dùng lý thuyết mô hình toán tử để nghiên cứu một số tính chất định tính của hệ động lực tuyến tính trong không gian Hilbert trong quá trình liên kết các hệ con hoặc khai triển hệ cho trước thành các hệ con
Trang 1CHUaNG 1
TONG QUAN vB CAC VAN DE BAT RA
TRONG LUAN AN
Giai tich ham noi chung, va d~c bi~t 1a 1y thuy~t mo hiOOtoan tlf co r~t OOi~uling d\illg trong cac 1Inh VL;fckhac OOau cua toan hQC va v~t 1y Ly thuy~t cac toan tlf k~t h<;5pvdi mo hiOO cac h~ d9ng llJC tuy~n tiOO da dfu1 d~n cac k~t qua thll vi trong vi~c nghien coo cac tiOO ch~t cac h~ tuy~n tiOOvo h?ll chi~u N 9i dung cua 1u~ an 1a nghien coo cac tiOOch~t cua cac h~ d9ng llJC tuy~n tioo vo h?ll chi~u bfulg cong Clfmo hiOOtoan tlf va mo hiOOh~ tuy~n tiOO
1 Ly tbuy~t fiG binb tmin tn.
Nho vao OOilng k~t qua n6i ti~ng cua Hilbert v~ ph6 toan tlf, ta da co du<;5Cmo hiOOcua cac toan tlf tlJ lien h<;5pva toan tlf ddn nguyen, chUng du<;5c bi€u di~n d d?llg tich phan
T = fAdP).
a(T)
d m9t hudng khac, ta da bi~t cac k~t qua cua Shill v~ dua m9t ma tr~ tlJ lien h<;5pv~ d?llg duong cheo 000 phep bi~n d6i ddn nguyen
Phat tri€n hai hudng tren, vao dftu OOilngnam 50, cac OOatoan hQc Xo Vi~t b~t dftu xay d1 fng1y thuy~t mo hiOO cho cac toan tlf k.hong tlJ lien h<;5p , ho~c khong ddn nguyen va nguoi di tien phong trong 1Inh VL;fcnay 1a
Trang 2l§.nd~u tien ham toan tit d~c tnfng cua toan tit du<jcdua fa Khai ni~m ham toan tit d~c tnfng saDnay trd thanh mQtcong clf quan trQng trong nghien cUu cua r~t nhi~u nha toan hQC.Qua trinh ti~n boa cua ly thuy~t ham toan tit d~c trlfng di~n ra kh<idai va kho khan Ngay tU d~u nam 1946, Livsis [38] da lieU cong thuc ham toan tit d~c tnfng cua toan tit co d?Ilg kh<iphuc t;tp nhu saD
eA(Z)= -A sign(I-AA *)+zI I-AA * 11/2(I-zA *f1 II-A *A 1112 (1.1) D?Ilg ham d~c tnfng nhu tren kha ti~n dlfng cho toan tit "g§.n" don nguyen
D6i vdi toan tit "g§.n" tV lien h<jp,nam 1954, Livsis [39J dua dinh nghTa saD
W(z)=I+2i (SignAl)1 AI I 112(A *-zIfl I AI 1112
*
A = A-A
I 2i
vdi
Dinh nghla tren da du<jcM.S.Brodskii [36J md rQng vao nam 1956 d d?Ilg saD
W(z)=I-2iK*(A-zI) -lKJ
trong do J=J*, J2=I, KJK*=Ar vdi J, K la cac toan tit bi ch~ lien h~,vdi toan tit A bdi cac cong thuc tren
Sl} cai ti~n ham d~c tnfng d?Ilg (1.1) cho toan tit "g§.n" don nguyen mai d~n nam 1972 mdi du<jckhkg dinh, do la ham toan tit
e A(z)=D+zC(I-zAflB
trong do B, C, D la cac toan tit b6 tr<j,thoa di~u ki~n
I-A *A=C*C I-AA *=BB* I-D*D=B*B I-DD*=CC* -A *B=C*D , , , , .
