1. Trang chủ
  2. » Giáo án - Bài giảng

bộ đề ôn tập học kì II môn toán 11

4 379 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 389 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Viết phương trình tiếp tuyến với đồ thị hàm số tại điểm có hoành độ bằng 1.. Viết phương trình tiếp tuyến với đồ thị hàm số, biết tiếp tuyến có hệ số góc bằng 6.. Viết phương trình tiếp

Trang 1

BỘ ĐỀ HỌC KÌ II NĂM HỌC 2011-2012

LỚP 11 Thời gian 90’

ĐỀ SỐ 1

I Phần chung:

Câu 1: Tìm các giới hạn sau:

3

lim

b

x

x x

0

1 1 lim

 

Câu 2: Tìm m để hàm số sau liên tục tại điểm x = 1:

 

mx m khi x

2 2

1

Câu 3: Tính đạo hàm của các hàm số sau:

a y x 2.cosx b y(x 2) x21

x

y

x

 d y2sin 3x4cos2 x

Tính vi phân của hàm số:

a y=4x3-3sin2x+1 b y=3tan3x-2cos2x

Câu 4: Cho tam giác đều ABC cạnh bằng a Trên đt

vuông góc với (ABC) tại B, ta lấy một điểm M

sao cho MB = 2a Gọi I là trung điểm của BC.

a Chứng minh rằng AI  (MBC)

b Tính góc hợp bởi đthẳng IM với (ABC)

c Tính khoảng cách từ điểm B đến (MAI)

II Phần riêng: 1 Theo chương trình Chuẩn

Câu 5a: Cmr phương trình sau có ít nhất 1 nghiệm:

x5 x4 x3

5  3 4  5 0

Câu 6a: Cho hàm số y f x ( )x3 3x2 9x 5

a Giải bất phương trình: y  0

b Viết phương trình tiếp tuyến với đồ thị hàm số

tại điểm có hoành độ bằng 1

2 Theo chương trình Nâng cao

Câu 5b: Cmr phương trình sau có đúng 3 nghiệm:

x319x 30 0

Câu 6b: Cho hàm số y f x ( )x3x2 x 5

a Giải bất phương trình: y  6

b Viết phương trình tiếp tuyến với đồ thị hàm số,

biết tiếp tuyến có hệ số góc bằng 6

Hết

ĐỀ SỐ 2

I Phần chung:

Câu 1: Tìm các giới hạn sau:

a

x

x

x2 x

3

3 lim

2 15

x

x x

1

3 2 lim

1

 

Câu 2: Tìm a để hàm số sau liên tục tại x = –1:

Câu 3: 1 Tính đạo hàm của các hàm số sau:

a y(x2x)(5 3 ) x2 b y sinx2x

2 Tính đạo hàm cấp 2 của các hàm số sau:

a y=2 1

2

x x

 b y3cosx1 2sin 2x

Câu 4: Cho hình chóp S.ABCD có đáy ABCD là hình

vuông cạnh bằng a và SA  (ABCD).

a C minh BD  SC b Cminh (SAB)  (SBC)

c Cho SA = a 6

3 Tính góc giữa SC và (ABCD).

II Phần riêng 1 Theo chương trình Chuẩn

Câu 5a: Cmr phương trình sau có nghiệm:

x5 x2 2x 1 0

Câu 6a: Cho hsố y2x3x25x 7 có đthị (C)

a Giải bất phương trình: 2y   6 0

b Viết phương trình tiếp tuyến của đồ thị (C)

tại điểm có hoành độ x01

2 Theo chương trình Nâng cao

Câu 5b: Cmr ptrình sau có ít nhất hai nghiệm:

x4 x2 x

4 2   3 0

Câu 6b: Cho hàm số y x x 2( 1) có đồ thị (C)

a Giải bất phương trình: y  0

b Viết phương trình tiếp tuyến của đồ thị (C),

biết tiếp tuyến song song với đthẳng d: y5x

-Hết -ĐỀ SỐ 3

I Phần chung:

Câu 1: Tìm các giới hạn sau:

n

3

lim

2 3

b

x

x x

1

lim

1

Câu 2: Tìm a để hàm số sau liên tục tại điểm x = 0:

x a khi x

f x

x2 x khi x

( )



Câu 3: 1 Tính đạo hàm của các hàm số sau:

a y(4x22 )(3x x 7 )x5 b y(2 sin 2 ) 2 x 3

2 Tính đạo hàm cấp hai của hàm số

a y=(4x-1)(2x3+x-1) b y= sin32x

Câu 4: Cho hình chóp tứ giác đều S.ABCD Gọi M, N

lần lượt là trung điểm của SA và SC

a C minh AC  SD b Cminh MN  (SBD)

c Cho AB = SA = a Tính góc (SBC) và (ABCD).

