1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Parametric resonance of 4th order in a nonlinear vibrating system under the influence of frictions

6 230 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 1,95 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

General Investigation We shall find the solution o f Eq... The steady-state response can be found by setting a, xp equal to zero in equations 2.4... The characteristic equation o f the s

Trang 1

P A R A M E T R IC R ESO N A N C E O F 4th O R D E R IN A N O N L IN E A R V IBRATING

S Y S T E M U N D ER T H E IN F L U E N C E O F F R IC T IO N S

NGUYEN VAN D A O (HANOI)

I Introduction

A m o n g the parameters having considerable influence on parametric oscillations it

is worth mentioning the nonlinear frictions [I] This paper is concerned with the study o f the influence o f som e kinds o f frictions on the nonlinear oscillations described by the equation with the cubic term at modulation depth:

(1.1) X -f ( 0 2x 4- eịc.x 4- (i.Y3) COS y t -f f a.\3 + e R (.x , x ) = 0 ,

in the resonant zone o f 4th order:

where e9 (O, c, d, a are constants, R(.x, v) is a function characterizing the frictions con­

sidered.

It h a s tu r n e d o u t th a t th e p a r a m e tr ic o s c i ll a t io n s a n d th e ir s t a b ility in th e r e s o n a n t

z one (1.2) are essentially dependent on the friction forces But, the resonant curves in the

c a s e s o f lin e a r f r i c t i o n , d ry fr ic tio n a n d th e tu r b u le n t o n e are n o t d iffe r e n t in q u a lity

2 General Investigation

We shall find the solution o f Eq (1.1) in the form

X = ứsinớ,

0 = r t + v ,

where a and y} are new unknown variables which will be determined later By substituting (2.1) into (1.1) and transforming it, we obtain the following equations for a and ip:

y a = — 4 e [ Ax + (c.Y4-i/.Y3)COSy/ -f (XX2 -I- R ( x , i ) ] c o s ỡ ,

yaỳỉ = 4 8 [ Ax + (cx + d x 3) COS y t -f- (XX3 4- R ( x , x)] sin 0 ,

Trang 2

4 3 6 Nguyen van Dao

which is the standard form for the method o f averaging [2] Following this method

let

where Ỡ* and y* satisfy (he averaged equations:

= — 4e

(2.4)

G(ơ > y) ~ s*n

4y-ỵơỳ; = 4t'

here for short we om it the subscript (*) and

y— a-f ~ art3 -f P( a, y ) + rt3 COS4y»

(2.5)

2n

G ( a , y ) = - ~~ cosớ* /? Ị í7 S Ìiiỡ , ^ tfcosỡjí/ớ,

In

P ( a , y ) = I sin0 • / W ứ s i n ỡ , flcosOjrfO.

0

The functions /1 and (Ị) in (2.3) will be obtained from the right-hand sides o f (2.2) (sec

Sect 3).

The steady-state response can be found by setting a, xp equal to zero in equations

(2.4) T h u s :

d ,

"16 ^oSin4v*o = G ( a 0 , y ) ,

(2.6)

- a0 c o s 4 V o = y f l o + y « « 0 + ^ ( « 0 , v) ■

Eliminating the phase 7*0 yields

(2.7)

where

(2.8) W( a 0 , y ) - G 2(a0 , }') +

W'teo, ỳ) = 0,

2 a° + 8 0 + (a° ’ (16)* •

T o study the stability o f stationary oscillations, the variational equations based on tlie

Stationary solution will be considered By setting in (2.4)

a = ơ0 + ôa, y) ~ ipo + ồyỉ,

where Ỗa and ôy) are small perturbations, and using the steady-state equations (2.6),

we have

d

(2.9)

y () a = 4e

cit

y a 0 - ỗ f = 4e

r", \ , 3í/ứổ ■ ,

G ( «0 y ) + - s i n 4 Vo

y + “ Oftfo + p (a0 , 7 ) + ~ - cos4^ o ô a ~ d a l s i n 4 y v ' V ’| \ , 1

here a prime denotes partial differentiation with respect to o0

Trang 3

The characteristic equation o f the system (2.9) is o f the form:

The stability condition is given by the Routh-Hurwitz criterion, that is

In Fig I the branches o f unstable solution are represented by dotted lines in which the conditions (2.10) are Violated It should also be noted that the boundary between the

stable and unstable regions shows the locus o f vertical tangency ( d w / d a 0 — 0) with the

resonant curves.

