Luận văn thạc sĩ chuyên ngành Toán Giải Tích -Chuyên đề:Đánh giá các phép biến hình á bảo giác những miền nội tiếp trong hình vành khăn
Trang 1ChUO1lg 6 H:E: QuA SUYRATit cAc BANH GIA H~ qua 6.1
Trong truOng hqp mi~n cac A, B Iii cac hinh vanh khan bi c~t dQcp cling trOll d6ng Himp d6i Xlmgquay co bien ngoiii IiiduOngtroll dOllvi, QA' QBIAnIUQilii
ban kinh duOng troll bien trang, R A'RB IAn IuQilii ban kinh nhat c~t cac cling troll d6ng tam, tuc A vii B Iii nhUng mi~n p d6i Xlmg quay, co thS th\lc hi~n PBHKABG tu A Ien B Khi do ta danh gia cac d~i IuOllg cua mi~n B nhu sail:
Danb gia ban klnb QB
1
dau b~ng xftyra ve trai (6.1) khi h co d~g: h(~) =al~IK-l~,~ E A,lal = 1,
1 dau b~ng xfty ra ve phfti cua (6.2) khi h co d~g h =al~IK-l ~,~ E A,lal = 1
ChUng minh:
Lay g(~) =~, \j~ E A ta duQ'cE==A mcQE ==QA' ap d\lng(4.1)ta duQ'cve phfti
(6.1) v6'i khft nang xfty ra d~ng thuc d8:neu Ap dJ.lngqinh Iy Carleman ma rpng
cho PBHKABG tu miSn BIen miSn A ta co:
( )
1t <: ~B 1tQ~ ~Q~ <:Q~, tU day ta cO v~ tnli cua (6.1) v6i khil niing xily ra
d~ng thuc d8:neu
Trang 2Danb gia ban kinb RB
4~RtQ:~< T[P.( ~ t ,0) <RB <T(P,Rt,o )<4~Rt
(6.2)
ChUng minh:
Lfiyg(~) = ~,'v~EA ta duQ'c E==A tuc RE==RA, bien nhien ta co:
R =c=dB ,
kSt hqp v6i cac danh gia trong (4.11), (4.12), va (6.1) ta duQ'c(6.2)
Danb gia Ih(~)I.
Lfiyg(~) =~, V~E A ta duQ'c E ==A mc RE==RA, kSt hqp (4.15), (4.16) va (6.1)
ta danh Ih(~)I v6i hE H, ~ E A trong twang hqp nay nhu sau:
Q~
TH,~AIJ~ ,oj =>lh(nln(p,ld,o}dj,
(6.3)
-=-'- K II.! 1
Hf qua 6.2
Trong truang hqp A la hinh khan qo <I~I < 1 bi c~t b6'i cac tia dQc theo ban kinh
";~ {~,Ic,,*1 s;d, ,arg~ = 2;j },j = O,l,u.,p-l
Trang 3B la hinh vanh khan Q < Iwl< 1 bi c~t theo cac cung troll d6ng tam p d6i xung quay
LJ ={w I~= R,a+(2j -1); S;argz S;-a +(2j +1);}, v6i
Q< R < 1 ta danh cac d~i luQ'Ilgcua mi~n B nhu sau:
O<a< 1r,j=O,l, ,p-l,
p
Daub gia Q
Chlmg minh:
Ta co~~Sl~ kSt hqp v6i (5.1) trong do Q=q ta dup-cvS phai cua (6.5), vS
qo do
trai cua (6.5) co duQ'ctu suy rQngB6 d~ 2.5 cho PBHKABG.
Daub gia R
HiSn nhien c= R = d, trong truemg hqp mi~n A th6a do < 4P va qo < 4P , kSt
Co hqp (6.5), (5.9) va (5.9a) ta danh gia R nhu sau:
q~4 ~I
(~R(P,dO,qo» )
K < R < 4;
(
( P,~,qO )J
K
(6.6)
1 -1
(1 1
) 1 1(1 1
) 1
Daub gia Ih(~)I.