Trang 3Cilia khoa d€ su d\lIlg cac ham toan tV d~c tning d tren duejc th€ hi~n qua dinh ly co ban sau day
Dinh ly Livsis [37] N~u hai toan tV bi ch~, don gian co clIng ham toan tV d~c tning thi Wong duong d6n nguyen
Ti~p sau, nho nhi1ng nghien cdu sau s~c ve ham toan tV cua Potapov
[32], Ginzburg [18]; Brodski va Livsis [37] da khai tri€n ham toan tV d~c tning vao d~g
"J
1 1 de:( t) 00 "J
eA(Z)=7 eel-aCt) IT(I - 1 q~qk)
Nho vao bi€u di~n nay, Livsis da xay dvng mo hinh cua toan tV "gfu1"tl! lien hejp, day chinh la budc d~u tien qUailtrQngtrong ly thuy~t mo hinh toan
tV khong don nguyen ho~c khong tl! li~n hejp Mo hinh cu~ Livsis da du<Jc cac d6ng nghi~p va cac hQc tro cua ong cM.ti~n , md rQng V3.0nhUng nam 60
va 70 [41] Mo hinh nay trong tniong h<Jpph6 roi f?C co d~g :
(Af)k=AJk + i I, fjqjJq~;
j=k+l trong tniong h<Jpph6 lien tvc co d~g :
1 (Af)(x)=a(x)f(x)+i f f(t)q(t)Jq *(x)dt.
x D~u nhvng nam 60, d mQt hudng khac, cac nha toan hQc Dong Au, Nagy
va Foias da ti~n hanh nhUng nghien cilil r~t sau s~c ve cac toan tV co trong khong gian Hilbert ma mQtv~ de trQng tam la phep gian (dilation) toan tV.
Trang 4Trong qua trinh xtly dlJng phep giffil cac toan tv, cac nha toan hQcnay da thi~t l~p m9t d<:lih1Qngd~c tnfng cua toan tv, va th~t thu vi la d<:lilv(jng d~c tnfng nay l<:litrimg vdi khai ni~m v~ ham d~c tnfng cua Livsis DlJa vao khai ni~m ham toan cl d~c tnfng do, Nagy va Foias da xtly dlJng m9t ma hinh rftt ti~n d1Jngma san nay lien h;1cxuftt hi~n tren cac cang trinh cua cac nha toan hQc tren th~ gidi
Ly thuy~t ma hinh toan cl cua Nagy va Foias co th~ tom t~t nhv san
Cho A la toan cl co tren khang gian Hilbert, ham toan cl d~c tnfng cua A dvQc dinh nghla b6i
e A(z) =-A + z(I - AA *)1/2(I - zA *)-1 (I - A * A)1/2 Ngv(jc l<:li,cho trlfdc ham e(Z)E $ (U,V), Nagy-Foias xtly dlJng ma hinh toan
cl co nhv san.
x = [L~(V) Ef)&2(U) ]e{(eO) Ef)ilO))/ 0)E L~(U)},
trong do il( eit) = (I - e( eit) * e( eit) )1/2
Toan cl A nay ddn gian va co ham toan cl d~c tnfng trimg vdi e(z) San do, vao nam 1972 Brodski da xtly dlJngth~m cac toan cl
Bu =e-it (e( eit) - e(o))u Ef)e -it il( eit)u ,
C( <pEf)\jf) = <p(O),
Du = e(O)u , d~ dVa v~ ma hinh cua h~ H~ tuy~n tinh dv(jc xtly dlJng nhv tren la ddn gian, ddn nguyen va co ham truy~n la e(z) Ta co k~t qua (diM ly Livsis- Brodski)
Trang 5L1hai h~ don gian, don nguyen co cUng ham truy~n thi Wong duong don nguyen Nhu v~y mo hinh cua Nagy-Foias da co m9t vai tro qUailtr<;mgd~ nghien cUu cac h~ don nguyen, mo hinh nay co th~ cho ta nhi~u thu~ 1Qivi cac toan tUd~u duQcxay dlJIlgtlfdng minh.
