1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Chùm bài toán vuông pha trong dao động điều hòa

9 655 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 314,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Nghiên cứu thế giới tồn tại xung quanh ta về cơ học, nhiệt học, quang học, vật lý hạt nhân và nguyên tử… Bài tập vật lý ở trường phổ thông có ý nghĩa quan trọng trong việc đào sâu, mở rộ

Trang 1

LÝ DO CHỌN ĐỀ TÀI

Vật lý học là môn khoa học thực nghiệm Nhiệm vụ của bộ môn vật lý là đi nghiên cứu những qui luật, định luật của tự nhiên Nghiên cứu thế giới tồn tại xung quanh ta về cơ học, nhiệt học, quang học, vật lý hạt nhân và nguyên tử…

Bài tập vật lý ở trường phổ thông có ý nghĩa quan trọng trong việc đào sâu,

mở rộng, hoàn thiện kiến thức lý thuyết và rèn luyện cho học sinh kỷ năng vận dụng kiến thức vào thực tiễn

Giải bài tập vật lý đòi hỏi ở học sinh hoạt động trí tuệ một cách tích cực, tự lập, sáng tạo Vì vậy có tác dụng tốt đối với sự phát triển tư duy của học sinh

Đặc biệt trong chương trình vật lý lớp 12, “sóng” là một phần chương trình tạo cho học sinh nhiều hứng thú nhất, bởi lẽ đơn giản đây là phân môn gắng liền với cuộc sống nhiều nhất Tuy nhiên việc vận dụng các kiến thức tổng hợp để giải các bài tập phức tạp là một việc không dễ đối với học sinh phổ thông

Với lý do như vậy nên việc đưa ra hệ thống bài tập với cách giải giống nhau

“chùm bài tập cùng cách giải” sẽ giúp cho học sinh có cách nhìn tổng quát, dễ nhớ

và vận dụng nhanh hơn

Để đồng nghiệp và học sinh tham khảo, tôi xin giới thiệu “ Chùm bài toán vuông pha trong dao động điều hòa” mà trong thời gian học tập, giảng dạy bản

thân đã tích góp được đó là lý do và mục đích của đề tài

Vì thời gian, phạm vi giới hạn đề tài, tài liệu không cho phép nên chắc chắn còn nhiều thiếu sót, mong được sự góp ý của Hội đồng khoa học nhà trường, của ngành và đồng nghiệp

Trang 2

MỤC ĐÍCH NHIỆM VỤ CỦA ĐỀ TÀI.

Giới thiệu cách giải bài toán dao động điều hòa dựa vào tính vuông pha của hai dao động, từ dao động cơ học đến các bài toán mạch điện xoay chiều Mối quan

hệ giữa cường độ dòng điện và hiệu điện thế hai đầu cuộn dây thuần cảm, tụ điện, mạch dao động và một số bài toán vuông pha khác

GIỚI HẠN CỦA ĐỀ TÀI.

Trình bày mối quan hệ giữa li độ và vận tốc; giữa vận tốc và gia tốc trong dao động cơ học; quan hệ giữa cường độ dòng điện và hiệu điện thế hai đầu cuộn dây thuần cảm, hai đầu tụ điện; quan hệ giữa hiệu điện thế hai đầu tụ điện và cường độ dòng điện chạy trong cuộn dây trong mạch dao động điện từ

CẤU TRÚC CHƯƠNG TRÌNH

1 Lý do chọn đề tài

2 Mục đích và nhiệm vụ của đề tài

3 Giới hạn đề tài

4 Nội dung

I Lý thuyết

II Hệ thống bài tập và cách giải

5 Kết luận

Trang 3

NỘI DUNG

I CƠ SỞ LÝ THUYẾT:

1 Mối quan hệ giữa li độ, vận tốc và gia tốc trong dao động điều hòa:

Nếu một vật dao động điều hòa theo phương trình : x Ac os( t  ) (1)

Thì vận tốc v x '  Asin ( t + )   (2)

Gia tốc: a x ''   2Acos( t  )   2x (3)

Từ (1) và (2) 2 2 2

2

v

Từ (2) và (3) 2 2 2 2

2

a

A v

2 Mối quan hệ giữa cường độ dòng điện và điện áp hai đầu cuộn dây thuần cảm và hai đầu tụ điện:

Điện áp hai đầu cuộn dây thuần cảm dao động điều hòa nhanh pha hơn dòng điện góc 900 Điện áp hai đầu tụ điện dao động điều hòa trễ pha hơn dòng điện góc

900

Vậy nếu i I c 0 os t (1)

Thì 0 os( ) 0 sin t

2

uU ct U  (2)

2

uU ct  U  (3)

Từ (1) và (2) hoặc (3)

