1. Trang chủ
  2. » Giáo án - Bài giảng

Hội tụ của phương pháp phân tích điểm bên ngoài

37 423 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 37
Dung lượng 0,96 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Convergence analysis of the exterior-point methodI... Local and global convergence analysis of EPM... Local and global convergence analysis of EPM... Hestenes, PowellExterior point metho

Trang 1

Convergence analysis of the exterior-point method

I Griva, R Polyak

AMS Meeting 2007, Oxford, March 16

*

x

Trang 2

1 Overview Equality and inequality constraints Conceptual

difficulties.

2 Exterior point method (EPM)

3 Local and global convergence analysis of EPM Numerical results

4 Conclusion.

Trang 3

Constrained optimization problem

E I

X x

x f

), (

ly continuous twice

are ,

, c i g i

f

Trang 4

Equality constraints

( ( ), , ( ) ) )

( ,

0 )

( s.t.

), (

x f

y x

L

1

) ( )

( )

, ( Lagrange multipliers y = ( y 1 , , y p )

(

0 )

( )

( 0

) , (

0 )

,

(

x g

y x g

x

f y

x L

y x

y

x

) ( of

Jacobian the

is )

g

Trang 5

0 )

( )

( 0

) , (

0 )

,

(

x g

y x g

x

f y

x L

y x

x

λ

) ( of

Jacobian the

is )

) ( )

( 0

) (

) ( )

, (

2

x g

y x

g x

f y

x x

g

x g y

x

x

x x

) ,

( solution enough to

close is

) , ( ion approximat

Trang 6

Inequality constraints

( ( ), , ( ) )

) ( ,

0 )

( s.t.

), (

) ( x c

3

) ( x = β

f

*2

) ( x = β = β

f

1

) ( x = β

f

32

β > >

: set Active I* = i ci x* =

Trang 7

Inequality constraints

*

, 0 )

( s.t.

), (

min f x c i x = iI

( ( ), , ( ) )

) ( ,

0 )

( s.t.

), (

Choosing the active set is a combinatorial problem!!!

Trang 8

0 )

( )

(

x Yc

y x c

x

) ( of Jacobian the

is )

) ( )

( )

( )

(

) ( )

, (

2

x Yc

y x

c x

f y

x x

C x

c

Y

x c y

x

x

) ( yidiag

0 )

c

? 0 ,

0 )

( : ity nonnegativ e

account th into

take to

solution near the

accuracy of

loss Possible

Challenges

Complementarity!!!

Trang 9

y x c

x

µ

) (

0 )

( )

(

) ( of Jacobian the

is )

) ( )

( )

( )

(

) ( )

, (

2

x Yc e

y x

c x

f y

x x

C x

c

Y

x c y

c Y x C

e x C

y

solution near the

accuracy of

loss

Possible

1 1

µ

Trang 11

1 Overview Equality and inequality constraints Conceptual

difficulties.

2 Exterior point method (EPM)

3 Local and global convergence analysis of EPM Numerical results

4 Conclusion.

Trang 12

(Hestenes, Powell)

Exterior point method (EPM)

Trang 13

ψ ( ) t

t

) (

min f x

s.t µψ µ − 1 c i x

Bertsekas and

Kort l,

Exponentia

1

-)

(

2

te

t = − −

ψ

Polyak Barrier,

Modified

) 1

f y

x

1

) ( )

,

µ Lagrangian for the equivalent problem

Nonlinear Rescaling of inequalities (Polyak)

parameter barrier

the is µ

Trang 14

( ) 2 1

2

1 )

( )

( )

( )

, ,

i

i i

µ

µ ψ

( 2

1 )

( )

( )

, , ( x y v f x z g x g x

Trang 15

) , , ( min

y ˆ = Ψ′ µ − 1 ( ˆ )

0 )

, , ˆ

)) ˆ ( (

i

i

y Y

0

x

) ˆ (

ˆ z 1 g x

) ˆ (

ˆ z 1 g x

Trang 16

( ( ˆ ) ) ( ˆ ) ( ˆ ) ( ( ˆ )) 0 )

ˆ (

) , , ˆ (

z y x

T i

m i

i i

x

µ µ

) ˆ ( ˆ

) ˆ ( )

) ˆ (

Trang 17

Exterior point method (EPM)

0 )

( ˆ

0 )

ˆ ( ˆ

0 ˆ

) ˆ ( ˆ

) ˆ ( )

= Ψ′

z

Ye x

c y

z x

g y

x c x

) (

) , , (

0 )

(

0 )

(

) ( )

( )

, , (

1

11

1

2

x g

y Ye

x c

z y x L z

y

x

I x

g

I x

c D

x g x

c v

y x

xx

µ

µ µ

µ

( ( ( )) ) , diag ( ) diag

) ( ,

)

) ( and )

( of Jacobians the

are ) ( and

Trang 18

1 Overview Equality and inequality constraints Conceptual

difficulties.