II Phần riêng1 Theo chương trình Chuẩn

Trang 2

Câu 5a: Cmr pt sau luôn có nghiệm với mọi m:

m x( 1) (3 x2) 2 x 3 0

Câu 6a: Cho hàm số y x 4 3x2 4 có đồ thị (C)

a Giải phương trình: y  2

b Viết pttt với (C) tại điểm có hoành độ x01

2 Theo chương trình Nâng cao

Câu 5b: Cmr pt sau luôn có nghiệm với mọi m:

m2 m x4 x

(  1) 2  2 0

Câu 6b: Cho hàm số y f x ( ) ( x2 1)(x1) (C)

a Giải bất phương trình: f x( ) 0

b Viết phương trình tiếp tuyến với đồ thị (C) tại

giao điểm của (C) với trục hoành

-Hết -ĐỀ SỐ 4

I Phần chung:Câu 1: Tìm các giới hạn sau:

a

x

x

2 3 1

lim

1

b

x

x x

3

3 lim

3

Câu 2: Xét tính liên tục của hàm số sau tại điểm

x0 2:

x

f x

khi x

2

( )

2



Câu 3: 1 Tính đạo hàm của các hàm số sau:

a y=Cos(3x2+2x+1)3 b y (1 cot )x 2

c y2x1 x2 d y=cos1 3(3x-1)

2 Tinh đạo hàm cấp n các hàm số:

a ysin 5 os3x c x b 2 1

2

x y x

Câu 4: Cho tứ diện ABCD có AB, AC, AD đôi một

vuông góc với nhau Gọi H là chân đường cao vẽ

từ A của tam giác ACD

a Chứng minh: CD  BH

b Gọi K là chân đường cao vẽ từ A của tam giác

ABH Chứng minh AK  (BCD)

c Cho AB = AC = AD = a Tính cosin của góc

giữa (BCD) và (ACD)

II Phần riêng 1 Theo chương trình Chuẩn

Câu 5a: Cmr ptrình sau có ít nhất một nghiệm:

2

Câu 6a: Cho hsố y f x ( )x3 3x29x2011

có đồ thị (C) a Giải bpt: f x( ) 0

b Viết phương trình tiếp tuyến với đồ thị (C) tại

điểm có hoành độ bằng 1

2 Theo chương trình Nâng cao

Câu 5b: Cmr phương trình sau có ít nhất hai nghiệm

nằm trong ( 1; 2) :(m21)x4 x31 0

Câu 6b: a.Cho hàm số y x x

x

2

1

 

 Giải phương trình: y  0

b Viết pttt với (C) 4 3

x y x

 biết tt qua A(0;1)

-Hết -ĐỀ SỐ 5

I Phần chung:

Câu 1: Tìm các giới hạn sau:

a

x

2 3 2

lim

xlim x2 2x 1 x

 

Câu 2: Xét tính liên tục của hsố sau tại điểm x01:

khi x

2

Câu 3: 1.Tính đạo hàm của các hàm số sau:

a y(x32)(x1) b y3sin sin32x x

c 3 22

1

x y

x

 d 3 3 2

4

y xxx

2 Tính vi phân của hàm số sau:

a y2cot 3 x12 b 2 2 3

1

x y x

Câu 4: Cho hình chóp S.ABC có đáy ABC là tam giác

vuông tại B, SA vuông góc với đáy

a Chứng minh tam giác SBC vuông

b Gọi H là chân đường cao vẽ từ B của tam giác ABC Chứng minh (SAC)  (SBH)

c Cho AB = a, BC = 2a Tính khoảng cách từ B

đến mặt phẳng (SAC)

