luận văn nàysẽ khảo sát sự hội tụ của thuật toán xấp xỉ giá trị để giải bài toán trong trường hợp toán tử F là ánh xạ từ không gian Hilbert X vào chính nó và F tựa đơn điệu. Ngoài ra luận văn còn làm sáng tỏ sự tồn tại nghiện , cũng như sự hội tụ của thuật toán được xây dựng dựa trên nguyên lý bài toán bổ trợ để giải bài toán
Trang 1CHV0NG 2
NGUYENLYBAITOANBOTR0
2.1 Thu~it toan cd so
Trong [2, 3, 4], mQt nh6m cac thu~t toan dtS giai bai toan (1) dil dtiQc th6ng nha't trong cling mQt khuon khB va dtiQc gQi Ia nguyen 15'bai toan bB trQ Yttidng chinh cua thu~t toan nay d1.,1'aVaGnh~n xet san day
Xet ham bB trQ M : X ~ 9i Idi m;:tnhva kha vi Gateaux tren X , va E la mQt so' dtiong cho trudc Vdi x E X cho trtidc, xet bai toan bB trQ :
(11) mill (M(y) + ( EF(x) - M' (x) , y) ).
Y EOXad
Gia sa y (x) Ia nghi~m cua bai toan (11)
A.p dl.lllg bB d€ 1.5 vdi FI( ) = M( ) Idi, kha vi Gateaux tren X va F2(-) = <EF(x) - M' (x),.) la ham Idi ( vi tuye'n tinh ) Theo (9) , Y(x) thoa
-(M' (y(x», y - y(x» + (E F(x) - M' (x), y) - (E F(x) - M' (x), y(x» 2 0
v Y E Xad ,
hoi:ic d d;:tng ni t gQn
Ne'u y (x) =x thi (12) suy ra
(EF(x),y-X)20 VYEXad, tlic la
(FcY(X»,y-Y(X»20 VYEXad, lien y (x) Ia nghi~m cua bai toan (1)
D1.,1'atren nh~n xet nay, xay d1.,1'ngthu~t toan co sd san day dtS giai bai toan (1)
Trang 2Thu(it tmln 1 ( Thu(it tmln co sO')
Cho tru'de day cae sO'du'ong {8k, k E ~} 0
(i)
(ii)
(13)
(iii)
Chc;m dii!m xuclt phat XO EX tily yo
abuac k, bier Xk, tinh Xk+1 := y(Xk) b!ing vi?c giai bai loan b5 trq ( 11) vai x thay bai Xk , 8 bai 8k
mil}cl(M(Y)+(8k P(xk)-M'(xk),y»).
YEX
Neu II Xk+l - Xk II nho hcJn melt giai hC;ln cho truac thi dang 0 Nguqc
B6 d~ 2.1
T~li m6i buac cua thu~t loan tren, Xk+lla nghi?m duy nhC[tcua bai loan bien ph{m:
(14)
vai:
(15)
(pk(Xk+l),X-Xk+l):2: 0 \1XEXad ,
pk(X)=8kp(Xk)+M'(x)-M'(Xk) 0
Chung minh
Go? ?
