Bài toán sở hữu công cộng 2... ĐẶT VẤN ĐỀ Khi các cá nhân trong xã hội phản ứng chỉ với động cơ cá nhân, các hàng hóa công cộng sẽ được cung cấp không đủ và các tài nguyên công cộng thì
Trang 1NHÓM 3
1. Nguyễn Tiến Đạt
2. Đỗ Văn Phúc
4. Phí Hồng Văn
5. Phan Nhật Thành
1
Trang 2Bài toán sở hữu công
cộng
2
Trang 3ĐẶT VẤN ĐỀ
Khi các cá nhân trong xã hội phản ứng chỉ với động cơ cá nhân, các hàng hóa công
cộng sẽ được cung cấp không đủ và các tài nguyên công cộng thì bị khai thác quá mức
Trang 4Bài toán sở hữu công cộng
Giả thiết :
Có n nông dân mỗi người có số con bò gi (i=1:n)
Tổng số bò trong làng
Chi phí cho mỗi con bò là c
Đồng cỏ hữu hạn, số bò tối đa nuôi được là
Lợi ích từ mỗi con bò như nhau bằng v(G)
v(G) > 0 với G < ; v(G)=0 với G ≥
Lợi ích biên giảm dần: < 0 và < 0
1
n
i
G = ∑g
M
' ( )
v G v G''( )
M
G
M
' ( )
v G
M
'' ( )
v G
' ( )
v G
M
Trang 5Gmax
G
v
Với G < Gmax :
G tăng thì v giảm dần
v1
v2
G1 G2 vvvvvvv
Trang 6Giả thiết
• Không gian chiến lược Si = [0, GM)
• Thu hoạch của người thứ i là: [v(G) – c]gi
• Cân bằng Nash được xác định là: (g1*,…,gn*) – gi* là giá trị làm cho hàm thu hoạch đat cực đại
Trang 7Mục tiêu cần giải quyết
1) Tìm cân bằng Nash (g1*,…,gn*) xác định
tổng số bò G* khi mỗi cá nhân tối đa thu hoạch của mình
2) Tìm G** - tổng số bò để tối đa hóa thu
hoạch chung của làng đó
3) So sánh G* và G**
Trang 8Giải quyết bài toán
Thu hoạch cho nông dân i từ việc nuôi gi con
bò khi số bò được cho các nông dân khác nuôi
là (g1,…, gi-1, gi+1, … , gn) là:
Tìm điều kiện của để hàm (1.1) max khi cho
rằng các nông dân khác chọn
g v g + +− g + g g ++ g +(1.1) c g + −
( , ,g g i− , g i+ , , g n)
i g
Trang 9Giải quyết bài toán
Điều kiện cấp 1 đối với bài toán tối ưu trên là:
Kí hiệu g*
-i thay cho (g*
1+ … + g*
i-1 + g*
i+1 + + g*
n)
Thay g*
i vào (1.2) rồi lấy tổng ta được:
nv(G*) + G* v’(G*) – nc = 0 (1.3)
( i i) i '( i i) 0
Trang 10Giải quyết bài toán
Chia cả 2 vế của phương trình 1.3 cho n,
ta được
v(G*) + (1/n) G* v’(G*) – c = 0 (1.4)
G* kí hiệu cho g1* + … + gn*
Chú ý
Trang 11Giải quyết bài toán
Xét bài toán tối ưu hóa thu hoạch xã hội
o Tìm max của hàm thu hoạch :
G v(G) - Gc với (0 ≤ G ≤ ∞)
(1.5)
o Điều kiện cấp một đối với bài toán này là:
o G ** là nghiệm của phương trình (1.5) thì:
** ** **
v G + G v G − =c
( ) '( ) 0
v G + Gv G − =c
(1.6)
Trang 12So sánh G* và G**
Giả sử G* ≤ G** thì:
v(G * ) ≥ v(G ** ) vì: v’(G) < 0
0 > v’(G * ) ≥ v’(G ** ) vì v’’(G) < 0
(1/n)G * < G **
** ** **
(2)
Trang 13So sánh G* và G**
=> Vế trái (1) > Vế trái (2) (vô lí do (1) = (2) = 0)
Vậy G* > G**
Kết luận : Trong cân bằng Nash quá nhiều bò được
nuôi thả so với trong tối ưu xã hội; tài nguyên chung
bị khai thác quá mức bởi vì mỗi nông dân chỉ xem
xét đến động cơ cá nhân của mình, mà không xét
đến ảnh hưởng đến nông dân khác.
Trang 14Ví dụ minh họa
Xét 1 ví dụ đơn giản minh họa cho bài toán sở hữu công cộng
Giả sử trong làng X chỉ có 2 nông dân nuôi
bò trên cùng một đồng cỏ của làng, mỗi hộ tính toán số bò cần nuôi để tối đa hóa thu hoạch của mình, biết
Hàm lợi ích của mỗi con bò:
V(G)=10.000 – G 2
Trang 15Ví dụ minh họa
Chi phí nuôi mỗi con bò đều như nhau
và c =
Hãy:
Tìm G* khi 2 nông dân tối đa hóa hàm thu hoạch của họ.
Tìm G** khi làng đó tối đa hóa hàm thu hoạch của mình.
So sánh G* và G**; U(G*) và U(G**).
Trang 16Lời giải
Ta có: G = g1 + g2
Trang 17THANKS FOR YOUR
ATTENTION!