II Phần riêng1 Theo chương trình Chuẩn Câu 5a: Cmr pt sau luôn có nghiệm với mọi m:

m x5 m2 x4

(9 5 ) (  1)  1 0

Câu 6a: Cho hàm số y f x ( ) 4 x2 x4 có đthị (C)

a Giải phương trình: f x( ) 0

b Viết pttt của (C) tại giao của đồ thị và trục hoành, tính góc giữa các cặp tiếp tuyến đó

2 Theo chương trình Nâng cao Câu 5b: Cho a, b, c tmãn hệ thức 2a3b6c0

Chứng minh rằng phương trình sau có ít nhất một

nghiệm thuộc khoảng (0; 1): ax2bx c 0

Câu 6b: Cho hàm số y f x ( ) 4 x2 x4 có đthị (C)

a Giải bất phương trình: f x( ) 0

Trang 3

b Viết phương trình tiếp tuyến của đồ thị (C) tại

giao điểm của (C) với trục tung

-Hết -ĐỀ SỐ 6

I Phần chung:

Câu 1: (2,0 điểm) Tìm các giới hạn sau:

a

x

x

x

3 0

lim

 

 

Câu 2: Xét tính ltục của hàm số sau trên R

Câu 3: Tính đạo hàm của các hàm số sau:

a y x

x

1

 b y x x

x

 

c y3sin 3 x1 tan2 x d y3x22 2  x3 x

Câu 4: Cho hình chóp S.ABC có đáy ABC là tam giác

đều cạnh bằng a, SA  (ABC), SA = a 3

a Gọi M là trung điểm của BC Chứng minh

rằng: BC  (SAM)

b Tính góc giữa các mặt phẳng (SBC) và (ABC)

C Tính khoảng cách từ A đến mặt phẳng (SBC)

II Phần riêng1 Theo chương trình Chuẩn

Câu 5a: Cmr phương trình: x2 44x2 x 3 0

có ít nhất hai nghiệm thuộc –1; 1

Câu 6a: a Cho hàm số y x

x

3 4

 Tính y.

b Cho hàm số y x 3 3x2 có đồ thị (C)

+ Viết pttt của (C) biết tt đi qua A(1;-1)

+ Viết pttt của (C) tại các gđiểm của đồ thị với Ox

2 Theo chương trình Nâng cao

Câu 5b: Cmr pt: x3 3x  có 3 nghiệm pb.1 0

Câu 6b: a Cho hsố y x cosx

Chứng minh rằng: 2(cosx y )x y( y) 0

b Viết pttt của (C) của hsố

y f x ( ) 2 x3 3x tại giao điểm của (C) Oy.1

-Hết -ĐỀ SỐ 7

I Phần chung:

Câu 1: Tìm các giới hạn sau:

a

x

x

1

lim

1

 

xlim x2 x 1 x

 

  

Câu 2: Xét tính ltục của hàm số sau tại điểm x02:

khi x

Câu 3: Tính đạo hàm của các hàm số sau:

a y x

x

2

2

b ycos 1 2 x2

c.ysin 33 x22x 5d 2 6 3 4 2 2 3

x

Câu 4: Cho hchóp đều S.ABCD có cạnh đáy bằng 2a,

đường cao SO = a 3 Gọi I là tr điểm của SO.

a Tính khoảng cách từ I đến mặt phẳng (SCD)

b Tính góc giữa các mặt phẳng (SBC) và (SCD)

c Tính kcách giữa hai đường thẳng AC và SD

II Phần riêng 1 Theo chương trình Chuẩn

Câu 5a: Chứng minh rằng phương trình :

x5 3x có ít nhất một nghiệm thuộc 1; 2.1

Câu 6a: a Cho hsố ycot 2x Cmr:y 2y2  2 0

b Cho hàm số y x

x

1

 có đồ thị (C)

+ Viết pttt của (C) tại điểm A(2; –7)

