1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu các phương pháp và thuật toán xác định hướng sóng đến, sử dụng dàn anten có cấu trúc đặc biệt, ứng dụng cho hệ anten thông minh

51 490 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 51
Dung lượng 16,59 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

the popular antcnna array structures in DOA systcms are ULA and UCA vvith sim plc antenna elem ents, such as dipoles.. The accuracy o f DOA estimation in 360° range vvith ULA and UCA

Trang 4

BÁO CÁO TỎNG HỢP

I Đ Ặ T V Á N Đ Ề

“N g h iê n c ứ u cá c p h ư ơ n g p lĩá p và th u ậ t to á n x á c đ ịn h h ư ớ n g s ó n g đến, s ử d ụ n g dàn a nten có cấ u tr ú c đặc biệt, ứ n g d ụ n g clio h ệ a n te n th ô n g m in h " là m ộ t t r o n g c á c

II TỎNG QUAN CÁC VẤN ĐÈ N G H IÊ N c ứ u CỦA ĐÈ TÀI

Đ e tài “N g h iê n c ứ u các p h ư ơ n g p h á p và th u ậ t toán x á c đ ịn h h ư ớ n g só n g đến,

s ử d ụ n g dàn a n ten có cấ u trú c đặc b iệt, ứ n g d ụ n g c h o h ệ crnten tlíô n g m in h " t ậ p t r u n e

Trang 12

4 Nhận xét

T r o n g c ù n g m ộ t m ô h ì n h a n t e n v à tí n h i ệ u :

- X é t v ê đ ộ c h í n h x á c : h a i t h u ậ t t o á n c ó đ ộ c h í n h x á c n h ư n h a u

- X é t v ề t h ờ i g i a n t h ự c h iệ n : t h ờ i g i a n tí n h t o á n c ù a t h u ậ t t o á n E S P R I T ít h ơ n m ộ t Iiửa ll iu ậ l l u á n PvíU SIC p ỉg o à i ỉ'à, ílìu â í ío á iì C S í^ ív ỉT c h o r ì £ s y k í t Cjuả c ủ a 4

n g u ồ n t í n h i ệ u c ò n t h u ậ t t o á n M U S I C p h ả i c ó q u á t r ì n h t ì m c á c đ i ể m c ự c đ ạ i t r o n e

p h ổ k h ô n g g i a n V ì v ậ y , x é t t ổ n g t h ể t h u ậ t t o á n E S P R I T s ẽ c h o t h ờ i £ Ìa n t í n h t o á n

ít h ơ n n h i ề u v à t h e o đ ú n g ti ê u c h í c ủ a tá c e i ả t h u ậ t t o á n n h à m k h á c p h ụ c v ấ n đ ề

th ờ i g i a n tí n h t o á n t r o n g M Ư S I C

Trang 13

T huật to án M US1C trong U C A vẫn đ ư ợc uiữ n g u v ẽ n n h ư đồi với U L A

II M Ô P H Ỏ N G T H U Ậ T T O Á N M U S IC VỚI DÀ N A N T E N ULA VẢ l CA

Trang 15

b H ạ n cliế c ù a th u ậ t to á n M U S I C k lìi áp d ụ n g với (iíìn n n te n ƯLA và ƯCA

- Đ ổ i v ớ i c ấ u t r ú c U L A v à U C A k h i c h o s ố p h ầ n t ử a n t e n n h ỏ h a n s ố n g u ồ n tín

h iệ u d ế n thì v i ệ c m ô p h ỏ n e k h ô n e th e t h ự c h i ệ n đ ư ợ c d o t r o n g t h u ậ t to á n M U S I C

s ự p h â n t á c h e i ữ a k h ô n s s i a n c o n c ù a tín h i ệ u v à n h i ề u p h â n b iệ t bơi c á c 2ÍÚ trị

r i ê n g c ủ a m a t r ậ n h i ệ p p h ư ơ n g sai lối v à o ( m ụ c 1.2) V à vì v ậ y t h e o t h u ậ t to á n n ; n thì s ổ g i á trị r i ê n g ứ n g v ớ i k h ô n e e i a n tín h i ệ u p h ả i n h ò h ơ n s ố p h ầ n từ a n t e n tr o n u

