Convergence analysis of the exterior-point methodI... Local and global convergence analysis of EPM... Local and global convergence analysis of EPM... Hestenes, PowellExterior point metho
Trang 1Convergence analysis of the exterior-point method
I Griva, R Polyak
AMS Meeting 2007, Oxford, March 16
*
x
Trang 21 Overview Equality and inequality constraints Conceptual
difficulties.
2 Exterior point method (EPM)
3 Local and global convergence analysis of EPM Numerical results
4 Conclusion.
Trang 3Constrained optimization problem
E I
X x
x f
), (
ly continuous twice
are ,
, c i g i
f
Trang 4Equality constraints
( ( ), , ( ) ) )
( ,
0 )
( s.t.
), (
x f
y x
L
1
) ( )
( )
, ( Lagrange multipliers y = ( y 1 , , y p )
(
0 )
( )
( 0
) , (
0 )
,
(
x g
y x g
x
f y
x L
y x
y
x
) ( of
Jacobian the
is )
g
∇
Trang 50 )
( )
( 0
) , (
0 )
,
(
x g
y x g
x
f y
x L
y x
x
λ
) ( of
Jacobian the
is )
) ( )
( 0
) (
) ( )
, (
2
x g
y x
g x
f y
x x
g
x g y
x
x
x x
) ,
( solution enough to
close is
) , ( ion approximat
Trang 6Inequality constraints
( ( ), , ( ) )
) ( ,
0 )
( s.t.
), (
) ( x c
3
) ( x = β
f
*2
) ( x = β = β
f
1
) ( x = β
f
32
β > >
: set Active I* = i ci x* =
Trang 7Inequality constraints
*
, 0 )
( s.t.
), (
min f x c i x = i ∈ I
( ( ), , ( ) )
) ( ,
0 )
( s.t.
), (
⇔
Choosing the active set is a combinatorial problem!!!
Trang 80 )
( )
(
x Yc
y x c
x
) ( of Jacobian the
is )
) ( )
( )
( )
(
) ( )
, (
2
x Yc
y x
c x
f y
x x
C x
c
Y
x c y
x
x
) ( yidiag
0 )
c
? 0 ,
0 )
( : ity nonnegativ e
account th into
take to
solution near the
accuracy of
loss Possible
Challenges
Complementarity!!!
Trang 9y x c
x
µ
) (
0 )
( )
(
) ( of Jacobian the
is )
) ( )
( )
( )
(
) ( )
, (
2
x Yc e
y x
c x
f y
x x
C x
c
Y
x c y
c Y x C
e x C
y
solution near the
accuracy of
loss
Possible
1 1
µ
Trang 111 Overview Equality and inequality constraints Conceptual
difficulties.
2 Exterior point method (EPM)
3 Local and global convergence analysis of EPM Numerical results
4 Conclusion.
Trang 12(Hestenes, Powell)
Exterior point method (EPM)
Trang 13ψ ( ) t
t
) (
min f x
s.t µψ µ − 1 c i x ≥
Bertsekas and
Kort l,
Exponentia
1
-)
(
2
te
t = − −
ψ
Polyak Barrier,
Modified
) 1
f y
x
1
) ( )
,
µ Lagrangian for the equivalent problem
Nonlinear Rescaling of inequalities (Polyak)
parameter barrier
the is µ
Trang 14( ) 2 1
2
1 )
( )
( )
( )
, ,
i
i i
µ
µ ψ
( 2
1 )
( )
( )
, , ( x y v f x z g x g x
Trang 15) , , ( min
y ˆ = Ψ′ µ − 1 ( ˆ )
0 )
, , ˆ
)) ˆ ( (
i
i
y Y
0
x
) ˆ (
ˆ z 1 g x
) ˆ (
ˆ z 1 g x
Trang 16( ( ˆ ) ) ( ˆ ) ( ˆ ) ( ( ˆ )) 0 )
ˆ (
) , , ˆ (
z y x
T i
m i
i i
x
µ µ
) ˆ ( ˆ
) ˆ ( )
) ˆ (
Trang 17Exterior point method (EPM)
0 )
( ˆ
0 )
ˆ ( ˆ
0 ˆ
) ˆ ( ˆ
) ˆ ( )
−
= Ψ′
z
Ye x
c y
z x
g y
x c x
) (
) , , (
0 )
(
0 )
(
) ( )
( )
, , (
1
11
1
2
x g
y Ye
x c
z y x L z
y
x
I x
g
I x
c D
x g x
c v
y x
xx
µ
µ µ
µ
( ( ( )) ) , diag ( ) diag
) ( ,
)
) ( and )
( of Jacobians the
are ) ( and
Trang 181 Overview Equality and inequality constraints Conceptual
difficulties.