2 Exterior point method (EPM)

3 Local and global convergence analysis of EPM Numerical results

4 Conclusion.

Trang 19

Local convergence properties of EPM

Fixed barrier parameter:

1 0

factor

by the )

, , ( and

) , , ( between

distance

the

reduce to

EPM for

step one

only requires

it ) ,

, ( )

, , ( and

any for such that 0

and 0

exists there

1 0

any for

then )

(

and ) (

), ( Hessians

for the hold

condtions Lipschitz

the

and

satisfied are

conditions optimality

order second

standard the

If

2 2

γ

γ

ε γ

γ γ

z y x t

z y x t

z y x v

y x

x

g

x c x

,

ˆ − t* ≤ γ tt* < γ <

t

Trang 20

Local convergence properties of EPM

Decreasing barrier parameter:

max )

, , ( x y v xL x y z ci x gi x yi ci x yi

Merit Function:

) , , ( x y z

ν

µ =

estimation following

the satisfies that

) ˆ , ˆ ,

ˆ

(

ˆ

ion approximat dual

primal new

-obtain to

required is

parameter barrier

dynamic with

EPM for

step one

only )

, , ( )

, ,

(

any for such that enough

small 0

exists then there

) (

and )

( ),

( Hessians

for the hold

condtions Lipschitz

the

and

satisfied are

conditions optimality

order second

standard the

If 5

*

*

*

0 2

2 2

0

z y x

t

z y x z

y x

t

x

g

x c x

ˆ − t * ≤ θ tt * 1 . 5 θ >

t

Trang 21

Symmetric Quasidefinite System (Vanderbei, 1995)

c x

f y

x D

x c

x c y

x

xx

) (

) ( )

( )

(

) ( )

,

(

1 1

1

2

µ µ

) ( )

,

(

WY

y x

c x

f y

x WY

x c

x c y

A

matrices definite

positive symmetric

are and F

Interior Point Method

Exterior Point Method

( c i x y i )

D = diag ψ ′′ ( µ − 1 ( ))

Trang 22

variables: non-neg 0, free 0, bdd 84, total 84

constraints: eq 0, ineq 42, ranged 0, total 42

nonzeros: A 84, Q 3528

| Primal | Dual | Sig

Iter | Obj Value Infeas | Obj Value Infeas | Fig Status

- - -

1 0.000000e+000 1.0e+002 -3.466610e+002 7.3e+001

2 1.317253e+004 2.6e+001 5.917189e+006 1.0e+000

3 2.349387e+004 1.2e+001 1.177748e+006 5.1e-001

4 3.190582e+004 5.1e+000 2.575002e+005 2.9e-001

5 3.783655e+004 5.1e+000 2.575002e+005 2.9e-001

6 4.233652e+004 1.0e+000 5.297997e+004 8.4e-002 1

7 4.626677e+004 2.3e-001 4.795822e+004 1.7e-002 1

8 4.763639e+004 4.1e-002 4.790958e+004 3.0e-003 2

9 4.792720e+004 3.2e-003 4.795102e+004 1.3e-003 3

10 4.795229e+004 9.4e-005 4.795270e+004 9.3e-005 5

11 4.795270e+004 1.6e-007 4.795270e+004 2.5e-007 8

12 4.795270e+004 1.2e-009 4.795270e+004 2.5e-012 9 DF

13 4.795270e+004 5.4e-011 4.795270e+004 9.8e-017 11 PF DF

-OPTIMAL SOLUTION FOUND

Times (seconds):

