Sau ®©y lµ mét bµi to¸n trong BT 57a SGK.Tr.25 To¸n 8.T1“BT 57a SGK.Tr.25 To¸n 8.T1” ”
§Ò bµi: Ph©n tÝch ®a thøc sau thµnh nh©n tö: x2 4x3
Ta cã mét sè c¸ch gi¶i nh sau:
C1: 2 4 3 2 4 4 1 22 1 ( 1 )( 3 )
x
C2: 2 4 3 2 3 3 ( 1 ) 3 ( 1 ) ( 1 )( 3 )
x x x x x x x x x
x
C3: 2 4 3 2 2 1 2 2 12 2 ( 1 ) ( 1 )( 3 )
x
C4: x2 4x 3 4x2 3x2 4x 3 4x(x 1 ) 3 (x2 1 ) (x 1 )4x 3 (x 1 ) (x 1 )(x 3 )
C5: 2 4 3 2 6 9 2 6 32 2 ( 3 ) ( 1 )( 3 )
x
C6:
3 ( 1 ) 2 ( 1 )( 3 ) )
1 ( ) 1 ( 2 ) 1 ( 3
) 1 ( 2 ) 1 2 ( 3 2 2 3 6 3 3 4
2
2 2
2 2
x x x x
x x
x x
x x x
x x x x
x x
x
C7: x2 4x 3 x2 1 4x 4 (x2 1 ) 4 (x 1 ) (x 1 )(x 1 ) 4 (x 1 )(x 3 )
C8: x2 4x 3 x2 9 4x 12 (x2 9 ) 4 (x 3 ) (x 3 )(x 3 ) 4 (x 1 )(x 3 )
C9: §Æt f(x) = x2 4x3
Ta cã d¹ng a + b + c = 0 nªn f(x) chia hÕt cho (x-1) Thùc hiÖn phÐp chia ta cã th¬ng (x-3) hay f(x) = 2 4 3 ( 1 )( 3 )
x x x x
C10: Gi¶ sö ta cã x2 4x3 = 0 (1)
Gäi x1 vµ x2 lµ 2 nghiÖm cña (1)
Theo Vi-Ðt ta cã:
1 3 3
1 3 4
2 1 2 1
x x x x
Nªn
1 3
2 1
x x
Ph¬ng tr×nh (1) cã 2 nghiÖm x=3 vµ x=1
Hay ta cã: 2 4 3 ( 1 )( 3 )
x x x