Tìm phân số chỉ số đường bán ngày thứ ba để rồi tìm ra số đường bán ngày thứ ba là hơi khó, rất nhiều học sinh không giải được.. Trong phạm vi đề tài này tôi chỉ nêu lên một số kinh nghi
Trang 1ĐỀ TÀI
RÈN LUYỆN KỸ NĂNG GIẢI MỘT SỐ DẠNG TOÁN VỀ
PHẦN I: MỞ ĐẦU
1 Lý do:
Toán có liên quan đến phân số chiếm một số lượng đáng kể trong các bài toán có lời văn Loại toán này có nhiều ứng dụng trong thực tế Song khi giải các bài toán này học sinh còn gặp nhiều lúng túng mơ hồ và sai lầm; khó tìm ra hướng giải quyết và thường nhầm lẫn từ dạng này sang dạng khác Nếu không xác định cho học sinh những kiến thức cơ bản ban đầu vững chắc thì học sinh sẽ không giải quyết được những bài toán ở dạng cơ bản ( đối với học sinh trung bình ) và nâng cao lên ( đối với học sinh khá giỏi )
2 Nhiệm vụ:
Trong khuôn khổ của đề tài này, nhiệm vụ chính là đề ra một số giải pháp nhằm khắc phục những khó khăn, sai lầm của học sinh khi giải toán có liên quan đến phân số Đồng thời cũng nêu lên một số kinh nghiệm của bản thân trong việc bồi dưỡng học sinh khá giỏi về phương pháp giải các loại toán này ở dạng nâng cao
3 Phương pháp tiến hành:
- Sử dụng phương pháp thống kê, mô tả là chủ yếu
- Thống kê tình hình học sinh sai lầm khi giải loại toán này ở đầu năm học Sau khi áp dụng phương pháp giải toán theo kinh nghiệm của bản thân thì thống kê mức đôï đạt được
- Mô tả các dạng toán, thực trạng và giải pháp khắc phục
- Trình tự thực hiện:
+ Lên đề cương chi tiết dựa vào cấu trúc qui định
+ Xác định một số bài toán dạng cơ bản về phân số trong chương trình toán lớp 4,5 và một số bài toán nâng cao theo từng mức
+ Nêu những sai lầm thường gặp đối với học sinh
-Đưa ra các bài toán mẫu tương tự để học sinh làm đối chứng so sánh nhận xét xác định dạng
+ Đối với học sinh khá giỏi đề ra những bài toán nâng cao theo từng mức để hướng dẫn học sinh giải quyết
+ Đề ra các giải pháp khắc phục tương ứng ( dựa vào những kinh nghiệm của bản thân)
4 Cơ sở và thời gian tiến hành:
Trang 2Đề tài này được rút ra trên cơ sở đúc rút kinh nghiệm của nhiều năm dạy lớp năm và kết quả đã đạt được của từng năm Đề tài được thực hiện ở lớp khoảng 4 năm trở lại đây
A RÈN LUYỆN KỸ NĂNG GIẢI MỘT SỐ DẠNG TOÁN CƠ BẢN
VỀ PHÂN SỐ CHO HỌC SINH.
Toán về phân số là một chủ đề quan trọng trong chương trình Vì thế giải thành thạo các bài toán về phân số là yêu cầu đối với tất cả các
em học sinh ở cuối bậc tiểu học
I Dạng thứ nhất: Dạy tìm phân số của một số.
1 Mô tả:
Ví dụ 1.1: Một hình chữ nhật có chiều dài 35 cm chiều rộng bằng
5
2
chiều dài Tính diện tích hình chữ nhật đó ?
Ví dụ 2.1: Một hình chữ nhật có chiều rộng 20 cm và bằng 52 chiều dài Tính diện tích hình chữ nhật đó ?