Hudng thll ba trong 1y thuy~t mo hinh toan tU duQc phat tri~n b6i cac nha toan hQc My, De Branges, Rovnyak [13] SaD day 1a mo hinh cua De Branges va Rovnyak cho toan tU co duQcxay dlJIlgtheo ham 8(Z)E $ (U,V) cho trudc GQi Be 1a khong gian g6m cac phfu1 tU (f(z),g(z)) vdi f(z)EH2(V), g(z) EH2(U) sao cho
«f(z),g(z)), Kew,X,/Z»Be = <few), X>y + <g(w), y>u vdi Kew,x,/z) 1aham cac toan tU duQc dinh nghia b6i
(
I - 8(z)8(w) * 8(z) - 8(w) 8(z) - 8(w) 1- 8(z)8(w) *
J
trong do 8(z) = 8("2)*, WEq}),XEV, YEU
Toan tU mo hinh tren Be duQc diM nghia b6i
A : (f(z),g(z)) H (zf(z)-8(z)g(O), g(z) - g(O))
z
co ham toan tU d~c trlfng 1a8(z) Vi cac toan tU A trong cac mo hiOOcua
N agy-Foias va cua De Branges- Rovnyak d~u don gian lien chUng tlfong
duc5ngdon nguyen Trong mo rJlli~cua De Branges- Rovnyak, tuy khong gian
Be khong co bi~u di~n tlfdng minh nhung couu di~m 1acac phfu1tU fez), g(z) d~u 1acac ham gild tich
Trang 6Ngoai cac Gong triOOchu y~u tren, ly thuy~t mo hiOOtoan tV con duQc
md r<)ngcho cac lop toan tV khac, kS ca toan tV khong bi ch~ [6],[8].
Trong lu?n an nay, chUng Wi S11dlJIlg chu y~u mo hiOOcua Nagy-Foias LUll Y la cac mo hiOOtren la mo hiOOham Ngoai ra con co huang xfty dlJIlg mo hiOOd~g tich phan t:.heocac khong gian con bftt bi~n duQc xfty d\fng bdi Brodski [14], Gohberg, Krein [19]
2 Ly thuy~t h~ dQng hfe tuy~n tinh.
BM d~u tU nam 1960, sail cac Gong trioo cua Kalman [23], m<)ts6 huang nghien coo cac tiOOchftt diOOtiOOcua h~ d<)ngh.Jctuy~n tiOOphat triSn m~ Kalman da dUa fa cac khai ni~m rftt qUail tr<;mg: tiOOdieD khiSn duQc, qUail sat duQc, xfty dlJng mo hiOOcac h~ (ly thuy~t thS hi~n), sq d6ng d~g cua cac h~ tuy~n tiOO[23],
Xet h~ d<)ng lqc tuy~n tiOOa=(X,U,V,A,B,C,D) duQc mo hiOOhoa bdi h~ phuong trioo sail
dx = Ax(t) + Bu(t) , dt
vet) = Cx(t) + Du(t) ; x(t), u(t), vet), la cac ham vecto voi gia tri la cac vectd l~ luQtthu<)ccac
khong gian Hilbert kha tach X, U, V Ham x(t) duQc gQi la ham tr~g thai, u(t) duQc gQi Ia ham dieD khiSn va vet) duQc gQi Ia ham qUail sat
H~ a duQc gQi Ia dieD khiSn duQc tU tr~g thai Xod~n tr~g thai Xl trong khoang thdi gian [to,tl] n~u t6n t(;lim<)tham dieD khiSn u(t) xac diOOtren [to,t1] sao cho n~u h~ b~t d~u tU tr~g thai Xo(tUc la x(to)=Xo)thi t(;lithdi diSm tl no
Trang 7co tr?llg thai Xl' tUGla x(tl)=Xl' Di~u do d6i vdi h~ tuy~n t1nh xet d tren co
nghia la
X(tl) = e A(tl-tO)Xo+ ftt~eA(tl-S)Bu(s)ds.
H~ a duQc gqi la di~u khi€n duQc hoan toan n~u a di~u khi€n duQc tU tr?llg thai bM 10' Xov~ tr?llg thai b~t 10' Xl trong khO<lngthai gian b~t 10' [to, tl]
Trong di~u ki~n X,U,V la cac khong gian hitu h?ll chi~u thi h~ di~u khi€n duQckhi va cm khi
rang (B, AB, , An-lB)= n = dimX.
