1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tuyển tập phương trình, hệ phương trình

5 714 24

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 278 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Hệ phương trình của giáp đức long tuyển tập hệ phương trình

Trang 1

HÀ NỘI NGÀY 07/11/2014

TUYỂN TẬP CÁC PHƯƠNG

TRÌNH, HỆ PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH VÔ TỶ TỪ

CƠ BẢN TỚI NÂNG CAO

TÀI LIỆU TẶNG MIỄN PHÍ CHO CÁC EM HỌC SINH ĐANG ÔN THI ĐẠI HỌC, ĐẶC BIỆT LÀ CÁC EM HỌC SINH KHÓA 1997

Trang 2

Biên soạn Giáp Đức Long

LỜI NÓI ĐẦU:

Trong những năm gần đây thì các bài toán về phương trình, hệ phương trình, bất phương trình đại số vô tỷ thường xuất hiện khá nhiều trong các đề thi chọn học sinh giỏi các tỉnh, thành phố, đặc biệt là nó còn xuất hiện nhiều trong các đề thi tuyển sinh Đại Học, Cao Đẳng.Trong kì thi tuyển sinh Đại Học năm 2014 vừa qua thì phần phương trình,

hệ phương trình được coi là câu phân loại thí sinh vì phần này khá là khó và lắt léo trong đề thi, nó đòi hỏi nhiều kĩ thuật xử lí tinh vi Và cũng vì vậy đã có rất nhiều tài liệu viết về phần này, bản thân mình cũng đang là sinh viên và đương nhiên cũng phải trải qua kì thi cân não đó và trong thời gian ôn luyện thi Đại Học thì mình cũng làm kha khá phần này.Và mình nghĩ rằng nên có một tuyển tập các bài toán hệ phương trình, bất phương trình đại số vô tỷ từ cơ bản tới nâng cao để các bạn khóa sau luyện tập.Vì thế sau bao lâu trăn trở cuối cùng mình cũng đã viết xong

TUYỂN TẬP CÁC BÀI TOÁN PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH TỪ CƠ BẢN TỚI NÂNG CAO.Tài liệu này mình muốn gửi tặng tới tất cả các bạn học sinh đang ôn thi Đại Học Cao Đẳng và các quý bạn quan tâm, tài liệu này cũng coi như kỉ niệm của quãng đời học sinh , sinh viên của mình Mình hi vọng rằng tập tài liệu này sẽ giúp ích phần nào cho các bạn trong quá trình ôn thi, luyện tập các bài toán khó

NỘI DUNG tập tài liệu thì gồm các bài toán liên quan tới phương trình, hệ phương trình , bất phương trình Chắc các bạn sẽ thắc mắc là tại sao không có lời giải đúng không ? Không phải mình ngại viết lời giải mà vì mình muốn lời giải các bạn tự mình tìm ra vì các bài toán này hầu hết các bạn đã biết phương pháp làm rồi!

Cuối cùng mình xin cảm ơn quý bạn đã quan tâm tới tài liệu của mình.Mọi ý kiến đóng góp về tài liệu các bạn gửi

Chúc các bạn học tập tốt và thành công trên con đường mình đã chọn!

2x  3x1 x 2x 1 0

2x1x  3x 1 0

Bài 6: Giải phương trình 5 2 x42 3 x4 5x 72

Bài 7: Giải phương trình 2x4 21x378x2109x51 2 x 1 0

Bài 10: Giải phương trình x48x316x215 x2

Bài 12: Giải phương trình 4x4 4x3 46x210x21 x x23

Bài 13: Giải phương trình 6x1  x45x312x217x7

xxx  x

Bài 16: Giải phương trình 6x210x 5 1 4 x 6x2 6x 5 0

Bài 17 : Giải phương trình x26x 1 2x1 x122 0

2

x

x     x x   Bài 19: Giải phương trình 5x2 20x16 4x3  5x10x2 x  5x 4 x3

xx  x  x  xx

Trang 3

Bài 21: Giải phương trình   2

Biên soạn: Giáp Đức Long Facebook: Hmu Yhb

3

x

Bài 24 : Giải phương trình 1 4 x 12x1 3  x2 x14x212x19 2 x 3 0

Bài 26: Giải phương trình

 

2

2

x x

x x

x

Bài 28: Giải phương trình 3x23x 2 x6 3x2 2x 3 0

Bài 30: Giải phương trình 9x2 42x49 3 x26 1  x 1 0

x  xx   xx 

Bài 34: Giải phương trình

2

x

x

Bài 38: Giải phương trình x3 10  x2 12 x x2

xxx    x  Bài 41: Giải phương trình x22x1 x2  x 1 x 2 0

8x  8x 3 8x 2x  3x1

x  x x   xx Bài 44: Giải phương trình x2 4xx 3 x2 x1 1

x

Bài 46: Giải phương trình 32x3131 x3  x0

Bài 49: Giải phương trình 2x x 1 5 4x1 x23

Bài 50: Giải phương trình 2 1  x x12 2x2 2x1

Bài 51: Giải phương trình 4x1 x3 1 2x3 2x1

Bài 52: Giải phương trình x1 x2 2x 3 1x2

Trang 4

Bài 53: Giải phương trình 3 8 x 2x2 1 x 3 3 x2

Biên soạn: Giáp Đức Long Facebook: Hmu Yhb

Bài 55: Giải phương trình 3 x 1 3 x 2 3x12  x 1 1

Bài 57: Giải phương trình

3

2 1

3

x

x

Bài 63: Giải phương trình 2x210x 8 x21 2 x1 0

Bài 64: Giải phương trình 4x25x 1 2 x2 x 1 3 3 x 1

x x

Bài 67: Giải phương trình 4 2 x213x2  2x 2x1 2 x35x 0

Bài 68: Giải phương trình 2x7 2x7 x29x7

Bài 72: Giải phương trình 3x2 5x 1 x2 2  3x2 x1  x2 3x4

5

x

x  x  

5

x

x  x   Bài 85: Giải phương trình 3x 2 x1x4 5x312x215x 3 0

Bài 86: Giải phương trình 3x2 2 4x 1 3 x 2x1 6 x3 7x2 3

Trang 5

Biên soạn: Giáp Đức Long Facebook: Hmu Yhb

Bài 89: Giải phương trình 3x1  5 2 x x 33x210x 26 0

x

x

x   

3x 1 6 x3x 14x8

2

x

x     Bài 96:

Ngày đăng: 16/04/2015, 19:45

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w