m à n g N ó i c á c h k h á c , s ố n g u ồ n tín h i ệ u p h á t h i ệ n đ ư ợ c bị h ạ n c h ế b ờ i s ổ p h ầ n tử

a n t e n t r o n g i n ả n e

Trang 21

MUSIC UCA + nonlinear W P A DOA - degree

H ìn h 11 - P h ổ k h ô n g g i a n c ủ a d à n U C A v ớ i m ỗ i p h ầ n t ử là m ộ t h ệ a n t e n p h a p h i t u y ê n

t r o n a t r ư ờ n g h ợ p 2 7 n a u ô n tí n h i ệ u đ ê n

Kết luận: N h ư v ậ y , v ớ i c ấ u tr ú c m ớ i - d à n U C A v ớ i m ỗ i p h ầ n t ư a n t e n là m ộ t h ệ a n l e n

p h a p h i t u y ế n , c ó th ể x á c đ ị n h c h í n h x á c c á c n g u ồ n tín h i ệ u đ ế n c à t r o n e t r ư ờ n g h ợ p so

Trang 23

X I T À I L I Ệ U T H A M K H Ả O

1 T à i liệu T i ế n g V i ệ t

[1] P h a n A n h , L ý th u yết và K ỹ thuật a n te n, N X B K h o a h ọ c v à K ỹ t h u ậ t

2 T à i liệu T i ế n g A n h

[2] R i c h a r d R o y a n d T h o m a s K a i l a t h , E S P R IT - E stim a tio n o f S ig n a ì P aram eters Via

R otational In va ria n ce Techniques I E E E T r a n s a c t i o n s o n A c o u s t i c s S p e e c h a n d S i e n a l

P r o c e s s i n g , V o l 3 7 N o 7, J u l y 1 9 8 9

[3] H a m i d K r i m a n d M a t s V i b e r g , Two D ecades o f A rra y S ig n a l P ro cessin g R esearch

I E E E S i g n a l P r o c e s s i n g M a g a z i n e , J u l y 1 9 9 6 , p p 6 7 - 9 4

[4] J o s e p h C L i b e r t i , J r & T h e o d o r e S R a p p a p o r t , Sm art A n ten n a f o r ÌVire/es.s

C om m unications IS-95 a n d T hird G eneration CD M A A p p lic a tio n s, P r e n t i c a l H a ll.

Trang 24

3 K h ó a lu ậ n t ô t n g h i ệ p n ă m 2 0 1 0 : "N ghiên cứu, m ô p h ỏ n g ảnh h ư ờ n g ạhép ttivn g

hô g iữ a các p h á n tử anten đến kết quả p h ô M U S IC trong dàn an ten ULA

4 K h ó a lu ậ n t ố t n g h i ệ p n ă m 2 0 1 0 : '‘N ghiên cứu, m ô p h ỏ n g ảnh h ư ớ n g g h ép Iưưng

hô g iữ a các p h ầ n từ anten đến kết quà p h ô M U S IC trong dàn an ten UCA

5 K h ó a l u ậ n tố t n g h i ệ p n ă m 2 0 1 0 : "Tlĩiết kế đ ầ u thu p h ụ c vụ cho úu% d ụng DOA tân sổ hoạt độn g 915 M H z

25

Trang 25

2 0 1 0 In tern a tio n a l C on feren ce on

C om putational In tellig en ce an d V eh icu lar

Trang 26

2010 International Conference on Computational Intelligence and Vehicular System Proceedings

Trang 27

Direction-Of-Arrival Estimation using Special Phase Pattem Antenna Elements in Uniíbrm C ircular Array*

tm tuanW m ic.go\ vn

A b s tr a c t - A t h í o r y m o d e l in w h ic h U n iío r m C ir c u la r A r r a y

(U C A ) u sin g s p e c ia l a n te n n a c le m e n ts Cor D ir e c tio n o f A r r iv a l

(D O A ) e s tim a tio n is p r e s e n le d S im u la tio n r e s u lts sh o w th at

DOA estimation is very importanl in smart antcnna

dcsigning and direction íìnding In most o f thc research papers

and real systems the popular antcnna array structures in DOA

systcms are ULA and UCA vvith sim plc antenna elem ents, such

as dipoles.

