1. Trang chủ
  2. » Giáo án - Bài giảng

một ssó hệ thức về cạnh và góc trong tam giác vuông

20 346 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 1,05 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Qua 2 công thức này, em hãy cho biết: Muốn tính một cạnh góc vuông theo cạnh huyền ta có mấy cách?. Hãy diễn đạt bằng lời tõng cách đó.. A Hãy tính tỉ số lượng giác góc B, theo AC và BC

Trang 2

TIẾT 11:

MỘT SỐ HỆ THỨC

VỀ CẠNH VÀ GÓC TRONG

TAM GIÁC VUÔNG

§inh V¨n C ¬ng

Trang 3

Kiểm tra bài cũ

áp dụng : Cho tam giỏc ABC vuụng tại A, tỡm mối liờn hệ về tỉ số

lượng giỏc giữa gúc B và gúc C.

sin B = cos C cos B = sin C

tg B = cotg C cotg B = tg C

A

B

C

Phát biểu định lý về tỉ số l ợng giác của 2 góc phụ nhau ?

- Nếu 2 góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc

này bắng côtang góc kia.

Trang 4

65 0

?

Một chiếc thang dài 3m, đặt nghiêng so với phương nằm ngang 1 góc 65 0 Hỏi phải đặt chân thang cách tường bao nhiêu để thang không đổ?

Trang 5

Bài 4 - Tiết 11:

MỘT SỐ HỆ THỨC VỀ CẠNH VÀ GÓC

TRONG TAM GIÁC VUÔNG

1 Các hệ thức

2 Bài tập áp dụng

Trang 6

Qua 2 công thức này, em hãy cho biết:

Muốn tính một cạnh góc vuông theo cạnh huyền ta có mấy cách? Hãy diễn đạt bằng lời tõng cách đó.

A

Hãy tính tỉ số lượng giác góc B, theo AC và BC

sin B =

Từ công thức trên, hãy suy ra cách tính cạnh AC.

AC BC sin B

= cos C

AC BC cos C

Viết tiếp vào công thức dưới dây tỉ số lượng giác của góc C

I Các hệ thức:

Có 2 cách:

Lấy cạnh huyền nhân với sin của góc đối điện với nó

hoặc

Lấy cạnh huyền nhân với cos của góc nằm kề với nó

=

=

sin

cos

= ?

AC

BC

Trang 7

I Các hệ thức:

A

Hãy viết tỉ số lượng giác của góc B theo cạnh AB và AC

tg B = AC

AB

Từ đó suy ra cách tính cạnh AC

AC = AB tg B

Viết tiếp vào công thức dưới đây tỉ số lượng giác của góc C

= cotg C

AC = AB cotg C

Qua 2 công thức này, em hãy cho biết:

Muốn tính một cạnh góc vuông theo cạnh góc vuông kia ta

có mấy cách? Hãy diễn đạt bằng lời tõng cách đó.

= ?

Có 2 cách:

Lấy cạnh góc vuông kia nhân với tg của góc đối điện với nó

hoặc

tg

cotg

Lấy cạnh góc vuông kia nhân với cotg của góc n»m kÒ với nó

Trang 8

AC = BC sin B = BC cos C

AB = BC cos B = BC sin C

AC = AB tg B = AB cotg C

= AC cotg B AC tg C

A

Định lí: Trong tam giác vuông, mỗi cạnh

góc vuông bằng:

Cạnh huyền nhân với sin góc đối hoặc nhân với cos góc kề

Cạnh góc vuông kia nhân với tg góc đối hoặc nhân với cotg góc kề

Trang 9

D E

F

1 DE = EF

a/ sin E b/ cos E c/ tg E d/ cotg E

a) Chọn đáp án đúng trong các câu sau:

Bài tập áp dụng

cos E

Trang 10

D E

F

1 DE = EF

a/ sin E b/ cos E c/ tg E d/ cotg E

a) Chọn đáp án đúng trong các câu sau:

Bạn đã chọn sai!

Bài tập áp dụng

Trang 11

a/ sin N b/ cos N c/ tg N d/ cotg N

M

2 MP = NP

b) Chọn đáp án đúng trong các câu sau:

sin N

Trang 12

a/ sin N b/ cos N c/ tg N d/ cotg N

M

2 MP = NP

b) Chọn đáp án đúng trong các câu sau:

Bạn đã chọn sai!

Trang 13

3 ST = SU

a/ sin T b/ cos T c/ tg T d/ cotg T

T

c) Chọn đáp án đúng trong các câu sau:

cotg T

Trang 14

3 ST = SU

a/ sin T b/ cos T c/ tg T d/ cotg T

c) Chọn đáp án đúng trong các câu sau:

Trang 15

4 HL = LK

a/ sin K b/ cos K c/ tg K d/ cotg K

d) Chọn đáp án đúng trong các câu sau:

tg K

K

Trang 16

4 HL = LK

a/ sin K b/ cos K c/ tg K d/ cotg K

d) Chọn đáp án đúng trong các câu sau:

Bạn đã chọn sai!

K

Trang 17

Cho các hình vẽ sau:

A

A

B

C

60 0

10 (cm)

0

30

9 (cm)

Tính độ dài cạnh AB? Tính độ dài cạnh AC?

Trong ABC vuông tại A, ta có:

AC = AB tg B = 9 tg 30 0

= 9 = 3 (cm)

3

3

3

Trong ABC vuông tại A, ta có:

AB = BC cos B = 10 cos 60 0

= 10 = 5 (cm)

2

1

Trang 18

B

H

V = 500k

m/h

30 0

Một máy bay bay lên với vận tốc 500 km/h Đường bay lên

tạo với phương nằm ngang một góc 30 0 Hỏi sau 1,2 phút

máy bay lên cao được bao nhiêu km theo phương thẳng

đứng?

t = 1,2

phú t =

giờ

Quãng đường máy bay bay lên trong 1,2 phút là:

S = V t

50

1

AB = 500 = 10 (km)

1 50

Độ cao máy bay đạt được sau 1,2 phút là:

BH= AB sin A = 10 sin 30 0

1

?

?

Trang 19

65 0

?

Một chiếc thang dài 3m, đặt nghiêng so với phương

chân tường bao nhiêu để thang không đổ?

Khoảng cách từ chân thang đến chân tường là:

30 Cos 65 0 1,27 (m)

1,27

Trang 20

Bài tập:

Cho tam giác ABC vuông tại A có AB = 21cm,

= 40 0 Hãy tính độ dài

a) AC b) BC c) Phân giác BD của

C

B

B

≈≈

Giải :

a) Trong tam giác vuông ABC vuông ở A,

có AC = AB cotgC = 21 cotg 40 0

b) Áp dụng hệ thức lượng trong tam giác vuông ABC, ta có:

21 1,1918 25,03 (cm) SinC =

BC = c) = 40 0 = 50 0 = 25 0 ( ABC vuông ở A) Xét ABD có cosB1 =

A

B

C D

1

40 0

Ngày đăng: 08/05/2015, 09:00

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w