2.Thực trạng những sai lầm của học sinh:
Qua nhiều năm dạy học cho học sinh trong lớp ở một trường thuộc vùng kinh tế khó khăn Tôi thấy học sinh thường hay giải một số dạng toán về phân số một cách máy móc, phương pháp không rõ ràng, hay nhầm lẫn từ dạng này sang dạng khác
Có thể đối với bài toán 1.1 nếu học sinh học kỹ sẽ giải quyết dễ dàng Nhưng sang đến bài 2.1 học sinh sẽ nhầm lẫn là làm như bài toán 1.1 tức là học sinh tìm chiều dài hình chữ nhật: 20 x 52 Đó là sai cơ bản mà tôi thường gặp rất nhiều ở học sinh khi giải các bài toán có dạng trên Cụ thể:
Tổng số học sinh Số học sinhgiải đúng Số hoc sinh sailầm Kết quả sau ápdụng phương
pháp này
3 Giải pháp khắc phục:
Để giải quyết sai lầm này một cách triệt để, để học sinh không nhầm lẫn từ 2 dạng trên khi dạy tôi chia bảng ra làm hai cột và ghi hai
Trang 3chỗ giống nhau và khác nhau đểà hướng học sinh tìm ra chỗ nhầm lẫn thường gặp
Bài 1.1: bài 2.1:
- Xác định chiều rộng bằng - chiều rộng cũng bằng 52
chiều dài Tức là chiều rộng 2 phần chiều dài thì chiều rộng cũng và chiều dài 5 phần bằng 2 phần và chiều dài là
5 phần
Đây là điểm giống nhau của hai bài toán trên nên khi giải học sinh thường nhầm lẫn từ bài này sang bài khác Vì vậy, giáo viên cần xác định kiến thức cụ thể - Tìm điểm khác nhau của 2 bài toán trên dẫn đến hai cách giải khác nhau: Bài 1.1 Bài 2.1 Cho chiều dài 35 cm tức là chiều Cho chiều rộng bằng 52 chiều dài dài gồm 5 phần Tìm chiều rộng và bằng 20 cm.Tìm chiều tức là tìm 2 phần dài tức là tìm 5 phần biết
vẽ sơ đồ: chiều rộng 2 phần là 20 cm.
chiều dài chiều dài
chiều rộng chiều rộng Như vậy chiều rộng 2 phần cần Như vậy bài toán này cần tìm tìm chính là lấy 35:5 tìm 1 phần chiều dài tức là tìm 5 phần khi biết rồi nhân 2 ta có chiều rộng chiều rộng 2 phần là 20 cm, Cách làm: chiều rộng hình chữ chính là:
nhật:
35 x 52 = 14 (cm) 20 : 2 x 5 = 50 (cm)
hay: 35 : 5 x 2 = 14 (cm) hay: 20 : 52 = 50 (cm)
Như vậy ở bài 2.1 này không thể làm như bài 1.1 là tìm chiều dài lấy 20 x 2 được Đây là sai lầm lớn mà học sinh thường mắc phải
Trang 4*Tóm lại: Kiến thức cần khắc sâu cho học sinh trong hai bài toán
này là:
Bài toán 1.1: Cho biết giá trị mẫu số, tìm giá trị tử số Nên khi tìm giá trị tử số lấy số đã cho chia cho mẫu số nhân tử số
Bài toán 2.1: Cho biết giá trị tử số và tìm giá trị mẫu số Nên khi tìm giá trị mẫu số lấy số đã cho chia cho tử số nhân cho mẫu số
II Dạng thứ hai: Tìm hai số khi biết tổng và tỷ số của chúng
1 Mô tả: Ở dạng toán này học sinh cũng thường nhầm lẫn với
dạng toán khác
Ví dụ 2.1: Một hình chữ nhật có tổng độ dài chiều dài và chiều
rộng là 35 cm biết rằng chiều rộng bằng 52 chiều dài Tính diện tích hình chữ nhật đó?
