1. Trang chủ
  2. » Luận Văn - Báo Cáo

nghiên cứu tổng hợp và tính chất xúc tác của fe2o3 được biến tính bằng al2o3 và anion hóa trong phản ứng đồng phân hóa n-ankan

53 602 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 53
Dung lượng 1,27 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

yêu cầu của phản ứng đồng phân hóa các n-ankan ở nhiệt độ thấp và duy trì được độ bền của xúc tác và thân thiện với môi trường.. Nghiên cứu ―Tổng hợp và tính chất đồng phân hóa n-ankan‖

Trang 1

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

-

VŨ THỊ TUYẾT

ỨNG ĐỒNG PHÂN HÓA N-ANKAN

LUẬN VĂN THẠC SĨ KHOA HỌC

Hà Nội – 2012

Trang 2

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

-

VŨ THỊ TUYẾT

ỨNG ĐỒNG PHÂN HÓA N-ANKAN

Chuyên ngành: Hóa dầu và xúc tác Hữu cơ

Mã số: 604435

LUẬN VĂN THẠC SĨ KHOA HỌC

PGS.TS HOA HỮU THU

Hà Nội - 2012

Trang 3

LỜI CẢM ƠN

DANH MỤC CÁC CHỮ VIẾT TẮT

DANH MỤC CÁC BẢNG

DANH MỤC CÁC HÌNH

DANH MỤC SƠ ĐỒ

MỞ ĐẦU 1

1.1 Giới thiệu về quá trình đồng phân hóa n-ankan 3

1.1.1 Quá trình đồng phân hóa n-ankan 3

1.1.2 Các phản ứng chính xảy ra trong quá trình đồng phân hoá 4

1.1.3 Đặc điểm nhiệt động học 5

1.2 Chất xúc tác cho quá trình đồng phân hóa n-ankan 6

1.2.1 Phân loại xúc tác của quá trình đồng phân hóa n-ankan 6

1.2.2 Cơ chế phản ứng 8

1.3 Giới thiệu về xúc tác SO 4 2-/ Fe 2 O 3 Al 2 O 3 9

1.3.1 Giới thiệu về Fe 2 O 3 10

1.3.2 Một số yếu tố ảnh hưởng đến tính chất xúc tác SO 4 2-/ Fe 2 O 3 Al 2 O 3 12

CHƯƠNG 2 CÁC PHƯƠNG PHÁP THỰC NGHIỆM 15

2.1 Phương pháp nhiễu xạ tia X (XRD) 15

2.2 Phương pháp phổ EDX 17

2.3 Phương pháp hiển vi điện tử quét (SEM) 19

2.4 Phương pháp phân tích nhiệt (IR) 22

2.5 Phương pháp TPD_NH 3 23

2.6 Phương pháp đánh giá hoạt tính xúc tác 24

2.7 Phương pháp sắc ký khối phổ (GC-MS) 27

Trang 4

3.1 Tổng hợp xúc tác x%SO 4 /Fe 2 O 3 và x%SO 4 /yFe 2 O 3 -zAl 2 O 3 29

3.1.1 Hóa chất thiết bị 29

3.1.2 Quy trình tổng hợp 29

3.1.3 Các xúc tác được tổng hợp 31

3.2 Các phương pháp đặc trưng tính chất xúc tác 32

3.2.1 Nhiễu xạ tia X 32

3.2.4 Phương pháp phổ IR 38

3.2.5 Phổ EDX 39

3.3 Đánh giá hoạt tính xúc tác qua phản ứng đồng phân hóa n-hexan 40 KẾT LUẬN 42

PHỤ LỤC 46

Trang 5

DTA Diffirential Thermal Analysis (Phân tích nhiệt vi sai)