2 Exterior point method (EPM)
3 Local and global convergence analysis of EPM Numerical results
4 Conclusion.
Trang 19Local convergence properties of EPM
Fixed barrier parameter:
1 0
factor
by the )
, , ( and
) , , ( between
distance
the
reduce to
EPM for
step one
only requires
it ) ,
, ( )
, , ( and
any for such that 0
and 0
exists there
1 0
any for
then )
(
and ) (
), ( Hessians
for the hold
condtions Lipschitz
the
and
satisfied are
conditions optimality
order second
standard the
If
2 2
γ
γ
ε γ
γ γ
z y x t
z y x t
z y x v
y x
x
g
x c x
,
ˆ − t* ≤ γ t − t* < γ <
t
Trang 20Local convergence properties of EPM
Decreasing barrier parameter:
max )
, , ( x y v xL x y z ci x gi x yi ci x yi
Merit Function:
) , , ( x y z
ν
µ =
estimation following
the satisfies that
) ˆ , ˆ ,
ˆ
(
ˆ
ion approximat dual
primal new
-obtain to
required is
parameter barrier
dynamic with
EPM for
step one
only )
, , ( )
, ,
(
any for such that enough
small 0
exists then there
) (
and )
( ),
( Hessians
for the hold
condtions Lipschitz
the
and
satisfied are
conditions optimality
order second
standard the
If 5
*
*
*
0 2
2 2
0
z y x
t
z y x z
y x
t
x
g
x c x
ˆ − t * ≤ θ t − t * 1 . 5 θ >
t
Trang 21Symmetric Quasidefinite System (Vanderbei, 1995)
c x
f y
x D
x c
x c y
x
xx
) (
) ( )
( )
(
) ( )
,
(
1 1
1
2
µ µ
) ( )
,
(
WY
y x
c x
f y
x WY
x c
x c y
A
matrices definite
positive symmetric
are and F
Interior Point Method
Exterior Point Method
( c i x y i )
D = diag ψ ′′ ( µ − 1 ( ))
Trang 22variables: non-neg 0, free 0, bdd 84, total 84
constraints: eq 0, ineq 42, ranged 0, total 42
nonzeros: A 84, Q 3528
| Primal | Dual | Sig
Iter | Obj Value Infeas | Obj Value Infeas | Fig Status
- - -
1 0.000000e+000 1.0e+002 -3.466610e+002 7.3e+001
2 1.317253e+004 2.6e+001 5.917189e+006 1.0e+000
3 2.349387e+004 1.2e+001 1.177748e+006 5.1e-001
4 3.190582e+004 5.1e+000 2.575002e+005 2.9e-001
5 3.783655e+004 5.1e+000 2.575002e+005 2.9e-001
6 4.233652e+004 1.0e+000 5.297997e+004 8.4e-002 1
7 4.626677e+004 2.3e-001 4.795822e+004 1.7e-002 1
8 4.763639e+004 4.1e-002 4.790958e+004 3.0e-003 2
9 4.792720e+004 3.2e-003 4.795102e+004 1.3e-003 3
10 4.795229e+004 9.4e-005 4.795270e+004 9.3e-005 5
11 4.795270e+004 1.6e-007 4.795270e+004 2.5e-007 8
12 4.795270e+004 1.2e-009 4.795270e+004 2.5e-012 9 DF
13 4.795270e+004 5.4e-011 4.795270e+004 9.8e-017 11 PF DF
-OPTIMAL SOLUTION FOUND
Times (seconds):
Inf = 1e-9 P-d gap = 1e-10
Trang 23variables: non-neg 3, free 0, bdd 0, total 3
constraints: eq 1, ineq 0, ranged 0, total 1
nonzeros: A 3, Q 3
| Primal | Dual | Sig
Iter | Obj Value Infeas | Obj Value Infeas | Fig Status