2 Thực trạng:
Những sai lầm thường gặp là học sinh cứ xem các tổng đã cho là một số nên nhầm tìm số kia lấy tổng nhân cho tỷ số đã cho
Học sinh thường tìm chiều dài: 35 x 52 = 14 cm học sinh nhầm với dạng toán tìm phân số của một số
3 Giải pháp khắc phục:
Khi dạy dạng các toán này cũng cần có bài toán tương tự để học sinh so sánh tìm chỗ khác nhau và thường sai lầm
Ví dụ 2.2: Một hình chữ nhật có chiều dài 35 cm chiều rộng bằng
5
2
chiều dài Tính diện tích hình chữ nhật đó ?
Điểm giống nhau của hai bài toán này là chiều rộng đều bằng 52 chiều dài và đều tính diện tích hình chữ nhật Điều học sinh thấy giống nhau nữa là có độ dài 35 cm, nhưng số đo này là của hai đại lượng khác nhau
Cho học sinh đọc kĩ bài toán và tìm sự khác nhau của hai bài toán
Bài 2.1 Bài 2.2.
Tìm chiều dài và chiều rộng khi Tìm chiều rộng dựa vào chiều
Trang 5biết tổng của chiều dài và chiều dài tức là tìm phân số của một số rộng; và tỷ số của chiều rộng bằng Tránh nhầm với dạng bài 2.1
5
2
chiều dài
Bài toán này giải theo cách: Tìm Bài toán này giải theo cách: hai số khi biết tổng và tỷ số Tìm phân số của một số
Để tránh nhầm lẫn là học sinh giải hai bài toán này thường giống nhau Đôi khi bài toán 2.2 lại giải tìm hai số biết tổng và tỷ Bài 2.1 lại tìm phân số của một số
Cơ sở xác định cho học sinh là: Ở bài toán 2.1 là tìm hai số khi biết tổng và tỷ của chúng Còn bài 2.2 là tìm một số dựa vào phân số của nó với một số đã cho Cho nên hai cách trên giải hoàn toàn khác nhau Giáo viên cần giải hai bài toán cùng một lúc để học sinh xác định cách giải của từng bài tránh nhầm lẫn cách giải của bài này sang cách giải của bài khác
III Dạng thứ ba: Tìm phân số chỉ một số cụ thể để tìm ra số đó.
Ví dụ 3.1: Một cửa hàng bán trong 3 ngày được 1280 kg đường.
Ngày thứ nhất bán được 25% số đường đó, ngày thứ hai bán được 45% số đường đó Hỏi ngày thứ ba bán được bao nhiêu kg đường ?
Giải bằng 2 cách:
Cách 1
- Học sinh tìm số đường bán ngày thứ nhất
- Tìm số đường bán ngày thứ hai
- Sau đó tìm số đường bán ngày thứ ba bằng cách lấy số đường bán được trừ cho số đường bán 2 ngày (ngày thứ nhất và ngày thứ hai) cách này học sinh tương đối làm được
Cách 2 Tìm phân số chỉ số đường bán ngày thứ ba để rồi tìm ra số
đường bán ngày thứ ba là hơi khó, rất nhiều học sinh không giải được Hướng giải quyết là phải cho học sinh thấy số đường bán trong ba ngày là bao nhiêu phần trăm ? (số đường này là 100 %) Như vậy hai ngày bán được bao nhiêu phần trăm Học sinh có thề tìm được: 25% + 45% = 70% Vậy còn bao nhiêu phần trăm là của ngày thứ ba: 100% -70% = 30% Đây chính là tìm phân số chỉ số đường bán ngày thứ ba Vậy ngày thứ ba bán được 30% của 1280kg.Từ đó học sinh sẽ tìm được ngày thứ ba bán được:1280 x 30% hay 1280 : 100 x 30 = 384 kg Để khắc sâu kiến thức và nhằm nâng cao hơn ta cho bài toán ngược lại để học sinh so sánh và đối chiếu
Trang 6Ví dụ 3.2: Một cửa hàng ngày đầu bán được 25% số đường trong
kho, ngày thứ haibán được 45% số đường trong kho, ngày thứ ba bán được 384 kg thì hết Hỏi trong kho có tất cả bao nhiêu kg đường?