D6i vdi h~ vo h?ll chi~u, khai ni~m di~u khi€n duQc thuang duQc hi€u d d~lg di~u ~~i€n duQc x~p xi, nghia 1.1vdi ill<)tIan c~ cho trVdc cua Xb luon t6n t?i m9t ham di~u khi€n u(t) di~u khi€n quy d?o cua h~ tU tr?llg thai Xod~n Ian c~ cua tr?llg thai Xl trong m9t thai gian hitu h?ll, Khi ~y di~u ki~n cfu1va
du d€ h~ di~u khi€n duQc la
:AkBU=X 0
D6i ng~u vdi khai ni~m di~u khi€n duQc, Kalman dua ra khai ni~m qUail sat duQc.V~ d~ d~t ra la khi bi~t ham qUailsat vet) (t 2 to) thi tr?llg thai ban d~u Xo= x(to) co duQcxac dinh duy nh~t kh6ng ? N~u h~ a co tr?llg thai x(to)
= Xo"*0, ham di~u khi€n u(t) = 0 (t 2 to) l'iti co ham qUail sat vet) = 0 (t 2 to) thi tr?llg thai Xo gqi la kt~ong qUail sat duQC t'iti thai di€m to H~ duQC gqi la qUail sat duQc hoan toan n~u t'itimqi thai di€m , khong co vecto nao khong qUail sat duQc Khi do ta co k~t qua d6i ng~u cho tinh qUail sat duQc H~ hitu h?ll chi~u
qUail sat duQc hoan toan neu va chi neu
Trang 8rang (C*, A *C*, ,A *n-1C*)=n=dimX ;
\trong tru6ng h<;>p vo h~ chi~u thi di~u ki~n c§n va du d~ h~ qUailsat duQc hoantoanla
00
vA *kc*v=x.
0 MQt khai ni~m qUailtr(;mgtrong h~ tuyen tioo dUngla khai ni~m ham truy~n, ham nay du<;>c xac dinh b6i cong thuc
eaCz)=D+zC(I-zAr1B:U ~ V
Ly thuyet h~ dQng l\fC tuyen tinh d\fa tren ham truy~n va ly thuyet mo hiOO toan tU trong giai tich phat tri~n dQc l~p song song OOungco OOi~udi~m Wong
d6ng th1.ivi D6i vdi mQt s6 ldp cac h~ thi ham truy~n trUng vdi ham d~c trung
A cua toan ill
Ham truy~n mang ynghia OOusail :gia sit h~ a co vecto tr~g thai xCi)=
XoeZ\vecto vao u(t) = uoezt,vecto ra vet) = voezt,thi vet) = e(l(z)u(t) Nhu v~y hai h~ co cling ham truy~n co th~ coi la Wong duong vi tr~g thai ben trong cua hai h~ co th~ khac OOaunhung khi cho cling tin hi~u vao u(t), ta d~<;>c cling tin hi~u ra vet) TiOO qUail trQng cua ham truy~n con duQc th~ hi~n 6 dinh ly Kalman [23] : neu "hai h~ hitu h~ chi~u ai, ~ di~u khi~n duQc, qUail sat duQCco cling ham truy~n thi chUngd6ng d~g, nghia la khi do t6n t?i mQt toan tUkha nghich lien 1:\1c W: xi~ X2sao cho
A2 =WA1W-1 , B2 = WE1 , C2 =C1W-1 ,
Trang 9D2 =Dl ;
va ra rang hai h~ d6ng d~g till chUng co clIng mQt s6 cac tinh ch~t qUail tn;mg nhl1 tinh di~u khi€n dl1<JC,qUail sat dl1<JC,dn dinh, phd N~u hon 1l11alOan tli
W la don nguyen till ng116ita noi hai h~ la Wong dl1ong don nguyen
Tren co s6 dinh ly d6ng d~g, Kalman da xay dljIlg cac mo hinh cua h~ tuy~n tinh IDeo mQt ham truy~n 8(z) cho trUoc ma ong ta gQi la cac th€ hi~n (realization) cua ham 8(z) [23] Ly thuy~t th€ hi~n da pilat tri€n kha m~, khong nhltng cho h~ tuy~n tinh dung, h~ khong dUng ma Celh~ phi tuy~n
Di Sail hon nlta d6i voi h~ tuy~n tinh, cac nha lOan hQc My (Brockett, Barass [10], Israel (Gohberg [11]), da nghien CUllSlJlien k~t cae h~ Cac h~ tuy~n tinh khi lien k~t n6~ ti~p nhau IDeo nghia : Cho hai h~ a k = (Xk,Uk,VbAbBbCbDk), k = 1,2, sao cho U2 = Vl H~ a = (X,U,V,A,B,C,D ) dl1<JCgQi la lien k~t n6i ti~p (tich n6i ti~p) cua hai h~ al , a2 va dl1<JCkY hi~u
la a = a2al n~u :
U = Vl ; V = V2 ; X = Xl EBX2 ,
A = A1P1 + A2P2 + B2ClP1 ,
B = Bl + B2Dl ,
C = C2P2+ D2C1P1,
D = D2D 1 , trong do Pk la phep chi~u vuong goc tU khong gian X len khong gian Xk ,