3 L inear Friction

Let us consider the case

where h is a positive constant Ill this case the equations (2.4) becom e

I h ‘to2 : A \

ya = e a \ - y y + -4- sin4yj I,

(3.2)

L i 3 2 d a 2 _ A \

yaỹ) = ea 12/1 -f — <xa H— - COS 4 y ) j,

and the relation (2.7) is o f the form:

(3.3) (/?2 - Z ) > ắ + 2 / ? ( l - / < 2K + ( l - /u2) 2 + / / V = 0 ,

in which

From (3.3), we obtain

(3.5) flg = — [ P f r * -1 )+ Ị '7 ; > ( 1 - V ) 2 i ( / > j - m v |

-It should be pointed out that the most interesting case is that for which p 2 > D 2 This case is show n in Fig 1 by plotting the Eq (3.5) for ft = ± 1 • 10“ 3, D = 3 • 10~3 with various values o f h : H = 0 (straight lines “0 ”), H 2 — 5* 10~4 (curve 1), H 2 — 10~3

(curve 2).

T o find the refinement o f the first approximation we represent (2.2) in the following expanded form

r

ha d a 3

sin 4^ 4- y c o s 2 ớ + M -1- 2 1

Trang 4

438 Nguyen van Dao

( r + ^2 j si 11 (2Ơ — 4 v ) — si l l 4Ỡ + “ !<• + ‘y - j s i n ( 6 0 - 4 y ) - ^ s i n ( 8 f l - 4 y > )

iA/j 16e

(10 = V 2 ' JZ-G+ 0 aơ3 + , cos4ĩ/»— ( I -f atf2) c o s 2 0 + 7 ơysin2ớ

— 4 " ( r + ^ứ2) c o s ( 2 0 - 4 y ) - ị - g ếJ3cos4ỡ + 2 Ịr + 4 í/ứ2| c o s ( 4 0 - 4 y )

— ^ (c + <Vtf2) c o s ( 6 ỡ —.4y) + rá*r-cos(8ớ — 4?/>)

Fi g I

Since Ơ and V’ do not v a r y very rapidly, we shall integrate the right-hand sides o f (3.6)

as if a and w were constant We thus obtain

n - n - ì 6 f

(3.7) a = a 0

-y

16e

v> = Vo +

y s in 2 0 — + y o ^ j c o s 2 0 + - y | c + I COS ( 2 0 - % , ) + ~ cỏ cos 4 0 — | c + d ~ ~ j cos(60-4y>„) + cos(80-4y>o)

a y 2 - - y COS 2 0 - (zl + 0íữ ẳ)sin2ớ - ơ-° (c + í/ữ ẩ )sin (2 0 -4 y io)

+ ~ ứẵ sin4ớ + — ■ Ịc + sin(4ỡ - 4y>o) - - | ị - (c + í/ữẳ) sin (60 - 4 Vo)

+ -^ -s in ( 8 ớ -4 Vo)

Trang 5

T h e new refined first a p p r o x i m a t i o n will be given by

4 fte r s o m e sim ple c a lc u la tio n s this leads to

4 Coulomb Friction

Let

Ĩ th e n o n l i n e a r fric tio n c o n s id e re d T h e a v e ra g e d e q u a t i o n s (2.4) n o w a re o f th e f o r m

k2)

y_

4

y - _ 2/i0 d a 3 \

-— a ỳ = £ I -— -— h a a + —j - £ - C O S 4 ^ I , fl > 0

T h e a m p l i t u d e s o f s t a t i o n a r y o s cillatio n s a re d e t e r m in e d by th e e q u a t i o n :

k3) D 1a ị — a ị { \ —fx2 + ậ a ị ) 2 — H ị = 0 , / / 0 4e/i°

T h e c u r v e s 3, 4 p r e s e n te d in F ig 1 a re o b t a i n e d by p l o t tin g e q u a t i o n (4.3) for