Trang 4Trong truimg hqp t:, E A th6a q~:O <min{ R(p,lt:, l,qO),R(P, ~,qO)}' koh hqp
/-l2 ~~, (5.11) ta danh ghi ta danh gia Ih(~)I trong truemghqp nay nhu sau:
qo do
1 K
[
]
< Ih( ~)I < T p'
l
doqo
.( CoR(p,Ii;I,qo)),0 ° lpO'ij,qo)
,01«1) (6.8)
Tir (6.5),(6.8), (2.15), (2.18) ta danh gia dan gifu1han cho Ih(l;)1 nhu sau:
H~ qua 6.3
Trong truemg hqp miSn A nhu trong h~ qua 6.2, B la hinh vanh khan ~<Iwl < 1
bj c~t biJi cae ria di'c theo ban kinh "; ~ {w Ie,,;;!wI ,;; d, arg w= 2;l
qo < Co< do < 1, j = 0, 1, ,p -1, ta danh gia cac d~i luqng cua miSn B nhu sau:
Daub gia qo
Trang 5Ta co Il~~~ kSt hgp (5.1) trong do qo =q ta du9'c vS phai cua (6.10), vS tnii
qo do
cua (6.10) co duQ'c b~ng cach ap d\mg diOO ly Carleman ma rpng OOuh~ qua 6.1.
Danh gia Co vado
Trong truemg hgp do < 4P va qo < 4P , ta danh gia c va d OOusau:
Co
q~4~1
(~R(P,dO,qO) JK < Co ~ do < 4*(
( P,~,qO JJ
K
(6.11)
1 -I
( I) 1 I( I) 1
qK-K4PI+KcK <c <d <4P I~ d K0 0 0- 0 0 (6.12)
ChUng minh:
(6.11) co duQ'c tir (5.9) trong do M1=qo,m2 = 1 (6.12) co duQ'c ill (6.11) va t£OO chftt cua ham R (p,r,s) trong (2.10), (2.11) va (2.15)
. Danb gia Ih(~)I
Trong truimg hQ'p I; E A thOa q~~o <nrin{ R(p,11; l,qo),R(P' ~ ,qo)}, k& hQ'p
(5.11) va Il~~~, ta daOOgia ta danh gia Ih(~)1trong truemg hgp nay nhu sau:
qodo
Trang 61 K
qK
[
]
<lh(~)I<T p'
l
doqo
,01«1) (6.13)
TIT(6.10),(6.13), (2.15), (2.18) ta danh gia don giim bon cho Ih(~)1 nhu gall:
4~IHJq: i(~:J' 1i;lk< Ih(i;)1< 4¥1+kJ(~J(Ii;lk (6.14)
-
- Cae daub gia khae ebo Cova do
TiT(5.16) va (5.17) ta danh gia s~c bon ~ va d trong ffiQts6 twemg hqp:
dOqO
J
i
R p, qo ,0 q~ R(p, qo ,qO)K
(6.15)
In 2P Co 1-~
Indo Co
Trong d6 Co~ qo(< do) khi Co~ qo.
Trang 7-d> exp' - K
1
-I
4P doqo K
q~R(p,do,qo) R(p,do,qo)
(6.16) 4
In2PCo 1-~
Indo Co
Trong do do~ 1(> Co) khi d~ 1
H~ qua 6.4
Trong truemg hQ'P A la hinh vanh khan Qo < 1t;1< 1 cac thanh phfuI bien O"j,j=O,I, ,p-l la nhling duemg troll tam oj(lool=loII= =lop-II=Ro), j=O,I, ,p-l ban kinh Yo>0, Qo <lojl-ro,lojl+ro <1, A la mien p d6i xung
quay va co thS xem la d~ng mien chuAn HiSn nhien ta co
Qo Ro +fo QoCRo +fo)
B la mien nhu trong h~ qua 6.1 (xem hinh 6.1), ta danh gia cac d~i luQ'Ilgcua mien B nhu sau:
t
h
w
Qo
A
B
IDnh 6.1 v(.t(p=2
Trang 8. Daub gia QB
Theo B6 d~ 2.5 ffia fQng cho PBHKABG ta co q~ <QB' kSt hQ'P(5.1), v6i
~ > Ro-To ta danh gia QB:
Qo(Ro+fo)
Q~ ::; QB « QoCRo +fO»
)
~
Daub gia RB
Tir (6.17), (5.8), (5.9) trong do (q =M1=Qo'c = Ro - fo(> Qo),d = Ro + fo« 1))
v6i di~u ki~n Qo < 4P va Ro + fo< 4P ta danh gia ban kinh RB nhu sau:
Co
TIP
[
Ro-1O
J
.