Trang 10thi cac tiOOdi~u khi€n dUdC,qUail sat dUdC, t6i thi€u, ddn gian, t6i ULl coth€
khong du\Jc baa toan Cac taG gia tren da co mQt s6 k@t qua v~ di~u ki~n d€ baa toan cac tiOO ch~t do khi lien k@tcac h~ Cac k@t qua nay du\Jc phat bi€u tren ligon ngv b~c Mac Milan cila ham ma tr~ Trong t~t ca cac th€ hi~n cila ham 8(z), th€ hi~n co s6 chi~u cila khong gian tr~g thai la 006 OO~tdu\Jc gqi
la th€ hi~n t6i thi€u S6 chi~u cila khong gian tr~g thai trong th€ hi~n t6i thi€u cila 8(z) du\Jc gqi la b~c Mac Milan cila 8(z) va du\JCkYhi~u la deg8(z). MQt k@tqua v~ di~u ki~n d€ baa toan tiOOch~t t6i thi€u du\Jc phat bi€u trong diOOly Gohberg : Lien k@tn6i ti@pa cila hai h~ t6i thi€u aj va a2 la t6i thi€u
. n@uva chi n@udeg8a(z) = degeaj (z) + degea2 (z).
Cong Clfcila hudng nghien coo nay la GongClfd?i s6 ma tr~, r~t kho phat tri€n cho tr1.fdngh\Jpvo h~ chi~u.
3 Ly thuy~t h~ dQng I1fctuy~n tlnh tren khong gian Hilbert.
Livsis la ngudi d~u tien nghien coo ly thuy@th~ tuy@ntiOOtrong khong gian vo h?il chi~u [40] Ong da khao sat cac h~ dQng h.;tctuy@ntiOOdissipative d~g
x = Ax+Bu ,
v = Cx+Du ;
S(z)=I+2iB*(zI-AflB; va nghien coo nhi~u ling d\lilg cila chUngtrong v~t ly.
Trang 11? ~, ,-cac hQctra cua ang cling d3:tien hanh ,-cac nghien cUuve ,-cac h~ ngau nhien (Iancevich [30]), v~ th€ hi~n cua cac ham phan hinh (meromorphic-D.C.Khanh [42]) D~c bi~t Arov d3: nghien cUu sail v~ cac h~ bi dQng (passive) Do la h~ rai r~c d~g
~+l =~+B~,
vn =C~+D~;
vcii (~ ~):XEBU~XEj)V 1aloan ttJ co va mUlltruy~n 8(z)=D+zC(I-zArIB Ong d3:xay dl,fngcac h~ ma hinh cua lop cac h~ bi dQng t6i liu, xay dl,fng cac th€ hi~n bi dQng khac nhau cua cac lop ham toan hf trong khang gian Hilbert
voi nhifng y nghla v~t ly hfong ling, d6ng thai lien h~ voi phep gian cac h~ Arov d3:xay dlJIlgphep gian cua ham toan hf co gi::iitich S(z), hIc la tim ma tr~ kh6i
~
(
Sll (z) S(z)
)
"
S(z) =
S21(z) S22(z)
don nguyen tren yang trOll don vi fj}Jj va thoa di~u ki~n t6i thi€u KerSll(z)={O} h~u kh~p tren fj}Jj.sv dl)11gcac k~t qua cua Arov, D.C.Khanh
d3:khao sat cac bai toan v~ lien k~t cac h~, slJ baa toan cac tinh chM diOOtiOO cua h~ trong qua triOOlien k~t [24],[44],[45],[46] Phuong phap nghien CUlld
day la OOanhf hoa cac ham toan hf co va ly thuy~t ma hiOOtoan hf Dua vao cac khai ni~m moi (:t) nhan hf hoa chiOOquy cua ham toan hf, D C Khanh d3: thi~t l~p cac di~u ki~n c~ va du d€ baa toan tioo di~u khi€n du<;jc,qUail sat du<;jc,t6i thi€u khi lien k~t cac h~ don nguyen ho~c cac h~ bi dQng
Trang 12Cho 8(z) E ,%\U,V-j, 8k(z) E $(UbVk), k=l, 2, U)= U, V)= U2, V?= V Nhan 111hoa ham toan 1118(z) = 8iz)8)(z) dllQCgQila (+) chiOOquy n~u toan 111
Z+ : Llli ~ 1.28)hEB.1.)h, Vh E H2(U) sail iliac tri€n tuy~n t£OOlien h;1c1a toan 111ddn nguyen tU khong gian 1.H2(U) 1en khong gian 1.2H2(U 2) EB 1.1H2(U1);
trong trlidng hQp toan 111
* Z-: 1.*h~.1.2*h EB.1.1*82h, hE 1"2(V) sail iliac tri€n tuy~n tiOO lien h;1c 1a toan 111ddn nguyen tU khong gian 1.*1"2(V) 1en 1.2*1"2(V 2) EBL11*L2 (VI) ; vdi 1.*(eit) = (I - 8(eit)8 (eit)*)112,
.1.k* (eit) = ( 1-8 (k eit)8 (k eit)*)112k=12'" ,
thi OOan 111hoa ham toan 111d tren dllQCgQi la (-) chiOOquy
Sail day la mQt vai k~t qua dllQCdUng trong 1u~ an.
DiM 1y 1 Cho h~ a 1a lien k~t n6i ti~p cua hai h~ ddn gian, ddn nguyen, di~u
khi€n dllQCa) va 0.2' Khi do h~ a la di~u khi€n dllQCn~u va chi n~u OOan111 hoa ham truy~n 8a(z) = 8aj (Z)8a2 (z) 1a(-) chiOOquy
DiM 1y 2 Cho a) va a2 1a cac h~ bi dQng t6i thi€u N~u OOan111hoa ham
truy~n 8a(z) = 8aj (Z)8a2(z) 1a(:1:)chiOOquy thi h~ a=~aj1a h~ t6i thi€u.
4 Cae viin d~ nghien etfu trong lu~n an.
Ti~p h;1chlldng nghien coo tren, d6i vdi cac h~ dQng h;fc tuy~n tioo rdi
f?C bi dong vdi ham truy~n 1aham cac toan 111co giai tich tren dra trim ddn vi,
Trang 13m9t 10<;1t cac bai loan mai duqc d~t ra ho~c dj thi~n cac k~t qua cua cac lac gia neu tren Nguqc l<;1i vai vfu1d~ lien k~t cac h~, chUngtoi xet bai loan tach m9t h~ thanh n6i cua hai h~ ddn gian d~ nghien coo tUngh~ rieng Trong bai loan nay, chung toi da tim duqc d?llg Wong minh cua cac h~ thanh phftn va da tach h~ theo hai hl1dng : hudng thll OO~tla tach h~ theo rinh chiOOquy cua ham truy~n, huang thll hai la tach h~ theo khong gian con b~t bi~n cua loan tV chiOOA ChUng toi cling da tim duqc m6i lien h~ gi11ahai cach khai tri~n noi tren Cac k~t qua nay duqc triOObay trong chudng 2 cua lu~ an va da duqc cong b6 trong [25] K~ d~n, chUng Wi cling xet d~n cac riOOch~t dinh riOO cua cac h~ vo h<;1nchi~u va vfu1d~ lien k~t cac h~ Dhung phudng phap nghien
coo d day chu y~u la dUng khai ni~m ham non t6t OO~tcua ham truy~n Cho 8(z) : U ~ V la ham cac loan tV co giai rich tren dla trim ddn vi
qj).Nagy-Foias da chUng miOOduqc t6n t<;1im9t ham ngoai <p(z) tren qj), oo~ gia tri la
cac loan tV co tU khong gian U vao khong gian F sao cho
,
<p(eit)*<p(eit) < 1- 8(eit)*8 (eit) a.e tren ff!))
,
va
n~u ~(z) la ham giai rich cac loan tV co sao cho
~(eit)*~ (eit) < 1- 8(eit)*8 (eit) a.e thi ~(eit)*~ (eit) < <p(eit)*<p(eit) a.e Ham <p(z)duqc xac diOOduy OO~tsai khac m9t loan tV h~g ddn nguyen OOan v~ bell trai va duqc gQi la ham non t6t OO~tcua ham I - 8(z)*8(z)