Inf = 1e-9 P-d gap = 1e-10

Trang 23

variables: non-neg 3, free 0, bdd 0, total 3

constraints: eq 1, ineq 0, ranged 0, total 1

nonzeros: A 3, Q 3

| Primal | Dual | Sig

Iter | Obj Value Infeas | Obj Value Infeas | Fig Status

1 7.501500e+001 1.0e+004 7.501500e+001 9.9e-001 60

2 3.941551e+001 2.8e+003 2.541860e+009 1.0e+000

………

10 3.135336e+003 5.4e+000 1.272370e+004 3.3e-002

11 8.206041e+002 5.4e+000 1.272370e+004 3.3e-002

12 5.909210e+001 2.6e+000 1.369778e+003 1.3e-002

13 1.234775e+002 3.3e-001 1.800267e+002 9.8e-003

14 7.081711e+001 1.9e-001 8.850827e+001 3.9e-003 1

15 6.538005e+001 1.1e-001 7.407331e+001 5.4e-004 1

16 7.455193e+001 4.8e-003 7.502332e+001 1.4e-004 2

17 7.498405e+001 2.1e-004 7.500500e+001 1.3e-006 4

18 7.500500e+001 1.7e-008 7.500500e+001 5.3e-010 8 DF

19 7.500500e+001 3.8e-011 7.500500e+001 1.1e-017 10 PF DF

20 7.500500e+001 1.2e-012 7.500500e+001 7.1e-021 12 PF DF

Trang 24

variables: non-neg 0, free 20192, bdd 0, total 20192

constraints: eq 9996, ineq 0, ranged 0, total 9996

nonzeros: A 39984, Q 19800

| Primal | Dual | Sig

Iter | Obj Value Infeas | Obj Value Infeas | Fig Status

1 9.900000e+003 1.0e+000 9.900000e+003 9.9e-001 60

2 3.150554e+005 7.9e-001 1.111293e+006 9.6e-015 DF

3 9.124249e+005 4.2e-001 1.561923e+006 2.1e-014 DF

4 1.429073e+006 1.3e-001 1.676068e+006 2.7e-014 1 DF

5 1.650187e+006 1.9e-002 1.687193e+006 2.7e-014 2 DF

6 1.685957e+006 7.4e-004 1.687411e+006 1.4e-011 3 DF

7 1.687404e+006 3.9e-006 1.687412e+006 6.2e-013 5 DF

8 1.687412e+006 1.0e-009 1.687412e+006 3.3e-014 9 DF

9 1.687412e+006 4.5e-014 1.687412e+006 2.8e-014 13 PF DF

Trang 25

variables: non-neg 198, free 20002, bdd 0, total 20200

constraints: eq 9996, ineq 0, ranged 0, total 9996

nonzeros: A 39984, Q 20200

| Primal | Dual | Sig

Iter | Obj Value Infeas | Obj Value Infeas | Fig Status

1 1.010000e+004 1.0e+000 1.029800e+004 1.0e+000 2

2 3.240644e+005 7.9e-001 1.176603e+006 9.7e-002

3 9.550091e+005 4.4e-001 1.672284e+006 1.2e-001

4 1.518864e+006 1.4e-001 1.804192e+006 1.2e-001 1

5 1.772347e+006 2.2e-002 1.818080e+006 3.1e-003 2

6 1.816403e+006 9.3e-004 1.818392e+006 1.7e-011 3 DF

7 1.818380e+006 5.8e-006 1.818393e+006 8.2e-013 5 DF

8 1.818393e+006 1.6e-007 1.818393e+006 3.8e-014 9 DF

9 1.818393e+006 4.5e-008 1.818393e+006 2.9e-014 12 DF

10 1.818393e+006 2.2e-008 1.818393e+006 2.9e-014 12 DF

11 1.818393e+006 8.6e-009 1.818393e+006 3.0e-014 12 DF

12 1.818393e+006 2.3e-009 1.818393e+006 2.9e-014 13 DF

13 1.818393e+006 3.7e-010 1.818393e+006 2.9e-014 14 DF

14 1.818393e+006 2.5e-011 1.818393e+006 2.9e-014 15 PF DF

Trang 26

variables: non-neg 20200, free 0, bdd 0, total 20200

constraints: eq 9996, ineq 0, ranged 0, total 9996

nonzeros: A 39984, Q 20200

| Primal | Dual | Sig

Iter | Obj Value Infeas | Obj Value Infeas | Fig Status

1 1.010000e+004 1.0e+000 1.029800e+004 2.0e+000 2

2 9.731464e+003 1.0e+000 3.218699e+006 3.9e+001

……….