Trang 6

Bảng 1.1 Trị số octan của một số parafin nhẹ

Bảng 1.2 Các sản phẩm của quá trình cracking, thơm hóa

n-hexan

Bảng 1.3 Nhiệt tạo thành các isoparafin trong phản ứng đồng

phân hóa một số parafin ở các nhiệt độ khác nhau

Trang 7

Hình 2.1: Sự phản xạ tia X trên các mặt tinh thể

Hình 2.2: Nguyên lý của phép phân tích EDX

Hình 2.3: Nguyên lý bộ ghi nhận phổ EDS

Hình 2.4: Nguyên lý máy chụp SEM

Hình 2.5 Thiết bị tiến hành phản ứng isome hóa n-hexan ở pha

Hình 4.5 Phổ IR của mẫu SF-0,1Al

Hình 4.6 Phổ EDX của mẫu SF-0,1Al

Trang 8

Sơ đồ 1.1 Sản phẩm chính của quá trình đồng phân hóa n-hexan

Sơ đồ 1.2: Đồng phân hóa và crackinh parafin trên xúc tác axit

Sơ đồ 1.3: Cơ chế đồng phân hóa n- parafin trên xúc tác lƣỡng

Trang 9

MỞ ĐẦU

Ngày nay, dầu mỏ và khí tự nhiên là tài nguyên chiến lược giữ vai trò quan trọng trong các hoạt động kinh tế và cuộc sống con người Đối với Việt Nam, ngành dầu khí là một ngành công nghiệp trọng điểm góp phần rất to lớn vào sự nghiệp xây dựng và phát triển đất nước, số tiền hàng năm ngành dầu khí đóng góp cho ngân sách nhà nước là hàng nghìn tỷ đồng Chính vì vậy trong tiến trình phát triển kinh tế

- xã hội nói chung và phát triển công nghiệp nói riêng, vấn đề cải tiến các chất xúc tác luôn là yêu cầu bức thiết đối với các quá trình chuyển hóa trong hoạt động dầu khí

Hầu hết các mỏ dầu (cùng với khí đồng hành) và khí thiên nhiên ở nước ta đều giàu các hiđrocacbon n-parafin Công ty Dầu khí Việt Nam cùng với các đối tác nước ngoài đang khai thác khoảng 18-19 triệu tấn dầu và 6-7 tỉ mét khối khí thiên nhiên và khí đồng hành Đồng phân hóa các n-parafin thấp ngày càng đóng vai trò quan trọng, đặc biệt đối với nhu cầu tăng trị số octan của xăng Trong những năm gần đây, do yêu cầu bảo vệ môi sinh, các chỉ tiêu về thành phần hóa học của xăng

đã trở nên rất khắt khe trên quy mô toàn cầu Liên minh Châu Âu đặt ra các giới hạn hàm lượng các hợp chất độc hại hoặc có khả năng gây ra độc hại trong xăng cho năm 2012 theo tiêu chuẩn Euro V là: lưu huỳnh 10 ppm, olefin 18%, benzen 1%, các hiđrocacbon thơm 35% Vấn đề càng trở nên gay gắt khi các hợp chất phụ gia chứa chì hoàn toàn bị loại bỏ, còn phụ gia tăng cường trị số octan hiệu dạng oxigenat như MTBE hay ETBE, đang bị cấm sử dụng do những chất độc hại do khả năng phân hủy chậm của chúng trong môi trường và giá thành khá đắt Vì vậy, thay

vì tăng cường hàm lượng các hiđrocacbon parafin mạch nhánh trong xăng quá trình đồng phân hóa các n-parafin nhẹ đang trở nên bức thiết [8,9] Ở Hoa Kỳ hiện này tỉ phần của sản phẩm đồng phân hóa trong xăng chiếm 11,6%, còn ở Châu Âu thì tỉ lệ

đó là 5%, nhưng đang tăng một cách nhanh chóng Đây là tiền đề rất lớn cho việc phát triên quy trình đồng phân hóa n-ankan nhẹ phục vụ nhu cầu xăng cũng là sản phẩm đang có mức tăng trưởng cao