(14) / h
'
hOA k+l, k+l /
1,
la su co al ng H~mx va y , We a
(pk(xk+l),yk+l -xk+l):2: 0,
Su y ra
( P k (y k+1) , Xk +1- Yk + 1) :2: 0 ,
(pk(Xk+l) _pk(yk+l),xk+l - yk+l):::; 0, ho~c vie't d d,;lllg khac
(16) (M'(xk+l)-M'(yk+l),xk+l_yk+l):::;O,
M~t khac, do M Ia ham 16im~nh nen theo m~nh d6 1.3 se co h~ng sO'
a > 0 sao cho
(17) (M'(Xk+l)-M'(yk+l),Xk+l _yk+l):2: a II Xk+l _yk+1112 ,
Trang 3Tli (16) va (17) suy ra Xk+l=l+l . 2.2 Djnh Iy hQi t\1d1!a tren Hnh t1!a don di~u m~nh
Trang phftn nay, chung ta se chung minh slj hQi W cua thu~t loan 1 trang hai tniong hQp voi loan tll'F trang bai loan (1) Ia don tr! va da tr!, voi giii thie't F Ia tl!a dcJndi~u m~nh
2.2.1 Truong hQp tm!n tll' don trj
Cae gia thie't
1 F Ia tl!a don di~u m~nh voi' hang sO'e lIen xad ,
2 F Ia lien Wc Lipschitz voi hang sO'A lIen X ,
3 M' Ia don di~u m~nh voi hang sO'b lIen xad
B6 d~ 2.2
V6'i gid thilt F la tZ!adon di?u m(;mh, nlu bai loan (1) co nghi?m, thl nghi?m
do la duy nh{[t.
Chung minh
Giii sa bai loan (1) co hai nghi~m Ia Xlva X2 E Xa tuc Ia
(18)
(19)
(F(XI)' X - Xl ) ~ 0 '1/ X EX,
(F(X2),X-X2)~O 'l/XEX .
Thay X= X; trong (18), ta duQc
(F(XI),X2 -Xl) ~ 0
Do F Ia tl!a don di~u m~nh nen tan t~i hang sO'e > 0 sao cho
(20) (F(X2)'X2 -Xl) ~ ell X2 -Xl II
*
M~t khac, thay X = Xl trong (19) thi thu duQc
(21)
(F(x2),X2 - Xl)::; 0
Trang 4Djnh Iy 2.1
Gid sa riing hili loan (1) co nghi~m x* Ne'u M' la don di~u mqmh vai hiing
sff h tren Xld , thi t6n tqziduy nhat nghi~m Xk+lcila hili loan h8 trei (13) Ne'u
F la tf:Cadon di~u mqznh vai hiing s6 e tren ;:ad ( thi x * duy nhd't ) va lien tl;tc Lipschitz vai hiing s6 A tren ;:adva:
\j k E ~, ex< C;k< ~eb , vdi ex> 0, ~ > 0,
A +~
thi day {Xk} hQi tl;tmqznh v~ x* Hon mla, ntu M' la lien tl;tCLipschitz vai hiing s6 B tren ;:ad, thi co uac lu(,fng sai s6:
(22)
e c;
Chung minh
a) Sf:Ct6n tqziva duy nhd't nghi~m
Ap dl.mgb6 d~ 1.5 va (12), ta co Xk+lla nghi<%mcua bai toan (13) ne'u
va chi ne'u
(24) < M'(Xk+l) - M'(Xk) + c;kF(Xk), x - Xk+l ) ~ 0 \j X E Xad
Ap dl.mgb6 d~ 1.1 vdi A la M', f la M'(Xk), cpla c;kF(Xk)thi A va cpd~ tha'y thoa 3 gia thie't dftu tien cua b6 d~ Ta kit3mtfa gia thie't cu6i
R5 rang 0 E dom cpva M' don di<%um(;lnhvdi h~ng so'b nen
< M' (x) - M' (x*), x - x * ) ~ b II x - x* 112 , thay x* = 0 thi ta du<;)c
< M' (x), x ) ~ b II X 112 + < M' (0), x )
Do do ta duoc
<M'(x), x)+cp(x) ~ bl! x 11+<c;kp(xk)+M'(O),x)
suy fa
Trang 5<M' ex), x) + cp(x) -} +ex) khi IIx II-} + ex).
IIx II
Do v~y, theo b6 d~ 1.1 thi bai tmln (24) luau tan t<,tiit nha't mQt nghi~m, nghi~m nay duQc gQi Iii Xk+l
Tinh duy nha't cua Xk+lsuy ra tu b6 d~ 2.1
b) Day (Xkj hQi tl,im~mh v~ x*.