Ơû bài toán này bắt buộc phải đi tìm số đường trong kho có Tức là phải dựa vào số đường bán ngày thứ ba
Phải hướng cho học sinh thấy được số đường trong kho có là 100% Như vậy học sinh mới tìm được phân số chỉ số đường bán ngày thứ ba Cacùh tìm phân số này giống như bài 3.1: 100% - (25% + 45%) = 30% (phân số thập phân 10030 ) và 30% tức là phân số chỉ 384kg hay số đường 384kg là 30 phần trong kho 100 phần
Vậy số đường trong kho là: 384 : 30 x 100 = 1280kg vận dụng cách của bài 3.1 để giải quyết bài này Hai bài toán này có liên quan với nhau nên khi dạy bài toán 3.1 cần chỉ bài toán 3.2 để học sinh nhận xét rút ra cơ sở giải quyết bài toán
*Tóm lại: Sau khi áp dụng những phương pháp trên khi dạy bài
toán liên quan về phân số cho học sinh, tôi thấy học sinh làm được bài tập mà không bị nhầm lẫn ở ba dạng toán trên Hầu hết các em rất thành thạo khi nhận dạng một bài toán nào đó
Từ những cơ sở trên tôi vận dụng vào bồi dưỡng những học sinh khá giỏi giải toán nâng cao Trong phạm vi đề tài này tôi chỉ nêu lên một số kinh nghiệm bồi dưỡng học sinh giỏi giải toán tìm 2 số khi biết tổng và tỷ số, hiệu và tỷ số của chúng
B RÈN LUYỆN KỸ NĂNG GIẢI MỘT SỐ DẠNG TOÁN
NÂNG CAO VỀ PHÂN SỐ CHO HỌC SINH KHÁ GIỎI.
Muốn bồi dưỡng học sinh giỏi giải toán về phân số đạt kết quả cao thì giáo viên cần trang bị cho các em những kiến thức cơ bản về phân số Học sinh phải giải quyết các bài toán có liên quan đến tổng và tỷ; hiệu và tỷ một cách thành thạo(dạng cơ bản chưa cần nâng cao) Rồi từ đó ta dần dần nâng cao lên từng mức
Dạng 1 Bài toán dạng cơ bản:
1 Mô tả:
ví dụ1.1: Tìm hai số khi biết tổng của hai số là 100 và số thứ nhất
bằng 32 số thứ hai
Bài toán này đối với học sinh khá, giỏi thì dễ dàng Từ bài toán này nâng lên:
Mức 1 Tìm hai số khi biết tổng của hai số là 100 Nếu chuyển số thứ
nhất sang số thứ hai 5 đơn vị thì số thứ nhất bằng 2 số thứ hai
Trang 7Mức 2 Tìm hai số khi biết tổng của hai số đó là 100 Nếu thêm vào
số thứ nhất 5 đơn vị thì số thứ nhất bằng 32 số thứ hai
2 Thực trạng:
Học sinh sẽ lúng túng không tìm được số thứ nhất ban đầu Mà chỉ tìm được số thứ nhất theo tỷ số đã cho
Học sinh không biết ở bài mức 1 tổng hai số không thay đổi còn ở bài mức 2 là tổng thay đổi Bây giờ tổng không còn là 100 nữa
3 Giải pháp khắc phục:
Trứơc tiên cần xác định cho học sinh biết trường hợp nào là tổng không thay đổi, trường hợp nào là tổng thay đổi Tổng thay đổi tăng hoặc giảm dựa theo đề bài ra
* Bài tập ở mức 1 Vì chuyển từ số thứ nhất sang số thứ hai 5 đơn vị
nên tổng không thay đổi Sau khi tìm ra số thứ nhất phải thêm 5 đơn vị và tìm ra số thứ hai phải bớt đi 5 đơn vị
*Bài tập ở mức 2 Tổng bây giờ thay đổi (thêm 5 đơn vị) nên tổng là
105 Do đó khi tìm số thứ nhất phải lấy tổng là 105, sau đó giải như đã học rồi trừ số thứ nhất đi 5 đơn vị
Vận dung những kiến thức này vào giải bài toán nâng cao lên mức 3
*Bài tập mức 3.