2 2

2 2

0 0

1

   Trong đó U0LI Z U0 L; 0CI Z0 C

3 Quan hệ giữa cường độ dòng điện trong cuộn dây và hiệu điện thế hai đầu

tụ điện trong mạch dao động điện từ:

Mạch dao động LC lý tưởng đang hoạt động, giả sử tại thời điểm t điện tích trên tụ có biểu thức: q Q c 0 os t (1) thì dòng điện qua cuộn dây:

i q '  Q0 sin t  (2)

từ (1) và (2)

2 2 0

1

trong đó q = C.u; Q0 = C U0

II HỆ THỐNG BÀI TẬP ÁP DỤNG:

Trang 4

Bài 1: Một vật dao động điều hòa, ở thời điểm t1 vật có li độ x1 = 1cm, và có vận tốc

v1= 20cm/s Đến thời điểm t2 vật có li độ x2 = 2cm và có vận tốc v2 = 10cm/s Hãy xác định biên độ, chu kỳ, tần số, vận tốc cực đại của vật?

Giải:

Tại thời điểm t ta có : x Ac os( t  )

v x '  Asin ( t+ )  

Suy ra: 2 2 2

2

v

- Khi t = t1 thì: 2 2 12

1 2

v

  (1)

- Khi t = t2 thì : 2 2 22

2 2

v

- Từ (1) và (2) 2 12 2 22

1 2 2 2

2 2

2 2 1

2 2

1 2

v v

Rad s

x x

Chu kỳ: T = 2 0,628

Tần số: 1,59

2

f

Biên độ:

2

20

10

A   

Vận tốc cực đại: Vmax = A 10 5 (cm/s)

Bài 2: Một con lắc đơn dao động điều hòa, vào thời điểm ban đầu t0 vật nặng có li

độ s = 2cm và có vận tốc 40 2 cm/s đang dao động theo chiều dương của quỹ đạo Đến thời điểm t1 vật có li độ s1 = 2 2 cm và có vận tốc v1 = 40cm/s

a Viết phương trình dao động?

b Tính chu kỳ dao động và chiều dài dây treo con lắc?

Giải:

a Tại thời điểm t ta có : s S c 0 os( t  )

v S0 sin( t  )

Suy ra : 2 2 2

v

S s

Trang 5

Khi t = t0 2 2 02

v

S s

  (1)

Khi t = t1 2 2 12

0 1 2

v

S s

  (2)

Từ (1) và (2)

2 2

2 1 0 2

2 2 1

v v

s s

2 2

0

40 2

20

S    

(cm)

Khi t = 0 ta có s = 2 cm

V > 0

1 os 2

0,3 3

0

c

s cm

v

(rad) Vậy phương trình dao động có dạng: s 2 3 os(20c t 0,3 )  (cm)

b Chu kỳ dao động : T 2 0,314

Chiều dài dây treo:

Từ công thức: g l g2 0,025m 2,5cm

l

Bài 3: Một lò xo có độ cứng K = 40N/m, mang vật nặng m thực hiện dao động điều

hòa Khi vận tốc của vật bằng v1 = 6,28 cm/s thì có gia tốc a1= 0,693 m/s2 Còn khi vận tốc của vật bằng v2 = 8,88 cm/s thì gia tốc của vật bằng a2 = 0,566 m/s2 Tính chu kỳ, tần số, biên độ dao động và năng lượng toàn phần của vật

Giải:

Tại thời điểm t vật có vận tốc v và gia tốc a thì ta có: 2 2 2 2

2

a

A v

Vậy khi t = t1 thì : 2 2 2 12

1 2

a

A v

  (1)

Khi t = t2 thì: 2 2 2 22

2 2

a

A v

  (2)

Từ (1) và (2)

2 2

2 a1 a2 40 2

        (Rad/s)

Trang 6

Chu kì: T 2 1s

Tần số: f 1 1Hz

T

Biên độ: 12 12

2 4 2

A

Năng lượng : 1 2 3

8.10 2

Bài 4: Cuộn dây thuần cảm có độ tự cảm L Đặt vào hai đầu cuộn dây điện áp xoay

chiều u U c 0 os100 t (v) Tại thời điểm t = t1 điện áp tức thời và cường độ dòng điện tức thời có giá trị lần lượt u 1 50V; i 1 2A Đến thời điểm t2 thì u 2 50 2 V; i 2 1

A Tìm L và điện áp hiệu dụng hai đầu cuộn dây?

