl1d~ =u(x, y, t)
8~O
-00 -00
*B6 d~:
1 CD
{
2
a j;;, fexp - (x - ~) }
d>:
'7'8> 0
{
- (x - ~)2
}
2& i~-xl>o 48 d~ ~ 0 khi 8~ 0
TiI d6 suy fa:
{
- (x - ~)2
}
(b.l)
(b.2)
c lim f fG
I - - d~dl1=1
d Bi;it Vo={(~,T]) :I ~-xl ::;; 0, I T]-Y I ::;; o} la hlnh vuong trong mi;itph~ng
p (~, T])
Khi d6 :
~~ f G 1.=1-8d(~, 11)= 0
P\ vo
Tu d6 suy fa: lim f G
I - d(~, 11)= 1
8~O -1-8 Vo
Trang 9ChuangII: MQtso bai roan guy v~ bai roan moment
* Chung minh:
a E>~t a = I => da = I => d~ = 2Fcda
i 2-v & 2-v &
{
(X-~)2
}
1 00 2
Khi d6: 2;;;;ll:& -00 fexp - 4& d~=2 ;ll:& -00r- fe-a 2Fcda
1 00
= j; fe-a'da-00 1
= j;J;
=1
b Xet x,~ co dinhthoaI X- ~I ~ 8
{
(x - ~)2 1
}
Ham so h: 8] H 2fn exp - 4 £1
{
J
~]
" 1 (x-t)- 2 (x-C;)- 2 (x-C;)- 2
1
{
( ;::2
}{
2
}
X, ~
(5
Ix-c;12 (5::::>Ix-c;12 252 ::::>_(X-C;)2 ::;_(52
a &1 E -,CO nen& ] 2-::::> c
2 (52 (52 2
::::>~ 21::::> 1-~::; 0
13
Trang 10Chuang II; MQt so bai roan quy v~ bai roan moment
2
Tli (2.11) va (2.12) ta co: 1- ~I (x - ~)2 ~ 0
Voi 0 < £ ~ - => - > ? => - >
}
Ma heEl)la ham giam
=> h ( ~) ~h(J2)
=> ~ exp
{
- (x - ~)2
}
{
- (x - ~)2
}
M~t khac: 1 exp{
- (x - ~)2
}
~ 0 khi [; ~ 0
Thi;lt vi;lyd~t t = l khi [;~ 0+ thlt ~ (f)
X, 1. ( -12
et 1m t.e = lIn~ = Im-, =
I->en 1->«0el I->en
2t.el-Tli (2.13) va (2.14) ta duQc:
1 fexp{
- (x _~)2
}dl; ~ 0 khi E~ 0
Ket hQp voi (a) ta duQc: ~ fexp
{
- (x - ~)2
}d~ ~ 1
2'\jTtE 1.;-\IS6 4£
khi E ~ 0
Vi;ly ta chung minh xong (b)
Xet foo fd) G 1,:1-&d17dl;
{
- (x- 1;)2 + (y - 17)2
}d17dl;
00 a) 4Jr& 4&
{- (X-c;)21.exp
{
- (Y-17)2
}d17dl;
Trang 11Chuang II: MQt s6 bai roan quy v~ bai roan moment
(y-ry)2
}dry)
-00 -00
d Ta co:
:yo
fG
I d(~, 11)= r d~ fG
1
,=t-o ~~-xl2:O
+ txi$l1 dl;f'1-Y!2:o1'=Hdll (Tinh trang mi~nS2)
- 1
1
Y) - (x-ci+(y_q)2
1
~
- (x-~f (y-Il)2
4 41t8 ' -xi~o ~ Ie E.e 4E dl1
11-\ ~o
1 _1<-;)2 1 Ct) _(y_~)2
-~
.
"E
d~
f "E
2;:;;' 1;-XI2:0 2;:;;' -coe 11
«-;)2 00 - (y-'1):
~
4.
