TRƯỜNG THPT TRẦN PHÚ ĐỀ KIỂM TRA 1 TIẾT
MÔN: GIẢI TÍCH 12-CHƯƠNG II Câu 1(4.5điểm):
a) Tính giá trị biểu thức: 1 log 5 1 log 3 3log 52 5
b) Đơn giản biểu thức:
1
2 1
a a a B
a a
−
+
=
− +
(a>0)
c) Tính đạo hàm của hàm số: y=ln e2x+5
Câu 2(3.0 điểm) Giải các phương trình sau:
a)
2
x x
− −
÷
3
log x−log x+ − =2 1 0
Câu 3(1.5 điểm) Giải bất phương trình: 2x+ 1−5.2x+ >2 0
Câu 4(1.0 điểm): 5.8 = 500
Hết.
ĐÁP ÁN
Trang 21a ∑1.5điểm
1 log 3 3log 52 5
1 log 54 2
2 2log 54 log 3 62
2log 5 log 3
=4 4 2 2
16.5 3.2 592
=
+ +
0.5 0.5 0.5
1
2 1
B
a a
− +
=
+
0.5x3
5
2
x e x
e e
x
+ +
+
+
0.5x3
1 2
pt
x
x
⇔ − − + =
=
0.5 0.5
0.5
Đk: x>0
Với điều kiện trên phương trình đã cho tương đương với phương
trình: log3x−log3− 1(x+ − =2) 1 0
0.25 0.25 0.25
Trang 3( )
3
2
log log 2 1
2 3
1( )
2 3 0
3(l)
x x
x x
x n
x x
x
⇔ + =
=
⇔ + − = ⇔ = −
Vậy phương trình có một nghiệm x=1
0.25 0.25
1
2
2
x
x
< −
<
0.5 0.5x2
đk : x 0≠
PT ⇔ log (5.8) = log 500
⇔ log 5 + log 8 = log (5.2)
⇔ x + 3 log 2 = 3 + 2log2
⇔ (x - 3) +3 - 2 log 2 = 0
⇔ (x - 3) + log 2= 0
⇔ (x - 3)1 + = 0 ⇔ x=3 v 1 + = 0
Với 1 + = 0 ⇔ x + log 2 = 0 ⇔ x = -log 2
Vậy PT có 2 nghiệm x = 3 v x = -log 2
0.25
0.25
0.25
0.25