*
x la nghi~m ct'ia bai toan (1) nen
(25) < F(x ), x - x ) ~ 0
EHit
v X E Xad
(26)
ct>(x)= M(x ) - M(x) - < M' (x), x - x) .
Vi M' don di~u m<,tnhnen tu b6 d~ 1.2, ta duQc
(27) ct>(Xk)~ b II xk - x * 112 ~ 0
2 X6t s1fbie'n d6i ct'ia ct>t<,tim6i buck cua thu~t toan 1
6.t+1 :=ct>(Xk+l) - ct>(Xk)
=M(Xk) - M(Xk+l) - < M'(Xk) , Xk- Xk+l ) + < M'(Xk) - M'(Xk+l), x*- Xk+l ).
Vi M' don di~u m<,tnhnen tu b6 d~ 1.2, ta duQc
M(Xk+l) - M(Xk) - < M' (Xk), Xk+l - Xk ) ~ b II xk+l - xk 112.
2
Do do
sl:=M(Xk)-M(Xk+l)_<M'(Xk),Xk_Xk+l)::::; - b Ilxk+l-xk 112.
2 Thay x = x* vao (24) thi ta duQc
(28) S2 :=< M'(Xk) - M'(Xk+l), x* - Xk+l )
::::;Sk < F(Xk), x* - Xk+l )
Do F tl,l'adon di~u m<,tnhva
< F(x *) , Xk+l- X* ) ~ 0 , nen
Trang 6(29) (F(Xk+l) ,Xk+l~X*);::: ell xk+l-x* 112.
Do d6
S2:::; - e skllxk+l - x*112 + sk( F(xk) - F(xk+l), x* - xk+l).
V~y
k+l
L'.k
:::;_lll2 xk+l - xk 112- e Ek II xk+l - x * 112+Ek (F(xk) - F(xk+l), X * - xk+l )
:::; _lll xk+l - xk 112 - e'Ek II xk+l - x * 112 +Ek II F(xk) - F(xk+l) IIII x * - xk+l II
2
:::; -lll xk+l - xk 112 - e Ek II xk+l - x * 112 +Ek A II xk+l - xk IIII xk+l - x * II
2
-(
vib
II
II EkA II
11)
2
(
J
II
11
2
:::;E2k
(A2 - + ] II xk+l - x * 112.
2
" 1' k 2e b ~ e A +/3
D d/
E2k (
A2 - ~
J
< - /3a2
V~y
(30) L'.~+1 :::;- a2/3II xk+l - x* 112
2b Tli d6 ta suy ra L'.t+1:::;0 tilc la <D(Xk+l):::;<D(xk) Do v~y, day {<D(Xk)} giam va bi ch~n dtioi bdi 0 lien hQi W Do d6, L'.t+1 -:; 0 va tli (30) suy ra day {Xk}hQi W m(;lnh v6 x*
c) Chang minh (23)
*
Thay x = x vao (24) va do (29), ta dtiQc
(M'(xk+l)-M'(xk),X* _Xk+l) +Ek(F(xk)-F(xk+l),x* -xk+l);:::
;:::-Ek(F(xk+l),x* -xk+l)
Trang 7;::::Ek e II Xk+l - X * 112.
M~t khac, do M' lien Wc Lipschitz vdi h~ng so' B va F lien Wc Lipschitz vdi h~ng so' A nen
< M' (Xk+l) - M' (Xk), x* - Xk+l > :::; B II Xk+l - x * IIII xk+l - xk II,
< F(Xk) - F(Xk+l), x* - Xk+l > :::; AII Xk+l - x * IIII Xk+l - x k II
Do do ta co
Eke!! Xk+l -x* 112:::;II Xk+l -x* IIII Xk+l -xk II (B+EkA),
tlic la
II Xk+l - x' II ,; : (~ + A) II Xk+l - Xk II
.