1 7.501500e+001 1.0e+004 7.501500e+001 9.9e-001 60
2 3.941551e+001 2.8e+003 2.541860e+009 1.0e+000
………
10 3.135336e+003 5.4e+000 1.272370e+004 3.3e-002
11 8.206041e+002 5.4e+000 1.272370e+004 3.3e-002
12 5.909210e+001 2.6e+000 1.369778e+003 1.3e-002
13 1.234775e+002 3.3e-001 1.800267e+002 9.8e-003
14 7.081711e+001 1.9e-001 8.850827e+001 3.9e-003 1
15 6.538005e+001 1.1e-001 7.407331e+001 5.4e-004 1
16 7.455193e+001 4.8e-003 7.502332e+001 1.4e-004 2
17 7.498405e+001 2.1e-004 7.500500e+001 1.3e-006 4
18 7.500500e+001 1.7e-008 7.500500e+001 5.3e-010 8 DF
19 7.500500e+001 3.8e-011 7.500500e+001 1.1e-017 10 PF DF
20 7.500500e+001 1.2e-012 7.500500e+001 7.1e-021 12 PF DF
Trang 24variables: non-neg 0, free 20192, bdd 0, total 20192
constraints: eq 9996, ineq 0, ranged 0, total 9996
nonzeros: A 39984, Q 19800
| Primal | Dual | Sig
Iter | Obj Value Infeas | Obj Value Infeas | Fig Status
1 9.900000e+003 1.0e+000 9.900000e+003 9.9e-001 60
2 3.150554e+005 7.9e-001 1.111293e+006 9.6e-015 DF
3 9.124249e+005 4.2e-001 1.561923e+006 2.1e-014 DF
4 1.429073e+006 1.3e-001 1.676068e+006 2.7e-014 1 DF
5 1.650187e+006 1.9e-002 1.687193e+006 2.7e-014 2 DF
6 1.685957e+006 7.4e-004 1.687411e+006 1.4e-011 3 DF
7 1.687404e+006 3.9e-006 1.687412e+006 6.2e-013 5 DF
8 1.687412e+006 1.0e-009 1.687412e+006 3.3e-014 9 DF
9 1.687412e+006 4.5e-014 1.687412e+006 2.8e-014 13 PF DF
Trang 25variables: non-neg 198, free 20002, bdd 0, total 20200
constraints: eq 9996, ineq 0, ranged 0, total 9996
nonzeros: A 39984, Q 20200
| Primal | Dual | Sig
Iter | Obj Value Infeas | Obj Value Infeas | Fig Status
1 1.010000e+004 1.0e+000 1.029800e+004 1.0e+000 2
2 3.240644e+005 7.9e-001 1.176603e+006 9.7e-002
3 9.550091e+005 4.4e-001 1.672284e+006 1.2e-001
4 1.518864e+006 1.4e-001 1.804192e+006 1.2e-001 1
5 1.772347e+006 2.2e-002 1.818080e+006 3.1e-003 2
6 1.816403e+006 9.3e-004 1.818392e+006 1.7e-011 3 DF
7 1.818380e+006 5.8e-006 1.818393e+006 8.2e-013 5 DF
8 1.818393e+006 1.6e-007 1.818393e+006 3.8e-014 9 DF
9 1.818393e+006 4.5e-008 1.818393e+006 2.9e-014 12 DF
10 1.818393e+006 2.2e-008 1.818393e+006 2.9e-014 12 DF
11 1.818393e+006 8.6e-009 1.818393e+006 3.0e-014 12 DF
12 1.818393e+006 2.3e-009 1.818393e+006 2.9e-014 13 DF
13 1.818393e+006 3.7e-010 1.818393e+006 2.9e-014 14 DF
14 1.818393e+006 2.5e-011 1.818393e+006 2.9e-014 15 PF DF
Trang 26variables: non-neg 20200, free 0, bdd 0, total 20200
constraints: eq 9996, ineq 0, ranged 0, total 9996
nonzeros: A 39984, Q 20200
| Primal | Dual | Sig
Iter | Obj Value Infeas | Obj Value Infeas | Fig Status
1 1.010000e+004 1.0e+000 1.029800e+004 2.0e+000 2
2 9.731464e+003 1.0e+000 3.218699e+006 3.9e+001
……….