The accuracy o f DOA estimation in 360° range vvith ULA

and UCA structures is usually dcpendent on the numbcr o f

elements in array and elem ents arrangement The niore element

numbcr is largc, the more accuracy is higli With UCA

structure, unique disadvantage is: the algorithm can not detect

sourccs if the number o f antenna elem enls is not large enough

(smaller or little larger than the number ofin cident sources).

To increases accuracy and overcom es thc disadvantagc in

DOA cstimalion using UCA \vith traditional elem ents, vve

introducc a theorv m odel using ncw antcnna element structure

for UCA It will be dcscribcd in next scctions in details.

!n this papcr, \ve used well-kno\vn Multiple Signal

Classiíìcation (M U SIC ) algorithm [1] to estimatc DOA for

UCA in traditional elem cnts case and proposed elem ents casc

Afìer thai, dilĩerent spatial spectrum results o f these structures

vvill bc comparcd and discussed.

The paper is organizcd as follow s Section II presents an

overvievv description o f system proposed elem ent structure

and detailcd data modcl analysis Simulation results and

discussion arc givcn in section III Section IV is a short

conclusion MUS1C algorithm is given in Appendix in detail.

II S y s te m D e s c r ip t io n , T h e o r y M o d e l o f pROPOsnD

A n t e n n a A r r a y S t r u c t u r e a n d D a t a M o d e l

A O ve rvie w System D escriplion

Fig 1 shovvs the m odel o f DOA estim ation system \vith general antenna array structure

The system has tu o parts: Data Acquiremcnt part and

Signal Processing & Displa> part The former includes

antenna arra> RF-IF convcrtcr and A D C The laler includes MUSIC alcorithm and result displav.

tì Theory m o d eí o f P ro p o se d Antenna E lem ent j o r UCA

M odel and phase paticrn o f a tradilional elem ent (dipolc)

is shovved in Fig 2.

This vvork IS supporĩcd b> UET, VNUM Tlic conlcnt o f llus vvork \vas parllv snpp<irted b> the rescarch project ọ c 0 ’ 2 ! and o c 08 ] 5

Trang 28

(a) <b)

where: d| is the distance betvveen 1-1 and 1-2 dipoles and d2 is

the distance betAveen II-1 and 11-2 dipoles.

11-2 Dipolc

am p/pltase excilalioii

dl d2 1/90“ 1/270" 1/0" 1/180" 0 5 \

vvhere \ is the operation vvavelength.

With parameters in Table 1 the special phase paltern is

presenled in Fig.4

Compare with traditional elenient, proposed elem ent has

phase pattern is very speciallv difĩerent from traditional

element It has nonlinear form and can be expressed by [2]:

Fig 2 M odcl (a) and phase patlem fb) o f tradilional element

According to [2], special phase patterns can be created by

dipoles com bine One o f them is show ed in Fig 3

Fig 4 Phasc Patlem o f the Proposed Elcmcni

c UCA w ith P ro p o se d Elem enls

Proposed antenna elem cnt u h ich includes 4 dipoles in Fig.3 can be considcred as one elem ent vvith phase pattcrn likes in Fig.4.

Then UCA wi(h proposed elem ents is shovvn in p'ig.5.

\ I' \ I

ĩ : : I

F(g 5 UCA vviilt 6 Proposcd Anlcnna Eleincnis

where R is the radius o f circular.