10 2.305203e+006 6.3e-001 5.347679e+006 2.3e+000

11 2.305298e+006 6.2e-001 5.347603e+006 9.4e-002

12 2.305298e+006 6.2e-001 5.347603e+006 9.4e-002

13 4.128994e+006 3.3e-001 6.211316e+006 5.1e-004

14 5.663763e+006 1.1e-001 6.467653e+006 3.1e-004 1

15 6.363066e+006 1.7e-002 6.497425e+006 3.2e-004 2

16 6.491778e+006 8.2e-004 6.498178e+006 1.2e-004 3

17 6.498133e+006 1.9e-005 6.498179e+006 1.3e-012 5 DF

18 6.498179e+006 9.3e-008 6.498179e+006 2.6e-013 8 DF

19 6.498179e+006 4.2e-009 6.498179e+006 5.5e-013 10 DF

20 6.498179e+006 6.0e-010 6.498179e+006 1.9e-013 10 PF DF

-OPTIMAL SOLUTION FOUND

Inf = 1e-9 P-d gap = 1e-10

Trang 27

model steering.mod

data steering.dat

variables: non-neg 1, free 3198, bdd 801, total 4000

constraints: eq 3201, ineq 0, ranged 0, total 3201

nonzeros: A 15991, Q 5599

| Primal | Dual | Sig

Iter | Obj Value Infeas | Obj Value Infeas | Fig Status

1 0.000000e+000 1.0e+000 -2.516417e+003 7.1e-001

2 4.467602e-001 2.1e-002 -4.219192e+000 1.2e+000

3 5.056779e-001 3.2e-002 5.479227e-001 6.0e-001 2

4 5.463355e-001 4.0e-003 5.548402e-001 3.3e-001 2

5 5.543399e-001 1.0e-004 5.545446e-001 2.2e-003 4

6 5.545696e-001 7.4e-007 5.545706e-001 2.9e-006 6

7 5.545713e-001 5.5e-012 5.545713e-001 9.7e-011 9 PF DF

8 5.545713e-001 7.1e-015 5.545713e-001 2.2e-015 15 PF DF

Trang 28

EPM automatically selects the active constraints

− Ψ′

∇ +

∇ +

) (

) (

) ( )

( )

(

0 0

) (

0 0

) (

0 0

) (

) ( )

( )

( )

, , (

) ( )

( )

( 1

) ( )

( )

( 1

) (

) (

) (

) ( )

( )

(

) ( )

( )

(

) ( )

( 2

x g

y e Y x c

y e Y x c

z x g y

x c x

f

z y y x

I x

g

I x

c D

I x

c D

x g x

c x

c z

y x L

r m r

m r

m

r r

r

T T

r m r

p

r m r

m r

m

r r

r

T T

r m

T r x

µ µ

µ

µ µ

µ µ

µ µ

{ r } I { r m }

I 1 , , , Inactive set : 1 , ,

: set

r i i r

m r i i

r m r

) ( )

( − = Ψ ′′ ( ⋅ ) − , Ψ ′′ ( ⋅ ) = diag ψ ′′ ( µ− ( )) = + , = diag ( ) = +

: set

Active

) (

* ) (

1 )

( )

(

1 )

( )

( )

∇ +

( )

( 0

) (

) ( )

( )

, ,

(

1 1

1 1

2

x c x c x

c

z x g y

x c x

f y

x D

x c

x g x

c z

y x

x

µ µ

µ

0

If µ →

i i r

r i i

r

) ( )

( = Ψ ′′ ( ⋅ ) , Ψ ′′ ( ⋅ ) = diag ψ ′′ ( µ− ( )) = , = diag ( ) =

Trang 29

EPM automatically selects the active constraints

− Ψ′

∇ +

∇ +

) (

) (

) ( )

( )

(

0 0

) (

0 0

) (

0 0

) (

) ( )

( )

( )

, , (

) ( )

( )

( 1

) ( )

( )

( 1

) (

) (

) (

) ( )

( )

(

) ( )

( )

(

) ( )

( 2

x g

y e Y x c

y e Y x c

z x g y

x c x

f

z y y x

I x

g

I x

c D

I x

c D

x g x

c x

c z

y x L

r m r

m r

m

r r

r

T T

r m r

p

r m r

m r

m

r r

r

T T

r m

T r x

µ µ

µ

µ µ

µ µ

µ µ

{ r } I { r m }

I 1 , , , Inactive set : 1 , ,

: set

r i i r

m r i i

r m r

) ( )

( − = Ψ ′′ ( ⋅ ) − , Ψ ′′ ( ⋅ ) = diag ψ ′′ ( µ− ( )) = + , = diag ( ) = +

: set

Active

) (

* ) (

1 )

( )