+ Viết pttt của (C) biết hệ số góc bằng 3

2 Theo chương trình Nâng cao Câu 5b: Cmr pt: x17x11 có nghiệm.1

Câu 6b: a Cho hsố y x

x

3 4

 Cmr:2y2 (y1)y

b Cho hàm số y x

x

1

 có đồ thị (C) Viết phương trình tiếp tuyến của (C), biết tiếp tuyến

vuông góc với đường thẳng d: x2 2y 5 0

-Hết -ĐỀ SỐ 8

I Phần chung: Câu 1: Tìm các giới hạn sau:

a

x

x

2 3

lim

3

xlim x2 1 x 1

Câu 2: Xét tính ltục của hàm số sau tại điểm x01:

khi x

Câu 3: Tính đạo hàm của các hàm số sau:

a ytan 4x cosx b y x2 1 x10

c y 3x2 2x d 5

2

1

y x

Câu 4: Cho hình chóp S.ABCD có đáy ABCD là hình

vuông cạnh a; SA  (ABCD), SA a 2 Gọi M và N lần lượt là hình chiếu của điểm A trên các đường thẳng SB và SD

a Chứng minh rằng MN // BD và SC  (AMN)

b Gọi K là giao điểm của SC với mp (AMN) Cm

tứ giác AMKN có hai đchéo vuông góc

Trang 4

c Tính góc giữa đường thẳng SC với (ABCD).

II Phần riêng1 Theo chương trình Chuẩn

Câu 5a: Cmr phương trình 3x4 2x3x2 1 0 có ít

nhất hai nghiệm thuộc khoảng (–1; 1)

Câu 6a: a Cho hàm số f x( )x5x3 2x 3

Chứng minh rằng: f (1) f ( 1) 6 (0)f

b Cho hàm số y x x

x

2 2

1

 

 có đồ thị (C)

+ Viết pttt của (C) tại điểm M(2; 4)

+ Viết phương trình tiếp tuyến với đồ thị (C)

biết tiếp tuyến song song đthẳng 2x-y+2=0

2 Theo chương trình Nâng cao

Câu 5b:Cmr x510x3100 0 có ít nhất một ng âm

Câu 6b: a Cho hàm số y x2 2x 2

2

Chứng minh rằng: 2 y y1y2

b Cho hàm số y x x

x

2 2

1

 

 có đồ thị (C) Viết phương trình tiếp tuyến của (C), biết tiếp tuyến có

hệ số góc k = –1.

-Hết -ĐỀ SỐ 9

Câu I (2đ): Cho dãy số (un)

1

1

1

8

n 1 5

n n

u

u

u

-2 n

vu   

1, Chứng minh rằng (vn) là cấp số nhân

2, Tìm công thức tổng quát của (un),(vn)

Câu II (2đ): Tính các giới hạn sau:

2

2

x 2

4

4

1, lim 3, lim( 4n 2 )

2

2, lim 4, lim

x

x

Câu III(3đ): 1(1đ), Tính các đạo hàm sau:

2

,

6

x

2(2đ), Viết phương trình tiếp tuyến của parabol (P):

y=x2-2x-3 đi qua điểm M(-1;-4)

Câu IV (3đ): Cho chóp S.ABCD có đáy là hình vuông cạnh a và SA=SB=SC=SD=2a Gọi I,J lần lượt

là trung điểm của AD và BC

a, Tính khoảng cách từ S đến mp(ABCD)

a, CMR mp (SIJ) vuông góc với mp(SBC)

b, Tính khoảng cách giữa AD và SB

ĐỀ 10

Bài 1: Tính giới hạn:

2

2

2 3

x x

Bài 2: Chứng minh rằng phương trình

4 3 3 2 1 0

x x x x có nghiệm thuộc ( 1;1)  .

Bài3:Xét tính lt của hsố:

 

3 khi 2

x

Bài 4: Tính đạo hàm cấp n của các hàm số sau:

2

x

Bài 5: Viết pttt của đồ thị hàm số:   

2

1

y x

a) Tại giao điểm của đồ thị và trục tung

b) Biết tiếp tuyến song song với đường thẳng

Bài 6: Cho hình chóp S.ABCD, ABCD là hình thoi tâm O cạnh a,  60 ,0     13

4

a

Gọi E lần lượt là trung điểm BC, F lần lượt là trung điểm BE

a) Chứng minh: (SOF) vuông góc (SBC)

b) Tính khoảng cách từ O và A đến (SBC)

c) Gọi () là mặt phẳng qua AD và vuông góc (SBC) Xác định thiết diện hình chóp với () d) Tính góc giữa () và (ABCD)

Ngày đăng: 28/01/2015, 11:00

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w