5 Turbulent Friction

Let us c o n s id e r n o w t h e case

u b s tit u tin g (4.1) in to (2.4) gives

• _ A i 11 2 y 2 2 _ ciaĩ ■ A , \

y i = ~ 4 e 1 2^ - “ - 16 s in 4 v '

5.2)

he equation (2.7) f o r the am plitude o f stationary oscillations then becomes

Trang 6

440 Parametric resonance o f 4th order in nonlinear vibrating system

T h e resonant curves for /3 = ± 7 • 10 - 3 , D = 3 • 10 3 are presented in F ig 1 w ith H 2 = 0 (straight lines “0 ”), H \ = 5 • 10 “ 5 (curve 5), H ị = 10- 4 (curve Ố).

t

Conclusion

T he results o b ta in ed s h o w that

1) Param etric o sc illa tio n s and their sta b ility in th e reson an t zo n e (1 2 ) essen tia lly

d epend on the fr ictio n

2) T h e r e s o n a n t c u rv e s in th e cases o f lin e a r fric tio n , d r y fric tio n a n d th e t u r b u l e n t

o n e are sim ilar in q u ality.

3) W ith the g ro w th o f friction the resonant curves m o v e up.

References

1 G Schmidt, Parametererregte Schwingungen, Berlin 1975.

2 H H BoromoốoB, K> A MHTPonojiLCKHH, AcuMnmomimecKue Memoỏbi e meopĩiu HCAUHCÙHbix KOJie-ôamíũy M o c K B a 1963.

S t r e s z c z e n i e

PARAMETRYCZNY REZONANS CZWARTEGO RZẸDU w NIELINIOWYM

DRGAJACYM UKLADZIE POD WPLYWEM TARC

w artykule rozpatrzono w ptyw tare n a p a ra m e try c z n y re z o n a n s czwartego rzẹdu, kiedy m a miejsce zwiạzek (1.2), w nieliniowym ukfadzie z uwzglẹdnieniem czionu trzeciego stopnia przy gỉẹbokosci modulacji (1.1) Okazuje siẹ, ze drgania parametryczne i ich statecznosc w obszarze rezonansu znacznie zaỉezạ od tare Jednak krzywe rezonansowe w przypadku liniowego, suchego i turbulentnego tarcia ja- kosciowo sạ podobne do siebie i ze zwiẹkszeniem tare rezonansowe krzywe podnoszạ siẹ.

p e 3 K> M e

rTAPAMETPH^ECKHíỉ PE30H A H C ^ETBEPTO rO rTOPflHKA

B HEJIHHEHHOft KOJIEEATEJIBHOft CHCTEME n o n BJIHilHHEM TPEHHH

B aaHHoft cTaTbe pacc.MaTpHBaeTCH BJiHHHHe TpeHHÍi Ha napaMeTpHHecKHỈi pe30HaHC MeTBepToro

nopH A K a, K o r a a HMeeT MCCTO co o T H o m eH H e ( 1 2 ) , B HejiHHeiiHOH CHCT6MC c yMeTOM tu ie H a TpeTeH cren eH H

n p H riiy ổ H H e MOAyjiflijHH ( 1 1 ) O K a3biBaeTCH, ^ITO n ap aM eT p iraecK H e KOJieốaHHH, HX ycTOHTOBOCTb

B pe3onaHCHOH 30He 3Ha*ỉHTejibHo 33BHCHT OT TpeHHH Ozmano, pe30HaHCHbie KpHBbie B cjiyqaHX jiHHeHHoro, cyxoro I I TypốyneHTHoro TpeHỉùí KaMecTBeHHo noxo>KH /xpyr Ha Apyra H c yBejnrqenHeM TpeHHH pe30HaHCHbie KpHBbie noAHHMaioTCH BBepx.

HANOI POLYTECHNICAL INSTITUTE (DHBK)

FACULTY OF MATHEMATICS AND PHYSICS

Received April 16, 1976.

Ngày đăng: 08/04/2015, 15:30

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w