, ~(Ro +10)R(p, do,CJo) ,0
-1
4P 1+1( QK-I(0 (R - r0 0) ~ < R < 4PBOO 1+1( ( R + r )1( (6.19
. Daub gia Ih(l;) I.
KSt hQ'P(5.11) va (6.17), Trang truang mi~n~ E A th6a
Qo~~~:oro) < mill {R(p,l~ "Qo),R(P, ~1 ,Qo)} ta danh gill Ih(~)1 nhu sau:
Trang 9Q~
Tip
(
Qo(Ro+f)
J
~
J
<lh(~)I<T p'
l
Qo(Ro+fo)
l ' (Ro -fo)R(P,I~I,Q
)
,0 (Ro-f )R
(
Qo
J
I ,0 j( < 1), (6.20)
V6i di~u ki~n Qo~~~: fO)< min{ R(p,li;; [,QO),R( p, ~1 ,Qo)}, k~t hgp (6.20),
tiOOch~t ham T(p,r,s) trong (2.18) va tinh ch~t ham R(p,t,s) trong (2.15) ta
daOO gia dan gian han Ih(~)I nhu sau:
4 ~l(l+k)Q~-k
(
Ra - ra
)K1~lk < Ih(~)1 <4~(1+k)(
Ra + ra
JK 1~lk.
Ra + ra Ra- ra
H~ qua 6.5.
Trong truang hqp miSn A hi hlOOvaOOkhan qa < I~I< 1 Qi c~t boi cae tia dpc
"
{
I I
21tj
}
theo ban kiOO crj= ~:caS;~S;da <1;arg~=p ,j=O,I, ,p-l, A la mien p
d6i xung quay
B la hlOOvaOOkhan Qa < Iwl< 1 v6i cae duang cong (Ji') =O,1, ,p-1 la nhftng
duang troll Him OJ(I~I=loll= =I~I=Ra),j=O,I, ,P-1 ban kinh ~ >0,
Qa < IOjl- ~,IOjl+ ~ < 1, B la miSn p d6i xung quay (Xem hinh 6.2) Hien nhien
ta co !-l2 ~: qa a ta daOOgia cae d~i luQ'IlgmiSn B trong truang hqp nay OOusau:
Trang 10( I) 1 1 I
( I) 1
4P I+K q K-KCK<;0 0 0-<d <4P I+Kd K0 0 (6.23)
-HiSn nhien ~ = do; Co, kSt hgp v6i (6.22) va (6.23) ta daub gia ~ nhu sau:
4~
[
C
do R( P' qo,qO JJK - q~4 ~I(
C
do R(P,do,qO)J
K
O<ro <
I
( I)
0 - 4P K d K K - (
1+-)
1-< r 1-<0 0 - qo K4 P K CoK
. Danb gia Ih(~)I
Trong twang hqp I; EA th6a q~~o < min {R(p,11;j,qo),R( P'~ ,qo)}, K.?t h[Yp
(5.11), Il~~- ta daub gia moduli cua lap ham H trong truang hpp nay nhu
qo do
sau:
1 K
[
[
1-]
<Ih(~)1 < T p'
l
qodo
,01«1).
1
4~1q~(~:J" 1i;lk< Ih(i;)1< 4¥I+kJdt1i;lk