Giải:

Vì dòng điện qua cuộn dây dao động điều hòa trễ pha 900 so với hiệu điện thế

Nên ta có: u U c 0 os tthì 0 os( ) 0 sin t

2

i I c t  I

2 2

0

2 2 2

0 0 2

2 0

os

1 i

sin t =

u

I

Tại thời điểm t1

2 2

1 1

2 2

2 2

2 2

0 0

1 1

0 ( 0 L) 0 ( 0 L)

2

L

2

L

Z

Thay ZL vào (1) suy ra: 2 2 2 2 2 2 2

0 1 1 L 50 2.50 3.50

Uui Z   

0 50 3

U

2

U U

Trang 7

Bài 5: Đặt vào hai đầu tụ điện điện áp xoay chiều có tần số f = 50Hz Ở thời điểm t1

điện áp tức thời hai đầu tụ và cường độ dòng điện tức thời qua tụ có giá trị lần lượt

u1 = 100(V); i1 = 1,41 A Ở thời điểm t2 có u2 =141(V); i2 = 1A Tính điện dung của

tụ, điện áp và cường độ hiệu dụng của dòng điện qua mạch

Giải:

Giả sử hiệu điện thế hai đầu tụ có biểu thức: u U c 0 os t (1)

Thì cường độ dòng điện qua tụ có biểu thức: 0 os( ) 0 sin t

2

i I c t I  (2)

Từ (1) và (2)

2 2

0

2 2 2

0 0 2

2 0

os

1 sin t =

u

i I

2 2

1 1

2 2

2 2

2 2

0 0

1(1) 1(2)

2 2 2 2 2 2

2 1 1 2 1 2

2 2

2 2

2 1

100

C

u u Z

i i

4

C

Z

Thay ZC vào (1) ta được 2 2 2

Uui Z  (V)

0 50 6 2

U

0 6 2

C

U I Z

Bài 6:Mạch dao động LC lí tưởng, C = 2pF, đang hoạt động Tại thời điểm t1 thấy điện áp hai đầu tụ và cường độ dòng điện qua cuộn dây có giá trị lần lượt: u1 = 1mV và i1 = 1,41A; Đến thời điểm t2 thì các giá trị trên lần lượt: u2 = 1,41 mV và

i2 = 1A Tính tần số dao động riêng, năng lượng toàn phần của mạch

Tại thời điểm t1

Tại thời điểm t2

Trang 8

Tại thời điểm t ta có: điện tích trên tụ và cường độ dòng điện qua cuộn dây có giá trị: q Q 0 sin t (1) và i q '  Q c0 os t (2)

Từ (1) và (2) suy ra : 2 2 2

i

Khi t = t1 thì: 2 2 12

0 1 2

i

Khi t = t2 thì: 2 2 22

0 2 2

i

Từ (3) và (4) ta có: 2 22 12 22 12 22 12 9

1

0,5.10

9

10

f

Thay vào (3) ta tính được Q0 = 2,83.10-15C

Năng lượng của mạch : W = 02 2.10 18

2

Q C

Bài 7: Cho mạch điện như hình vẽ: Cuộn dây thuần cảm u ABU 2 os100 ( )ct V Giữ

L, R không đổi cho C biến thiên thì thấy khi C = C1 thì vôn kế chỉ cực đại Hãy chứng minh:

a UAN UAB

b ZL ZC = R2 + 2

L

Z

Hướng dẫn giải:

1 Cách vẽ giản đồ vectơ:

Ta có : U              AN              U C                U AB

Trong đó:

AN

U

sớm pha hơnI góc  1 ;U CI

Giản đồ vectơ như hình vẽ:

Giải:

a Chứng minh: U ANU AB

:

Xét tam giác OAB, ta có : R onst = const

B

C R

L A

M

N N

O

A

B

AN

U

AB

UUC

i

C

Trang 9

Định lý hàm sin trong tam giác AOB cho: U C

onst

AB

U

c

Vậy khi UCmax khi sin (AOB) = 1  AOB = 900 hay U              AN              U AB

(đpcm)

b Chứng minh: ZL ZC = R2 + 2

L

Z

Theo chứng minh trên ta có: AOB = 900  OAB COA

Hay I R2 ( 2 Z L2 ) I Z I Z .L C Vậy Z Z L. CR2 Z L2 (đpcm)

KẾT LUẬN Như vậy từ tính chất của hàm số lượng giác (sin2x + cos2x = 1); ý nghĩa đạo hàm, tính chất vuông pha giữa hai dao động điều hòa cùng tần số, mối quan hệ giữa cường độ dòng điện và hiệu điện thế trong các mạch điện khác nhau ta có thể lập nên hệ thống các bài tập có cùng cách giải giúp học sinh ôn tập tổng quát hơn

Chúc các bạn thành công

XÁC NHẬN CỦA NHÀ TRƯỜNG Kbang, ngày 15 tháng 3 năm 2010

NGƯỜI VIẾT

Nguyễn Đình Thuận

Ngày đăng: 07/01/2015, 20:32

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w