2& -xl~o 2& !1l-YI2:0
~OkhiE~O
(do (bl) va (b2))
15
do ket qua (a) )
52
E
Sj
-8/2 8/2
I -8/2 I
52 I
I
Trang 12Chu'ongII~Jv19ts6 bii roan ~ v~ bii roan moment
V~y ~i-To fG 1.=1-$d(~, 77)= 0
P\V/j
Tli do suy fa: lim fG
I - d(~, 77)= 1
$~O -1-$
V/j
(do c)
V~y ta da: chung minh xong b6 de
Trd l~i di~u cftn chung minh:
Jim f fG(x, y,~, 11,t - E).U(~,11,t - 1:)dl1d~ = u (x,y, t)
E~O
-00 -00
Do tinh lien U,lCcua nghit$m u, vdi III - y I <bn
1~-xl<bnVa8du nhotaco:1 u(~,Il,t-8)-u(x,y,t)1 <~
n
Tli b6 de (c) va do tinh bi chi,lnclh uta co:
<:J) <:J)
I Jim E~O f fG(x, y,~, ll, t - 8).U(~,Il, t - E)dl1d~ - u(x, y, t) I
-<:J) -00
00 oc
= I 8~Olim f fG(x, y,~, 11,t - 8).U(~, 11,t - 8)dl1d~
-co -co
00
- lim fG(x, y,~, 11,t - 8).U(X, y, t)d11d~ I
8~O
-co
(Do b6 de (c) u (x, y, t) = u ((x, y, t).l)
00 oc
= I E~Olim f fG(x, y,~, 11,t - 8).{ u(~, 11,t - 8) - u(x, y, t) }dlld~1
-co -ex)
00 00
~ lim!8~O f fG(x, y,~, 11,t, t - 8).{ u(~, 11,t - 8) - u(x, y, t) }dlld~ I
-00 -a)
y 1
:::;-n
(VI G >0)
Trang 13Chuang II: MQt so bai tmin quy v~ bai roan moment
~ Jim ~ fG(x, y,~, 11,t, t - E).d(;, 11)+ 2C lim fG(x, y,;, 11,t, t - c:).d(;, 11)
= ~n (do lu(~, 11,t, t - 8)- U(x, y, t.1 < ~,b6n d~ (d) va lul::;C)
-00 -00
Tli (2.7), (2.8), (2.9), (2.10), (2.15) ta duQc:
voi vex, y) la nhit%tde>t'.li t =0
V~y ta dii gi:ii xong bai roan thu~n
Trd l'.li voi bai roan nhit%tnguQc thai gian xac dinh phan bo nhit%tQQ Tli (2.16) the' t =1 ta duQc:
(x-~r,1. +[Y-17),2
-OCJ -OCJ
Gi:i su v (x, y) =0 voi x < 0 ,y < D Khi d6 ding thuc tren c6 th~ vie't thanh:
(x-~)2+(Y-Il)2
voi
{
X=-2m
y=-2n Kbi d6 tu d~ng thue tren ta duQc :
~2+')'
e-(m2+n2) r rv(~, Y]).e ;-.e -(Jll;-"n'))d~dll = fmn
voi fmn= 4nu (-2m, -2n, 1) m, n = 1, 2,
B6i bie'n voi:
{
s= e-;
t= e-'7 ta duQc
i iw(s ,t).Si tjdsdt = f.1ij ydi i, j = 0,1,2,
17
Trang 14ChuangII: MQr so bai roan guy v~ bai toan moment
In2s+ln2,
w(s , t) = v(-In s ,-In t).e 4
(i+I)2 (j+I)2
Jlu =4;r:e u(-2i - 2,-2j - 2,1)
(VI ill = i + 1, n = j + 1)
Bai to<:lntren 1a bai to<:lnmoment Hausdorff hai chi~u va ta se tlm each 06 chinh hoa no (j Chuang III