a cho phân số 6354 Hãy tìm số a sao cho khi bớt a ở tử số và thêm a vào mẫu số thì ta được phân số mớicó giá trị bằng 54
b Cho phân số 369234 Hỏi cùng bớt tử số và mẫu số đi bao nhiêu để có phân số mới có giá trị bằng85
Đối với những bài toán này học sinh không hiểu ở đây chính là tìm phân số mới theo tỷ số
-Học sinh rất lúng túng không hiểu giải theo tìm hai số khi biết tổng và tỷ số hay hiệu và tỷ số
- Học sinh không biết trường hợp nào là tổng của tử số và mẫu thay đổi Trường hợp nào tổng của tử số và mẫu số không thay đổi Trường hợp nào hiệu của mẫu số và tử số thay đổi trường hợp nào hiệu của mẫu số và tử số không thay đổi(hiệu này phụ thuộc vào bài ra có thể là mẫu số lớn hơn tử số hay có khi tử số lớn hơn mẫu số Nếu tử số lớn hơn mẫu số thì hiệu giữa tử số và mẫu số.)
Hướng giải quyết:
Bài a: Cần cho học sinh biết được khi bớt a ở tử thêm a ở mẫu thì
tổng của tử và mẫu không thay đổi Nên áp dụng tìm hai số khi biết tổng và tỷ:
Trang 8Tổng của mẫu và tử số là: 54 + 63 = 117.
Tỷ số là: 54 Tổng số phần là: 5 + 4 = 9
Giải ra ta có tử số mới là: 117 : 9 x 4 = 52
Mẫu số mới là: 117 :9 x 5 = 65
Phân số mới là 6552 Vậy số a là: 65 - 63 = 2 Số cần tìm a=2 Bài
b: Cần cho học sinh biết cùng bớt tử số và mẫu số cho cùng 1 số thì tổng
của mẫu số và tử số thay đổi ( giảm ) Nhưng hiệu giữa mẫu số và tử số không thay đổi nên trường hợp này không thể giải theo cách tìm hai số khi biết tổng và tỷ số mà giải quyết bài toán theo dạng tìm hai số khi biết hiệu và tỷ số
Hiệu của mẫu và tử số là: 369 - 234 = 135
Tỷ số 85 Hiệu số phần là: 8 - 5 = 3
Giải ra ta tìm được: Tử số mới: 135 : 3 x 5 = 225
Mẫu số mới: 135 : 3 x 8 = 360
Phân số mới: 360225
Số cần bớt là: 234 - 225 = 9
*Tóm lại: Đối với dạng toán này cần cho học sinh nắm được thêm
hay bớt tử số và mẫu số cho cùng một số thì tổng của tử số và mẫu số sẽ thay đổi, nhưng hiệu giữa mẫu số và tử số ( hay tử số và mẫu số ) phụ thuộc vào đề ra là không thay đổi nên giải quyết theo cách tìm hai số khi biết hiệu và tỷ số Còn khi thêm vào tử số bớt mẫu số hay bớt tử số thêm mẫu số cho cùng 1 số thì tổng giữa tử số và mẫu số không thay đổi còn hiệu giữa chúng thay đổi thì giải quyết bài toán theo cách tìm 2 số khi biết tổng và tỷ số
Dạng 2 Đi tìm tỷ số:
1 Mô tả: Đối với loại toán này đòi hỏi học sinh phải tìm được tỷ
số mới giải quyết được
Ví dụ: 2.1: Hai lớp 5A và 5B có 77 học sinh Biết rằng số học
sinh 5A bằng 43 học sinh 5B Tìm số học sinh mỗi lớp
Bài toán này học sinh giải dễ dàng vì có tổng là 77 và tỷ số là
4
3
Từ bài toán này giáo viên đưa ra bài toán nâng cao
* Bài toán nâng cao mức 1:
