luận văn nàysẽ khảo sát sự hội tụ của thuật toán xấp xỉ giá trị để giải bài toán trong trường hợp toán tử F là ánh xạ từ không gian Hilbert X vào chính nó và F tựa đơn điệu. Ngoài ra luận văn còn làm sáng tỏ sự tồn tại nghiện , cũng như sự hội tụ của thuật toán được xây dựng dựa trên nguyên lý bài toán bổ trợ để giải bài toán
Trang 1'A ?
TAl LIEU THAM I(HA 0
[1] M S BAZARRAand C M SHETTY,Nonlinear Programming: Theory and Algorithms, John Wiley & Sons, New York, NY, USA, 1979.
[2] G COHEN, Auxiliary Problem Principle and Decomposition of Optimization Problems, Journal of Optimization Theory and Applications, Vol 32, pp 277-305, 1980
[3] G COHEN,Auxiliary Problem Principle Extended to Variational
Inequalities, Journal of Optimization Theory and Applications, Vol 59,
pp 325-333,1988
[4] G COHEN and D L ZHU, Decomposition Coordination Methods in Large Scale Optimization Problems: The Nondifferentiable Case and the Use of Augmented Lagrangians, Advances in Large Scale Systems Theory and Applications, Vol 1, pp 203-266, 1984
[5] G COHEN and F CHAPLAIS, Nested Monotony for Variational Inequalities over Product of Spaces and Convergence of Iterative Algorithms, Journal of Optimization Theory and Applications, Vol 59,
pp 369-390, 1988
[6] 1 P CROUZEIX,Pseudomonotone Variational Inequality Problems: Existence of Solutions, Mathematical Programming, vol 78, pp
305-314, 1997
[7] 1 EKELANDand R TEMAM,Convex Analysis and Variational Problems,
North-Holland, Amsterdam, 1976
[8] N EL-FAROUQ,Pseudomonotone Variational Inequalities: Convergence
of the Auxiliary Problem Method, Preprint, 1995.
[9] N EL-FAROUQ, Algorithmes de Resolution d'Im!quations Variationnelles, These de Doctorat en Mathematiques et Automatique, Ecole des Mines de Paris, Fontainebleau, France, 1993
[10] N EL-FAROUQand G COHEN,Progressive Regularization of Variational Inequalities and Decomposition Algorithms, to appear in Journal of Optimization Theory and Applications~ Vol 97, No 2, May 1998
39
Trang 2[11] S KARAMARDIANand S SCHAIBLE,Seven Kinds of Monotone Maps,
Journal of Optimization Theory and Applications, Vol 66, pp 37-47, 1990
[12] S KARAMARDIAN,S SCHAIBLEand 1 P CROUZEIX,Characterizations of Generalized Monotone Maps, Journal of Optimization Theory and Applications, Vol 76, pp 399-413, 1993
[13] 1 LARSSON and M PATRIKSSON,A Class of Gap Functions for Variational Inequalities, Mathematical Programming, Vol 64, pp 53-79,
1994
[14] E S LEVITINand B 1 POLYAK,Constrained minimization methods,
USSR Computational Mathematics and Mathematical Physics, Vol 6,
pp 1-50, 1966
[15] M A MATAOUI,Contributions it la Decomposition et it l'Agregation des Problemes Variationnelles, These de Doctorat en Mathematiques
et Automatique, Ecole des Mines de Paris, Fontainebleau, France, 1990
[16] V H NGUYEN, ALgorithmes de descente pour La resolution d'Inequations Variationnelles, Annee Academique, Begique, 1995-1996
[17] 1 M ORTEGAand W C RHEINBOLDT,Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, NY, USA,
1970
[18] M PATRIKSSON,Merit Functions and Descent Algorithms for a Class of Variational Inequality Problems, Optimization,Voi 41, pp 37-55, 1997 [19] M PATRIKSSON,Cost approximation: a unified framework of descent algorithms for nonlinear programs, Department of Mathematics, University of Washington, Seattle, WA, USA, 1994
[20] B 1 POLYAK,Introduction to Optimization, Optimization Software,
New York, NY, USA, 1987
[21] R 1 ROCKAFELLAR,Convex Analysis, Princeton University Press, Princeton, NJ, USA, 1970
40