10 2.305203e+006 6.3e-001 5.347679e+006 2.3e+000
11 2.305298e+006 6.2e-001 5.347603e+006 9.4e-002
12 2.305298e+006 6.2e-001 5.347603e+006 9.4e-002
13 4.128994e+006 3.3e-001 6.211316e+006 5.1e-004
14 5.663763e+006 1.1e-001 6.467653e+006 3.1e-004 1
15 6.363066e+006 1.7e-002 6.497425e+006 3.2e-004 2
16 6.491778e+006 8.2e-004 6.498178e+006 1.2e-004 3
17 6.498133e+006 1.9e-005 6.498179e+006 1.3e-012 5 DF
18 6.498179e+006 9.3e-008 6.498179e+006 2.6e-013 8 DF
19 6.498179e+006 4.2e-009 6.498179e+006 5.5e-013 10 DF
20 6.498179e+006 6.0e-010 6.498179e+006 1.9e-013 10 PF DF
-OPTIMAL SOLUTION FOUND
Inf = 1e-9 P-d gap = 1e-10
Trang 27model steering.mod
data steering.dat
variables: non-neg 1, free 3198, bdd 801, total 4000
constraints: eq 3201, ineq 0, ranged 0, total 3201
nonzeros: A 15991, Q 5599
| Primal | Dual | Sig
Iter | Obj Value Infeas | Obj Value Infeas | Fig Status
1 0.000000e+000 1.0e+000 -2.516417e+003 7.1e-001
2 4.467602e-001 2.1e-002 -4.219192e+000 1.2e+000
3 5.056779e-001 3.2e-002 5.479227e-001 6.0e-001 2
4 5.463355e-001 4.0e-003 5.548402e-001 3.3e-001 2
5 5.543399e-001 1.0e-004 5.545446e-001 2.2e-003 4
6 5.545696e-001 7.4e-007 5.545706e-001 2.9e-006 6
7 5.545713e-001 5.5e-012 5.545713e-001 9.7e-011 9 PF DF
8 5.545713e-001 7.1e-015 5.545713e-001 2.2e-015 15 PF DF
Trang 28EPM automatically selects the active constraints
− Ψ′
∇ +
∇ +
) (
) (
) ( )
( )
(
0 0
) (
0 0
) (
0 0
) (
) ( )
( )
( )
, , (
) ( )
( )
( 1
) ( )
( )
( 1
) (
) (
) (
) ( )
( )
(
) ( )
( )
(
) ( )
( 2
x g
y e Y x c
y e Y x c
z x g y
x c x
f
z y y x
I x
g
I x
c D
I x
c D
x g x
c x
c z
y x L
r m r
m r
m
r r
r
T T
r m r
p
r m r
m r
m
r r
r
T T
r m
T r x
µ µ
µ
µ µ
µ µ
µ µ
{ r } I { r m }
I 1 , , , Inactive set : 1 , ,
: set
r i i r
m r i i
r m r
) ( )
( − = Ψ ′′ ( ⋅ ) − , Ψ ′′ ( ⋅ ) = diag ψ ′′ ( µ− ( )) = + , = diag ( ) = +
: set
Active
) (
* ) (
1 )
( )
(
1 )
( )
( )
∇ +
( )
( 0
) (
) ( )
( )
, ,
(
1 1
1 1
2
x c x c x
c
z x g y
x c x
f y
x D
x c
x g x
c z
y x
x
µ µ
µ
0
If µ →
i i r
r i i
r
) ( )
( = Ψ ′′ ( ⋅ ) , Ψ ′′ ( ⋅ ) = diag ψ ′′ ( µ− ( )) = , = diag ( ) =
Trang 29EPM automatically selects the active constraints
− Ψ′
∇ +
∇ +
) (
) (
) ( )
( )
(
0 0
) (
0 0
) (
0 0
) (
) ( )
( )
( )
, , (
) ( )
( )
( 1
) ( )
( )
( 1
) (
) (
) (
) ( )
( )
(
) ( )
( )
(
) ( )
( 2
x g
y e Y x c
y e Y x c
z x g y
x c x
f
z y y x
I x
g
I x
c D
I x
c D
x g x
c x
c z
y x L
r m r
m r
m
r r
r
T T
r m r
p
r m r
m r
m
r r
r
T T
r m
T r x
µ µ
µ
µ µ
µ µ
µ µ
{ r } I { r m }
I 1 , , , Inactive set : 1 , ,
: set
r i i r
m r i i
r m r
) ( )