2.2.2 Truong hQ'ptmin tii' da trj
Trong ph~n nay, chung ta se xet tru'ong hQpF la loan tii' da tIt, gia tri cua
F luc nay la illQtt~p con cua X Bai loan (1) luc nay trd thanh:
::3r E F(x ) : <r , x - x >;::::0 'V x E Xa Trong tnrong hQp F Ia loan tii' da trt, cac dint nghla tti' 1.5 de'n 1.13 tliong ling cho ant X<;lda tri se co dliQc b~ng cach thay F(.) bdi r E F(.) Ching h<;ln,dint nghla tt,(adon di~u ill<;lnhcua ant X<;ldon tri dliQcthay the' bdi dint nghla san day:
::3e > 0, 'V Xl, X2 E xad , 'V rl E F(Xl), 'V r2 E F(X2), (31)
(32) < rl, X2 - xl > ;::::0 => < r2, X2 - Xl > ;::::e II Xl - X2 112.
Thu~t loan co sd vftn nhli cu, nhling do F(Xk) Ia illQt t~p hQp, nen la'y ba't
ky rk E F(Xk) thay eho F(Xk) trong loan tii' don tIt, va day {Ek}trong trliong hQp nay thoa
(33)
Ek > 0, LEk = +CXJ, L(Ek)2 < +CXJ
Trang 8Thu~t tmin 2
Bdt dau ta dilm xuc{t phat XOE X Tc;zibuck k, bie't Xk, am Xk+lbang cach gidi bai loan bd Irq:
(34) mill (M(X)+(ck rk -M'(Xk),X»),
x E Xad
/0 k
F( k)
VCll rEx.
Cae gia thie't
Trang phftn nay, cac gia thie't v~n gill nguyen nhu'trong 2.2.1 Rieng tint lien t\lCLipschitz cua F du'Qcd6i thanh
(35) ::3a> 0, ::3~ > 0 sao cho V x E Xad, V r E F(x), II r II~ a II xII +~.
Chti Y 2.1
Ke't qua cua b6 d~ 2.2 v~n dung trang tru'ong hQp F la loan tli' da trio Chung minh di~u nay tu'dng t11nhu' chung minh b6 d~ 2.2, chu y ding luc
nay F(x})va F(X2) du'Qcthayboi VrEF(x})va VsEF(X2)'
Djnh ly 2.2
Gid sa bai loan (31) co nghi?m x* Ne'u M' la don di?u mc;znhvdi hang so
b tren xad, thi tbn tc;ziduy nht/t milt nghi?m ~+1 cho bai loan b6 trq (34) Ne'u
F la ti!a don di?u mc;znhvdi hang so' e tren )(ld (x* la duy nha't ) va thoa man
(35), va ne'u day {I} thoa man (33), thi day {Xk}hili tl;tmc;znhv~ x*.
Chung minh
a) Si! tbn tc;ziva duy nha't nghi?m
Chung minh hoan loan tu'dng t1f nhu' dinh 1:9 2.1, ChI thay F(Xk) bdi
)
V r E F(x
b) Day {Xk}hili tl;tmc;znhv~ x*
x* la nghi~m cua bai loan (31) ne'u va ChIne'u
::3r EF(x):(r,x-x ):::::0 VXEXa.
1.5 va (12), ta co Xk+lla nghi~m cua bai loan b6 trQ (34)
(36)
Ap d\lng b6 de
ne'u va ChIne'u
Trang 9(37) (M' (Xk+l) - M' (Xk), X - Xk+l ) + 8k (l, x- Xk+l ) ~ 0
F( k)
VOl rEX.
\j X E xad ,
Xet ham
<!>(x)= M(x )- M(x) - ( M' (x), x - x)
VI M' la don di~u m<;lnhnen tu b6 d~ 1.2, ta dtl-Qc
<!>(Xk)~ b II xk -x* 112~ O.
2 llt+l : = <!>(Xk+l)- <!>(Xk)
=M(Xk)- M(Xk+l) - (M'(Xk) , Xk- Xk+l) + (M'(Xk) - M'(Xk+l), x* - Xk+l).