D D a ta m o d e l A nalvsis

A ssutne lliat am plilude pattern o f each proposed elcm enl

is constant; the number o í clem ents in UCA is N Data motlel can be dcscribed as Ibllous:

The antenna arrav reccives signals from L narrouhand sources, w hich are randomly distributed in the xv-plane in ihe far lleld o f antcnna arra\ Phase patlem s o f proposed elem ents are rotated step b> step by electricallv control systcrn íiach step is considcred as N elem ents in general antcnna arrav Ị hc

arrav steerinc vector o f 0 direction is expressed as:

a ( 0 ) = [ a , ( ơ ) a ,((? ) ÁO )] ( 2 )

\vhere

Trang 29

where u„ is the matrix vvhich includes eigenvectors o f noise

subspace Orthogonality betxveen steering vectors and l ’n will

minimize the denom inator o f (5 ) and hence it vvill make up

peaks in MUS1C spectrum T hcse peaks \vill correspond to thc

DOAs o f the sources [3].

I I I S ỉM U L A T IO N R E S U L T S a n d D lS C U SS IO N

The sim ulation is carricd out for U C A with traditional

elements and U CA vvith proposed elem cnts over 1000

snapshots Arter that, perlòrm ance o f M U SIC algorithm using

thcse anlenna array structures vviỉl bc compared eaclì other

Some discussion w ill be prcsented at the end o f this section.

A Simulalion R esu ỉls

Simulation Parameters are dcscribed in table 2.

Fig 6 illustrates the spatial spcctrum for UCA \vitlì

traditional elem ents and U C A vviih proposcd elem ents As

shown, the former estim ated 16 peaks \vith ỉ desired peak 15

undesired peaks and all pcaks are not Sharp Meamvhilc, the

latlcr eslim ated 24 dcsircd pcaks vvith 5° resolution and íill

peaks are Sharp.

M-l is the number o f rotated steps, A 0 is rotated angle.

The acquired data after ( M - l) ,h step is given by:

x ( 0 = Ị a ( ớ , ) s , ( r ) + n ( r ) (3)

/«/

vvhere s ( / ) is source at 6 direclion vvhich is assumed that

uncorrelated with the others, n ( / ) is noise vector which is

modeled as tem porally A dd ilive White Gaussian N oise

(AWGN).

Aíìer that M U SIC algorithm is used to estim ate D O A s as

follows:

The covariance matrix o f X (tcmporaỉ averaging over K

snapshots) [4] is gi ven by:

ỉ K.7

vvhere (.) denotes con ip lcx con ịugate transpose.

The idea o f M US1C algorithm bases on eigenvectors and

eigenvalues o f R : the eigen vectors corrcsponding to (he

smallest eigenvalues form the noise subspace and also

orthogonal to the steering vectors [3] Thereíore MUSIC

spatial spectrum is expressed as:

24 elcm ents = 24 dipoles

() elcm ents - 24 dipolcs (R olaicd Stcp num ber

B D iscussion

A ccordine to introduction section MUSIC nlgorithm using UCA u ith proposed elem cnts can eslim ate DOAs in spatial spectrum cxactl) allhoueh thc nunibcr ol inuilcni sources is approxiinate or larger than the number o f anlcnn.i elem ents The sim ulation result in Fig 6 i11 Iistrated this idea The reason o f the results can be explaincd as follows: Theorv D O A estim ation o f proposed structure is similar to

U CA with traditional elcm ents To incrcasc accurac\ and can dctcct sources in ca.sc the number o f antenna clcm cnts is not large enough the proposcd melhotl madc inerease thc nunihci

Trang 30

Each phase pattern rotated slep o f proposed elem ents is

corresponding to making up N traditional elem ents in UCA

Thereíòre, after M -l rotated sleps, proposed structure makes

up MxN elem ents.

A limitation o f this D O A method is amplitude pattern o f

proposed elem ent has not been considered in detail yet (In

II.D part, w e assum ed that it is constant).

However UCA using nonlinear phase pattern antenna

elements still has meaning in looking for a DOA estim ation

method vvhich has the number and accuracy o f DOA peaks in

spatial spectrum do not depend on the number o f real antenna

elements

I V C O N C L U S IO N

DOA estim ation algorithm (M U SIC ) using UCA with

new antenna elem ent struclure vvas investigated and compared

with tradilional UCA structure Investigation results assert

once again that: proposed antenna structure can be used to

estimate D O A s exactly in case the number o f antenna

elements is not large enough In the future vvork w e will

consider impact o f am plitude pattern on accuracy o f DOA

spectrum and look for a real antenna elem ent niodel \vhich has

the most optimal am plitude and phase pattern.