( − = Ψ ′′ ( ⋅ ) − , Ψ ′′ ( ⋅ ) = diag ψ ′′ ( µ− ( )) = + , = diag ( ) = +
: set
Active
) (
* ) (
1 )
( )
(
1 )
( )
( )
∇ +
) ( )) ( (
)) ( (
) ( )
( )
(
0 )
(
0 )
(
) ( )
( )
, ,
(
) ( )
( 1 1
) (
1 )
( )
(
1 ) ( )
(
2
x g
x c x c x
c
z x g y
x c x
f z
y
x
I x
g
D x
c
x g x
c z
y x
L
r r
r
T T
r p
r r
T T
x
µ
µ µ
µ
0
If µ →
i i r
r i i
r
) ( )
( = Ψ ′′ ( ⋅ ) , Ψ ′′ ( ⋅ ) = diag ψ ′′ ( µ− ( )) = , = diag ( ) =
Trang 30EPM automatically selects the active constraints
− Ψ′
∇ +
∇ +
) (
) (
) ( )
( )
(
0 0
) (
0 0
) (
0 0
) (
) ( )
( )
( )
, , (
) ( )
( )
( 1
) ( )
( )
( 1
) (
) (
) (
) ( )
( )
(
) ( )
( )
(
) ( )
( 2
x g
y e Y x c
y e Y x c
z x g y
x c x
f
z y y x
I x
g
I x
c D
I x
c D
x g x
c x
c z
y x L
r m r
m r
m
r r
r
T T
r m r
p
r m r
m r
m
r r
r
T T
r m
T r x
µ µ
µ
µ µ
µ µ
µ µ
{ r } I { r m }
I 1 , , , Inactive set : 1 , ,
: set
r i i r
m r i i
r m r
) ( )
( − = Ψ ′′ ( ⋅ ) − , Ψ ′′ ( ⋅ ) = diag ψ ′′ ( µ− ( )) = + , = diag ( ) = +
: set
Active
) (
* ) (
1 )
( )
(
1 )
( )
( )
∇ +
( )
( 0
) (
) ( )
( )
, ,
(
1 1
1 1
2
x c x c x
c
z x g y
x c x
f y
x D
x c
x g x
c z
y x
x
µ µ
µ
0
If µ →
i i r
r i i
r
) ( )
( = Ψ ′′ ( ⋅ ) , Ψ ′′ ( ⋅ ) = diag ψ ′′ ( µ− ( )) = , = diag ( ) =
Trang 31EPM automatically turns into Newton’s method for
solving the Lagrange system of equations that
corresponds to the active constraints and equalities
) (
) , , (
0 0
) (
0 0
) (
) ( )
( )
, , (
)(
)()
()
(
)()
(
2
x g
x c
z y x L
z y
x
x g
x c
x g x
c z
y x L
r
p r x
r r
T T
p r r
xx
p j
r I
i x
g x
c x
+
0 )
(
0 )
(
0 )
( )
( )
(
0 )
, ,
(
0 )
, ,
(
0 )
, ,
(
)(
)()
(
)()
(
)()
(
)()
(
) (
x g
x c
z x g
y x c
x f
z y
x L
z y
x L
z y
x L
r
T r
T r
r p
r z
r p
r y
r p
r x
∇ +
) ( )) ( (
)) ( (
) ( )
( )
(
0 )
(
0 )
(
) ( )
( )
, ,
(
) ( )
( 1 1
) (
1 )
( )
(
1 ) ( )
(
2
x g
x c x c x
c
z x g y
x c x
f z
y
x
I x
g
D x
c
x g x
c z
y x
L
r r
r
T T
r p
r r
T T
x
µ
µ µ
µ
Trang 32Primal-dual methods for nonlinear programming
Sequential unconstrained minimization
Primal-dual methods
What does Newton’s method solve at the end?
Trang 33Global convergence properties of EPM
∇
−
) (
) (
) , , (
0 )
(
0 )
(
) ( )
( )
, ,
(
12
x g
y Ye
x c
z y x L z
y
x
I x
g
I x
c D
x g x
c I
z y x
x
µ µ
µ µ
µ λ
( ( ( )) ) , diag ( ) diag
) ( ,
1 )
( )
( )
( )
, ,
1
y x
f v
y
i
i i
µ
µ ψ
, , ( x y v xL x y z ci x gi x yi ci x yi
Trang 34Global convergence properties of EPM
Trang 35Global convergence properties of EPM
Trang 362 Asymptotic 1.5-Q-superlinear rate of convergence.
3 The same assumptions guarantee the global convergence.
Trang 37The end Thank you!