(

1 )

( )

( )

∇ +

) ( )) ( (

)) ( (

) ( )

( )

(

0 )

(

0 )

(

) ( )

( )

, ,

(

) ( )

( 1 1

) (

1 )

( )

(

1 ) ( )

(

2

x g

x c x c x

c

z x g y

x c x

f z

y

x

I x

g

D x

c

x g x

c z

y x

L

r r

r

T T

r p

r r

T T

x

µ

µ µ

µ

0

If µ →

i i r

r i i

r

) ( )

( = Ψ ′′ ( ⋅ ) , Ψ ′′ ( ⋅ ) = diag ψ ′′ ( µ− ( )) = , = diag ( ) =

Trang 30

EPM automatically selects the active constraints

− Ψ′

∇ +

∇ +

) (

) (

) ( )

( )

(

0 0

) (

0 0

) (

0 0

) (

) ( )

( )

( )

, , (

) ( )

( )

( 1

) ( )

( )

( 1

) (

) (

) (

) ( )

( )

(

) ( )

( )

(

) ( )

( 2

x g

y e Y x c

y e Y x c

z x g y

x c x

f

z y y x

I x

g

I x

c D

I x

c D

x g x

c x

c z

y x L

r m r

m r

m

r r

r

T T

r m r

p

r m r

m r

m

r r

r

T T

r m

T r x

µ µ

µ

µ µ

µ µ

µ µ

{ r } I { r m }

I 1 , , , Inactive set : 1 , ,

: set

r i i r

m r i i

r m r

) ( )

( − = Ψ ′′ ( ⋅ ) − , Ψ ′′ ( ⋅ ) = diag ψ ′′ ( µ− ( )) = + , = diag ( ) = +

: set

Active

) (

* ) (

1 )

( )

(

1 )

( )

( )

∇ +

( )

( 0

) (

) ( )

( )

, ,

(

1 1

1 1

2

x c x c x

c

z x g y

x c x

f y

x D

x c

x g x

c z

y x

x

µ µ

µ

0

If µ →

i i r

r i i

r

) ( )

( = Ψ ′′ ( ⋅ ) , Ψ ′′ ( ⋅ ) = diag ψ ′′ ( µ− ( )) = , = diag ( ) =

Trang 31

EPM automatically turns into Newton’s method for

solving the Lagrange system of equations that

corresponds to the active constraints and equalities

) (

) , , (

0 0

) (

0 0

) (

) ( )

( )

, , (

)(

)()

()

(

)()

(

2

x g

x c

z y x L

z y

x

x g

x c

x g x

c z

y x L

r

p r x

r r

T T

p r r

xx

p j

r I

i x

g x

c x

+

0 )

(

0 )

(

0 )

( )

( )

(

0 )

, ,

(

0 )

, ,

(

0 )

, ,

(

)(

)()

(

)()

(

)()

(

)()

(

) (

x g

x c

z x g

y x c

x f

z y

x L

z y

x L

z y

x L

r

T r

T r

r p

r z

r p

r y

r p

r x

∇ +

) ( )) ( (

)) ( (

) ( )

( )

(

0 )

(

0 )

(

) ( )

( )

, ,

(

) ( )

( 1 1

) (

1 )

( )

(

1 ) ( )

(

2

x g

x c x c x

c

z x g y

x c x

f z

y

x

I x

g

D x

c

x g x

c z

y x

L

r r

r

T T

r p

r r

T T

x

µ

µ µ

µ

Trang 32

Primal-dual methods for nonlinear programming

Sequential unconstrained minimization

Primal-dual methods

What does Newton’s method solve at the end?

Trang 33

Global convergence properties of EPM

) (

) (

) , , (

0 )

(

0 )

(

) ( )

( )

, ,

(

12

x g

y Ye

x c

z y x L z

y

x

I x

g

I x

c D

x g x

c I

z y x

x

µ µ

µ µ

µ λ

( ( ( )) ) , diag ( ) diag

) ( ,

1 )

( )

( )

( )

, ,

1

y x

f v

y

i

i i

µ

µ ψ

, , ( x y v xL x y z ci x gi x yi ci x yi

Trang 34

Global convergence properties of EPM

Trang 35

Global convergence properties of EPM

Trang 36

2 Asymptotic 1.5-Q-superlinear rate of convergence.

3 The same assumptions guarantee the global convergence.

Trang 37

The end Thank you!

Ngày đăng: 26/04/2015, 22:00

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w