A p p e n d ix

A MUSIC algorithm wilh g e n e ra l antenna m o d e ì [ 5 ]

Assume that: in 2D spatial coordinates, there is a

narrowband signal im pinges on the l,h antenna elem ent like in

Fig 7.

Fig 1 General anlenna model

The output is m odeled by:

■'(')+"(') (6)

= a(e)s(t)+n{t)

vvith g ,(0) is radiation pattern o f /lh antenna elem ent.

If M signals inipinge on L sensors in the presence o f an

additive noise n (/) and assum e that 5,(0) is constant then the

outputs o f antenna elem ents are:

x ( / ) = A ( 0 ) s ( í ) + n ( í ) 0 )

\vhere:

x ( / ) = Ị í , ( í ) , r ( / ) v , ( / ) ] 7 is s i c n a l \ c c l o r a t a n t e n n a

A (0) [ a (0( ) a(0 ) a (0Ay )] i s steering malrix

a (0) = [ a , ( e ) « , ( e ) a , (0)] is steering vector

« Í Ạ Ì = Ị c M c M V í / V Ị 7 ic c n i t r r e v ^ r l n r

n (r ) = [ í i ,0) is noise vector

MUSIC algorithm is exprcssed as lollovvs:

S t c p l: Calculate Spatial Covariance Matrix

R = E { x ( /) x " ( /) Ị = A e | s ( / ) s " ( /) Ị a " + e | h (/) ii (/)

= A P A t o i vvith

e Ị s ( / > " ( 0 Ị = p

E {n (/ )n " (/ ) } = ơ’1

( 8 )

<‘M( 1 0 )

Stcp2: D ecom position Spatial Covariance Matri\

R = A P A " + ơ 1 = U A U " ( I I ) with u is unitarv and A = d i a ẹ ị x X X , ) vvhich

X, > l : >0.

Depend on eigenvalues with X , > x , > > > ơ .

~ - ơ ' we can partilion thc

eigenvalue/eigenveclor pairs into signal and noi se subspaces

So w e can vvrite (11) into:

R = U A l ) ; + U A u " (12) From ( I I ) and (12) w c have:

R = A P A " + ơ 1 = U ,A ,U " + U f ơ ; U " (13) From (13) i I APA" is luII rank then eigcnveetors l in noise subspace are orthogonal to A So vve can \vritc:

vvilh 0 6 1 0 0 , 0 Af Ị

(15) Step3: Calculatc MUSIC spatial spcctrum

p | 0 ) = ^ Ì L

^ a"( 0) U„U>( G)

R N I KI N ( l:S

[ 11 R o Sclimidl " M u l u p k ’ 1‘I>IIIII'I h n a i n / n (111,1 M iỊ n a l p i i n i m c h r

cMimaiion llilĩi: Trans Anlennas and propagation vol AP-34 pp 271-

280 M ar 1986

[2 ] Phan A n h A n tn n n o m llio u l r i n n ư ( ự ìtic r a n d I h s i r III

Raiiiu ĩinịỉtnccrinự S enes M onograpli No 2? W rocl;m Poland IVM

ISSN 0324-9328

(3J Liu Jin Li li Hn.T7.hi NVang, "InvcMiịỉdlinn of D it/crenu’ 11/V» nf Arr,i\

S in u iurcs fo r Smari Antennas ", P roceedm gs o f ICMMT 2008

(4] Joseph c Libcrti Jr Ẵ; Theodore s R appapon Sntori Ânn-nna t(ir IVirelcxs Comnuimcalions I.S-95 ơnd Third Cmneratmn CI)MA

A p p lica iio m , Prentice Hall PTR

Ị5 ] Ham id Kri 111 and Mnls V iberg ' l u n lìeta d e* <<f Arra\ Siựnal

Proiưsuiìỉỉ IE1ÌÍÌ Siunal Pmccs^mi! \1aiM7.inc Julv 19% pp

Ngày đăng: 19/03/2015, 09:45

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w