VI M' don di~u m<;lnhnen tu b5 d~ 1.2, ta co
M(Xk+l) - M(Xk) - ( M' (Xk), Xk+l - Xk) ~ b II xk+l - xk 112.
Do v~y
Sj := M(Xk) - M(Xk+l) - (M' (Xk) , Xk- Xk+l):::; - b II xk+l - xk 112.
2 Thay x = x* vao (37), ta duQc
S2 := (M'(Xk) - M'(Xk+l), x* - Xk+l )
< k ( .k X* - k+l )
Thay x =Xkvao (36) thi ta duQc'
(r ,x -x )~O.
M<.Hkhac, F tl,(a don di~u m<;lnh nen
(rk , Xk- x* ) ~ ell Xk - x* 112.
Do do
S2:::;-e8k Ilxk-x*112+ 8k(rk,xk-xk+l)
V~y
llt+1 :::;- b II Xk+l - xk 112 -e 8k II xk - x * 112+8k II rk IIII Xk+l - xk II
2
[
k
~
:::;_b Ilxk+l-xkll-~llrkll +lillrkIl2-e8kllxk-x*1I2
Trang 10( k)2 *
::::;~ IIrk 112-eEk II Xk - X 112.
2b
Tli (35) suy ra
(38) Ilrkll::::;allxkll+~::::;allxk-x*ll+allx*II+~
M~ t khac ta co
( u + v )2::::;2( U2+ V2) '\I u, V E iR.
Do v~y, tli (38) suy ra
IIr~::::;2b ~2(a2112b Xk -x* 112+(a II x* II +~)2)
2
::::;-11 x -x II +- a IIx II+~
::::;Yllxk_x*112+8,
trong do
Do do
Voi bat ky s6 tlf nhien N, ta co
I,0.~+l::::; I(-eEk IIXk -x* 112+(Ek)2(YII Xk -x* 112+8)),
ke't hQp voi (27), ta duQc
b IIxN - x * 112::::;<:D(xN)
2
N-l
(39) ::::;<:D(xo)+ I -eEk IIXk -x* 112+(Ek)2( YIIXk -x* 112+8)
k=O N-l
::::;<:D(xo)+ I(Ek)2(Yllxk -x* 112+8),
k=O SHY ra
Trang 11N * 2
II x -X II ~
~ 2cD(x ) + 2(£ ) Y IIxO -X* 112+- L(£k)2 + L ~(£k)211 Xk -X 112
N-I
~l1N + L~Lk Ilxk-x*f,
k=l
ydi
28 N-1
N = 2cD(xO) + 2y (£°)211 XO-X* 112+- L(£k)2,
k - 2y
( k)2
~L - - £ b
Ta CO
\i k, II Xk - X * 112~ SUp II Xl - X * 112,
l::;k+1
"k 2y" k 2 LJL =- L./£ ) <+00
bdi vi L(8k)2 < +00
kE~
Vi I(8k)2 < +00 nen co 11> 0 saG cho l1N ~ 11 , \iN E ~.
kE~
Luc nay, hai day {II Xk - x* 112}va {l1k} thoa gia thi6t cua b6 d6 1.6, suy
ra day {II xk - x* 112}bi ch~n va do do day {Xk } bi ch~n
D~t f(x) =II X - X* 112,theo dinh 1y gia tri tIling binh
f(x) - fey)=(f(z), x- y)
*
=2(z-x ,x-y), vdi z = A X + (1 - A )y, A E (0, 1)
Ta co
If(x)-f(y)I~21Iz-x 1IIIx-yll~2supllz-x 1IIIx-yll,
ZEK vdi K la baa 16i ciia day { Xk}, va do K bi ch~n nen suy ra
(40)
Han Hila, tu (39) ta duQc
f lien Wc Lipschitz
Trang 12N-l N-l N-l
e LEk II Xk - X* 112 :::; <D(XO) + LY(Ek)2 II Xk - X* 112+ 8L(Ek)2
Vi day {II Xk - x* 112}bi ch<;innen
3p > 0: II x -x II :::;p \t k, suy ra
el>k Ilxk -x* 112:::;<D(xO)+(yp+8)L(Ek)2
Vi 2.:(8k)2 < +00 nen tli tren suy ra
kE~
(41) 2.:Ek II xk - x* 112 <+00
kE~
Thay x=Xkvao (37) ta du<;jc
< M' (Xk+l ) - M' (Xk), Xk - Xk+l >+ Ek < rk , Xk - Xk+l > 20,
Wc la
-bllxk+l-xk 112+Ek Ilrk 1IIIxk+l-xk 1120.