Trang 9Ví dụ 2.2: Hai lớp 5A và 5B có 77 học sinh Biết rằng 31 học sinh 5A bằng 41 học sinh 5B Tìm số học sinh mỗi lớp
2 Thực trạng:
Học sinh không xác định được tỷ số của học sinh 5A và học sinh 5B Từ đó học sinh không giải được
3 Giải pháp khắc phục:
Trước hết cần cho học sinh vẽ sơ đồ:
Học sinh 5A
77 học sinh
Học sinh 5B:
Đối với bài này học sinh nhìn vào sơ đồ thấy được học sinh 5A sẽ là 3 phần, học sinh 5B sẽ là 4 phần Từ đó các em sẽ giải được đưa về dạng cơ bản Nhưng ở dạng toán này ta cần khắc sâu chỗ nào để khi ta nâng cao lên mức 2 học sinh vẫn tìm ra cách giải Đó chính là mấu chốt của dạng này Muốn vậy lúc này ta cần tiến hành dùng phương pháp quy nạp để cho học sinh nhận thấy cái mà ta cần
Bài toán 2.2.: Hai lớp 5A và 5B có 72 học sinh Biết rằng 32 học sinh 5A bằng 52 học sinh 5B Tìm số học sinh mỗi lớp
Ta cũng hướng dẫn học sinh vẽ sơ đồ:
Học sinh 5A:
72 học sinh Học sinh 5B:
Nhìn vào sơ đồ các em cũng dễ dàng nhìn thấy được học sinh 5A 3 phần, học sinh 5B 5 phần Hay học sinh 5A bằng 53 học sinh 5B
Từ hai bài toán trên ta cho học sinh nhận xét:
Ở bài 2.1 ta có 31 học sinh 5A bằng14 học sinh 5B thì học sinh 5A bằng 3 học sinh 5B
Trang 10Ở bài toán 2.2 ta có 32 học sinh 5A bằng 52 học sinh 5B thì học sinh 5A bằng 53 học sinh 5B
Như vậy ta cần cho học sinh thấy khi hai tử số của hai phân số chỉ số phần của mỗi lớp bằng nhau thì mẫu số chính là số phần của mỗi lớp Từ đó học sinh sẽ tìm được tỷ số và đưa vềdạng cơ bản Khi giải dạng toán này học sinh chỉ cần làm sao cho 2 tử số của hai phân số chỉ hai đại lượng bằng nhau thì dễ dàng tìm ra tỷ số của hai đại lượng đó
* Bài toán nâng cao mức 2:
Hai lớp 5A và 5B có 76 học sinh Biết rằng 32 học sinh 5A bằng 53học sinh 5B Tìm số học sinh mỗi lớp
Lúc bấy giờ học sinh muốn giải bài toán này thì vận dụng kiến thức ở phần trên tức là đi tìm tỷ số là tìm số phần của mỗi lớp Muốn tìm được tỷ số cần làm cho tử số của hai phân số trên bằng nhau thì mẫu số chính là số phần của mỗi lớp Bây giờ ta hướng dẫn cho các em:
Muốn làm cho 2 tử số bằng nhau thì ta phải qui đồng tử số Cách thực hiện:
- Nhân tử số và mẫu số phân số thứ nhất cho tử số phân số thứ hai
- Nhân tử số và mẫu số phân số thứ hai cho tử số phân số thứ nhất
Theo đề bài ta có: 32 ( HS5A ) = 53 ( HS5B )
Qui đồng tử số ta có: 32 ( HS5A ) = 96 ( HS5A )
53 ( HS5B ) = 106 ( HS5B )
Vậy: 96 ( HS5A ) = 106 ( HS5B )
Có hai tử số bằng nhau ta dễ dàng nhìn thấy:
Số học sinh 5A:9 phần
Số học sinh 5B:10 phần
Hay số học sinh 5A.bằng 109 học sinh 5B Như vậy các em đã tìm
ra tỷ số
Đưa về dạng toán cơ bản học sinh giải được Tìm hai số khi biết tổng và tỷ số
*Bài toán nâng cao lên mức 3: