1. Trang chủ
  2. » Giáo án - Bài giảng

công thức và phương trình lượng giác tiếng anh

9 942 6

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 98,51 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Double angle identities 1.sin2θ =2sinθcosθ 2... Useful suggestions for proving trigonometric identities 1.. Where possible, express different functions in terms of the same function..

Trang 1

Trigonometric Identities and Equations

I Fundamental Trigonometric Identities

A Reciprocal identities

1

θ

θ

cos

1

θ

θ sin

1

θ

θ tan

1

B.Quotient identities

1

θ

θ θ

cos

sin

θ

θ θ

sin

cos cot =

C Pythagorean identities

1 sin2θ +cos2θ =1 2 2θ 2θ 3

sec 1

csc cot

D Sum and difference identities

1 sin(θ ±φ)=sinθcosφ±cosθsinφ

2 cos(θ ±φ)=cosθcosφmsinθsinφ

3

φ θ

φ θ

φ

θ

tan tan 1

tan tan

) tan(

m

±

=

±

E Double angle identities

1.sin2θ =2sinθcosθ

2 cos2θ =cos2θ −sin2θ =1−2sin2θ =2cos2θ −1

3

θ

θ θ

2 tan 1

tan 2 2

tan

=

F Half angle identities

1

2

cos 1 2 sin2 θ = − θ

2

2

cos 1 2 cos2 θ = + θ

3

θ

θ θ

cos 1

cos 1 2

tan2

+

=

Trang 2

G Miscellaneous identities

1 sin(−θ)=−sinθ

2 cos(−θ)=cosθ

3 tan(−θ)=−tanθ

⎛ ±

=

±

2

cos 2

sin 2 sin

⎛ −

⎛ +

= +

2

cos 2 cos 2 cos

⎛ −

⎛ +

=

2

sin 2 sin 2 cos

2

1 ) sin(

2

1 cos

sinθ ϕ = θ +ϕ + θ −ϕ

2

1 ) sin(

2

1 sin

cosθ ϕ = θ +ϕ − θ −ϕ

2

1 ) cos(

2

1 cos

cosθ ϕ = θ +ϕ + θ −ϕ

2

1 ) cos(

2

1 sin

sinθ ϕ = θ −ϕ − θ +ϕ

11

θ

θ θ

θ θ

sin

cos 1 cos 1

sin 2

= +

=

H Useful suggestions for proving trigonometric identities

1 Avoid aimless transformations Any transformation that is made in one of the members should lead in some way to the form of the other

2 Start with the more complicated member of the identity and transform it into the form of the simpler member

3 Where possible, express different functions in terms of the same function

4 It is often useful to express all functions in terms of sines and cosines, or in terms of tangents and secants

Trang 3

5 As a rule, trigonometric functions of a double angle, a half angle, or the sums and differences of angles should be expressed in terms of functions of the single angle

6 Simplify expressions by utilizing basic identities and combining like terms

7 Simplify fractions For example, transform complex fractions into simple fractions or divide the terms of a fraction by the common factors

I Examples

1 Using trigonometric identities and fundamental trigonometric function values, find each of the following:

(a)

2

3 2 4

3 2 2

2

3 1 2

60 cos 1 2

30 sin 15

o

⎜⎜

⎟⎟

⎜⎜

=

= +

=

2

3 2

2 30

sin 45 sin 30 cos 45 cos ) 30 45 cos(

75

4

2 6 2

1 2

⎟⎟

⎜⎜

(c)

2

1 30 sin )]

15 ( 2 sin[

15 cos 15 sin

3 2 1 2

3 1 2 1 30

cos 1

30 sin 2

30 tan 15

+

= +

= +

=

=

o

o o

o

2

1 ) 5 7 5 37 cos(

2

1 5 7 cos 5 37

4

3 2 2

3 2

1 2

2 2

1 30 cos 2

1 45 cos 2

⎟⎟

⎜⎜

⎛ +

⎟⎟

⎜⎜

=

o

Trang 4

2 Prove: x x

x

x

tan sin

csc

sec

x x

x

x x

x

x x

x

x

sin 1

sin cos 1 sin sin

1 cos

1 sin csc

sec csc

1 csc

sec 1

x

x

tan sin

cos

sin

+

=

3 Prove:

x x

x x

x

2 sin

2 cos

sin sin

cos

= +

x x x

x

x x

x x

x x x

x

x x x

x x

x

cos sin

1 cos

sin

sin cos

cos sin

) (sin sin cos

sin

) (cos cos cos

sin sin

x x

x sin2

2 cos

sin 2

2

=

4 Prove:

y x

y x

y x

y x

tan tan

tan tan

) sin(

) sin(

+

=

− +

⎟⎟

⎜⎜

⎟⎟

⎜⎜

+

=

+

=

+

) )(cos (cos cos

sin cos

sin

) )(cos (cos cos

sin cos

sin

cos

sin cos

sin

cos

sin cos

sin

tan tan

tan tan

y x y

y x

x

y x y

y x

x

y

y x

x

y

y x

x y

x

y x

) sin(

) sin(

cos sin cos sin

cos sin cos

sin

y x

y x x

y y

x

x y y

x

+

=

− +

II Solution of Trigonometric Equations

A Useful suggestions for solving trigonometric equations

1 Simplify the equation by clearing fractions, removing parentheses, combining like terms, and removing radicals

2 Express functions of a double angle, a half angle, or the sums and differences

of angles in terms of functions of the single angle; then express the different functions of the single angle in terms of a single function of that angle

Trang 5

3 Solve the resulting equation, whether it be linear or quadratic in nature, for all the values of the angle in the given domain

4 Checks the results by substituting into the original equation

B Examples

1 Solve for x in the interval [0,2π ): 2sinx+ 3=0

2

3 sin

3 sin

2 0 3 sin

x x

3 2

3

⎟⎟

⎜⎜

Since sinx is negative, x lies in the 3rd and 4th

quadrants Thus, (240 )

3

4 ) 60 ( 3 ) 180

=

(300 )

3

5 ) 60

(

3

o

Both of these values do check

2 Solve for x in the interval [0,2π ): cosx=cosxtanx

cosx=cosxtanx⇒ cosx−cosxtanx=0⇒cosx(1−tanx)=0⇒

cosx=0 or 1−tanx=0⇒cosx=0 or tanx=1

2 0

=

x (90o)

or (270 )

2

=

x tan x= 1⇒ reference angle = (45 )

4 ) 1 (

=

tanx is positive, x lies in the 1st and 3rd quadrants Thus, (45 )

4 o π

=

4

5 ) 45 ( 4 ) 180

2

3 , 4

5 , 2

, 4

π π π π

or

x= and they all check

3 Solve for x in the interval [0,2π ): 2cos3x=1

2

1 3 cos 1 3 cos

2 x= ⇒ x= Since 0≤ x<2π , 0≤ x<6π The reference angle

for 3x is (60 )

3 2

1

− and cosx is positive in the 1st

and 4th quadrants

Thus, (60 )

3

3 =π o

3

5 ) 60 ( 3 ) 360 ( 2

x , 3x=2π(360o)+

Trang 6

(420 )

3

7 ) 60

(

3

o

3

11 ) 60 ( 3 ) 720 ( 4

3

13 ) 60

(

3

o

3

17 ) 60 ( 3 ) 1080 ( 6

x

9

17 , 9

13 , 9

11 , 9

7 , 9

5 , 9

π π

π π π π

or

4 Solve for x in the interval [0,2π ): cos2x=cosx

cos2x=cosx⇒cos2x−cosx=0⇒(2cos2 x−1)−cosx=0⇒2cos2 x− cosx−1=0⇒(2cosx+1)(cosx−1)=0⇒ 2cosx+1=0or cos x−1=0⇒

2

1 cosx=− or cosx=1 =− ⇒

2

1

cos x reference angle is

3 2

1 cos 1 =π

and

x lies in the 2nd or 3rd quadrants since cosx is negative

3

2 3

π π

π − =

=

3

4 3

π π

π + =

=

x cosx=1⇒ x=0 Thus,

3

4 , 3

2 ,

or

x= and they all check

5 Solve for x in the interval [0,2π ): sinx=cosx

= ⇒ =1⇒tan =1⇒

cos

sin cos

x

x x

4 ) 1 ( tan−1 =π

and

x lies in the 1st or 3rd quadrants since tanxis positive

4

π

=

⇒ x or x=π +

4

5 4

π

π =

and they both check

Trang 7

Practice Sheet – Trigonometric Identities and Equations

I Verify the following identities:

x

x

tan sin

csc

sec

x

x x

2 sin 1

2 cos 4

tan

=

⎛ +π

(3)

x

x x

sin 2

sec 2

x

x x

sec 2

1 sec 2

x x

x x

3 tan 4

sin 2

sin

2 cos 4

II Solve the following equations for all values of x in the interval [0,2π ):

(1) 3sinx−4=5sinx−3 (2) 2sinxcosx= 3cosx

(3) 4cos2 x−1=0 (4) 2cos2 x+3sinx=3

(5) sinx−cosx=1

Solution Key for Trigonometric Identities and Equations

x x

x

x x

x

x x

x

x

tan sin

1

sin cos

1 sin

sin 1 cos

1 sin csc

sec csc

1 csc

sec

⎛ +

= +

= +

= +

+

=

+

=

+

=

+

=

⎛ +

x x

x x x

x x x x

x x

x x

sin cos

sin cos cos

sin 1 cos

sin 1 tan 1

tan 1 tan 4 tan 1

tan 4 tan 4

π π

x

x x

x x x

x x

x x x x

x x x x

2 sin 1

2 cos sin

sin cos 2 cos

sin cos

) sin )(cos sin (cos

) sin )(cos sin (cos

2 2

2 2

= +

=

− +

Trang 8

(3)

x

x x

x x

x x

x x

x

sin 2

sec sec

sin 2

1 cos

1 sin 2

1 cos

sin 2

1 2

sin

1 2

(4)

x

x x

x

x x

x x

x x

x

sec 2

1 sec sec

2 cos

cos cos

1

cos 2 cos

cos 1 2

cos 1 2

=

=

x x

x x x

x x

x

x x x

x x

x

x x

3 cos ) sin(

2

sin 3 sin 2 2

4 2 cos 2

4 2 sin 2

2

2 4 sin 2

2 4 sin 2 4

sin 2

sin

2 cos 4

cos

x

x x

x

x x

3 tan 3

cos

3 sin 3

cos sin

2

sin 3 sin

II (1)

6

11 , 6

7 2

1 sin

3 sin 5 4 sin

x x

x

(2)

2

3 sin

cos 3 cos

sin

3

2 , 3 0

cos = ⇒ =π π

x

2

3 , 2

π π

=

x

and they all check

(3)

3

5 , 3

4 , 3

2 , 3 2

1 cos

0 1 cos

x x

(4) 2cos2 x+3sinx=3⇒2(1−sin2 x)+3sinx=3⇒2sin2 x−3sinx+1=0⇒

2

1 sin 0 ) 1 )(sin 1 sin

2

6

5 , 6 1

sin = ⇒ =π π

x

2

π

=

x and they all check

(5) sinx−cosx=1⇒sinx=1+cosx⇒(sinx) (2 = 1+cosx)2 ⇒sin2 x=1+

2cosx+cos2 x⇒1−cos2 x=1+2cosx+cos2 x⇒ 2cos2 x+2cosx=0⇒

2cosx(cosx+1)=0⇒cosx=0 or

2

3 , 2 1

cos =− ⇒ =π π

x

x or x

2

π

=

x or x=π are the solutions because they both check However,

2

=

x

does not check in the original equation and thus is not a solution [Note:

2

=

x is an extraneous root created by squaring both sides of the original

Trang 9

8

Ngày đăng: 29/01/2015, 03:00

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w