Ke't h<;jp voi (35) thi ta du<;jc
II Xk+l - Xk II :::; ~ II rk II :::; Ek (ex II Xk II +0) (ne'u II Xk+l - xk 11:;t0)
Vi day { Xk } bi ch<;innen d<;it~ =exII x:11+0 thi tli tren suy ra
(42) vftn dung trang tru'ong h<;jpII xk+l - xk II=O.
Tli (40), (41), (42) ta suy ra cac gia thie't cua b5 d@1.7 du<;jcthoa man Do d6 ta dUdc
hm Ilxk_X* 11=0
k -Hoo
Trang 132.3 Dinh Iy hQi tv dtfa tren tlnh eMit ttfa Dunn
Trang ph~n nay, chung ta se chung mint slf hQi t~l cua thu~t toan 1 trang tniong hQp toan 111F trang bai toan (1) Ia don tri va F Ia tlfa Dunn
Cae gia thie't
1 F co tint cha't 11!aDunn vdi hang so' E tren Xad ,
2 F lien Wc Holder tren Xad ngma Ia
:3c > 0 va D> 0 saGcho V x, y E Xad,IIF(x) - F(y) II::;D IIx - y Ilc ,
3 M' Ia don di~u manh vdi hang so' b va lien t~lCLipschitz vdi hang so' B
A
Xad
tren
Dinh Iy 2.3
Oid sa bai toan (1) co nghi?m x* Ntu M' la don di?u m{;mhwJi hang so b tren ;:ad, thi t5n tqziduy nh(Jtnghi?m Xk+lcho bai toan b8 tre!(13) Han nlla, ntu F la tf!a Dunn vai hang s(/ E tren;:ad va ne/u:
(43)- \-I k \0 > k + I < k, k 2b / O n 0
v E "", E - E , va a < E < -, VOl a > , I '> ,
E+~
ch4n Ntu them gid thilt la M' lien tl,{cLipschitz va F la lien tl,{CHolder tren
;:ad, thi m6i ddm tl,{ylu cua dc7y{ Xk} la m()t nghi?m cua (1).
Chung minh
a) Sf! t5n tqziva duy nhat nghi?m
Slf tan t~i va duy nha't nghi~m ciia bai toan b6 trQ (13) da: duQc chung mint d dint 19 2.1
b) Sf! h()i tl,{
Bat
(44) \P(x, E)=cD(x) + D(x, E) ,
vdi
(45)
cD(x)= M(x )- M(x) - < M' (x), x - x> ,
D(x, E) = E <F(x ), x - x >
Trang 14Theo (27), ta co
cD(xk) ::::b II x k - X * 112
2
*
Do x Ia nghi~m cua bai roan (1) lien
»
Do do
(46) '¥(Xk,Sk);:::: bllxk-x*112::::0
2
Ta xet s11'bi€n d6i cua ham '¥ doi vdi m6i budc cua thu~t loan 1
B~ng cach dung cac ky hi~u va tinh loan tltong t11'nhu trong chung minh cua dinh Iy 2.1, ta duc;fC
1:+1 := '¥(xk+1, sk+1)- '¥(Xk ,sk)
=cD(Xk+1) - cD(xk) +Q(Xk+1 , Sk+1) - Q(Xk , Sk)
= s] + S2+ S < F(x ), x - x )- S <F(x ), x - x )
=s] + S2+ S3 ,
vdi
S] ~ - b II xk+1 - xk 112 ,
2
< k<F( k) * k+1)
S3= S < F(x ), x - x ) - S < F(x ), x - x ).
Ta co
S2 ~ Sk < F(Xk ), X* - Xk+1 )=Sk < F(Xk), X* - Xk ) + Sk < F(Xk ), Xk - Xk+l )
Do F co tinh cha't tua Dunn va
< F(x ), x - x );::::0, lien
<F(Xk),Xk -x*)::::! II F(xk)-F(x*) 112
E
Do do
k S2 ~ -~ II F(Xk) -F(x*) 112+sk<F(Xk),Xk _Xk+1)
E
Trang 15M kh d k+l < k
';it ac, 0 E - E nen
< k * k+l k) S3 - E (F(x ), X - X V~y
k
E
Su y ra
r:+1 :;;-~llxk+l_Xk 112-~ IIF(Xk)-F(x*) 112 +
+ Ek II F(Xk) - F(x*) 1111Xk - Xk+l II Vi
Ek II F(Xk) - F(x *) 11II Xk - Xk+l II :;; (Ek )2 II F(x k) - F(x *) 112+
2~
+ ~ II Xk - Xk+l 112 , nen ta dudc
rk+l < ~-b Ilxk -xk+1112 -Ek
(
~-~
) IIF(xk)-F(X*)112.
V/' '\
01 I\,< va ex< E < - t 1ta co
E+~
rk+l :;;-b-~llxk+l-xk 112- ex~ IIF(xk)-F(x*)112.
. Ne'u Xk+l=Xk va F(Xk ) = F(x* ) thi tU (25), suy ra Xkla nghi~m cua bai roan (1)
. NguQc l';ii, ta duQc
r:+1 = \Jf(xk+l,Ek+l) - \Jf(Xk,Ek) < 0 ,
do do day {\Jf(Xk , Ek)} giam, bi chi;in dudi bdi 0 nen hQi tl,l Do do, ta co
r:+1 = \Jf(xk+l, Ek+l) - \Jf(Xk, Ek) ~ 0 khi k ~ +00.
Do v~y ta duQc
II x k +1 - X k II ~ 0 khi k ~ +00,
Trang 16IIF(xk)-F(x*)II +O khik ++oo.
Hon nlia, day {'¥(Xk, 8k)} hQi tl.l lien bi ch~n va do do, tU (46) suy fa
'¥(Xk,8k) ~ ~II Xk -x* 112
2 V~y day {II xk -x* II} bi ch~n va do do day {Xk}bi ch~n
Bay giG, gia sii' z la mQt dit5m tl.lyeti cila day {Xk}, va gia sii' day con {Xkj} hQi tl.l v~ z.
Ta viet l~i (24) la
(M' (Xk+l ) - M' (Xk ), X - Xk+l ) + 8k ( F(xk ), X - Xk+l) ~ 0 v X E xad M' lien Wc Lipschitz vdi h~ng sO'B lien
II M'(Xk+l)-M'(Xk) II ::=;Bllxk+l-xkII.
M~t khac, VI 8k> a lien
(F(xk), X - Xk+l) ~ - B II xk+l - xk III1 x- xk+l II
Do do ta duoe
(F(xki),x-xki+l)~_Bllxki+l-xki II Ilx-xki+l II VXEXad.
a
VI
F(xki) +F(x*), xkj +z, Ilxki+l-xki 11 +0 khi ki ++00,
lien
(47) (F(x*), x - z) ~ 0 V X E Xad
Ngoai fa, VI (F(z), x kj - z) + 0, ki + +00 lien lieU F(z) =0 thl fa rang z Ia nghi~m cua (1)
Neu F(z)"*0 , d~t
yki = Xki - (F(z), Xki -z)
II F(z) 112 '
thl
(48) ( F(z) , ykj - z) =(F(z), Xki Z )