Trang 10

Hệ xúc tác được sử dụng phổ biến trong công nghiệp là Pt/-Al2O3 xúc tiến

C) cho sản phẩm có chỉ số octan cao hơn (do đó RON cũng đạt cao hơn từ 2-3 điểm) Tuy nhiên sự có mặt của clo lại dễ phân hủy thành HCl độc hại, gây mòn thiết bị điều này đòi hỏi điều kiện công nghệ khắc nghiệt hơn về chế độ làm sạch nguyên liệu và vận hành Việc có mặt Clo trong hệ còn đầu độc rây phân tử là chất hấp phụ n-Parafin (trong quy trình tách n-parafin đi kèm trong công nghệ đồng phân hóa của một số hãng lớn)[5] Những năm gần đây, đã có nhiều công trình trong và ngoài nước nghiên cứu các hệ chất xúc tác mới thay thế chất xúc tác truyền thống

yêu cầu của phản ứng đồng phân hóa các n-ankan ở nhiệt độ thấp và duy trì được độ

bền của xúc tác và thân thiện với môi trường Nghiên cứu ―Tổng hợp và tính chất

đồng phân hóa n-ankan‖ của chúng tôi nhằm mở ra một hướng đi mới trong việc

sử dụng xúc tác cho quá trình isome hóa sản phẩm xăng nhẹ và cung cấp cơ sở cho những hướng nghiên cứu sau này Bản luận văn không tránh khỏi những thiếu sót, rất mong nhận được ý kiến đóng góp của các thầy cô, anh chị và các bạn

Trang 11

CHƯƠNG 1 TỔNG QUAN VỀ VẬT LIỆU XÚC TÁC CHO PHẢN ỨNG

ĐỒNG PHÂN HÓA N-ANKAN 1.1 Giới thiệu về quá trình đồng phân hóa n-ankan

1.1.1 Quá trình đồng phân hóa n-ankan

Đồng phân hoá là quá trình làm thay đổi cấu tạo hoặc phân bố lại vị trí các nguyên tử hay nhóm nguyên tử của hợp chất hữu cơ mà không làm thay đổi khối lượng phân tử của nó

Có nhiều quá trình đồng phân hoá khác nhau như đồng phân hoá n-parafin

thành isoparafin, đồng phân hoá các ankyl benzen thành xilen, etyl benzen hay quá

quá trình biến đổi parafin mạch thẳng thành parafin mạch nhánh có ý nghĩa quan trọng nhất trong công nghiệp lọc hoá dầu bởi các isoparafin không những là cấu tử quý dùng để cải thiện chất lượng xăng mà chúng còn là nguồn nguyên liệu cho quá trình tổng hợp những hợp chất có vai trò quan trọng Ví dụ như isobutan là nguồn cung cấp isobuten, làm nguyên liệu cho quá trình tổng hợp MTBE hay isopentan là nguồn nguyên liệu để tổng hợp cao su isopren,…

Bảng 1.1 Trị số octan của một số parafin nhẹ [21]

Trang 12

RON: Chỉ số octan nghiên cứu, MON: Chỉ số octan động cơ

Công nghệ đồng phân hóa n-parafin được phân thành hai loại: (a) đồng phân

chuyển hóa n-butan thành isobutan để sản xuất các ankylat (bằng cách ankyl hóa isobutan bởi một olefin thấp) hoặc để sử dụng isobutan trong các chuyển hóa khác nhau của công nghiệp hóa dầu và công nghiệp hóa học; (b) đồng phân hóa các n-ankan mạch dài trong các sản phẩm dầu nhằm làm giảm nhiệt độ đông đặc nghĩa là loại bỏ được yêu cầu phải thực hiện công đoạn parafin (dewaxing) là công đoạn làm giảm hiệu suất sản phẩm

1.1.2 Các phản ứng chính xảy ra trong quá trình đồng phân hoá

Dưới tác dụng của chất xúc tác và ảnh hưởng của các điều kiện phản ứng (nhiệt độ, áp suất…), trong quá trình đồng phân hoá có thể xảy ra những phản ứng chính sau[9]:

- Phản ứng đồng phân hoá: Đây là phản ứng chính của quá trình đồng phân hoá Phản ứng làm biến đổi các hiđrocacbon mạch thẳng thành hiđrocacbon mạch nhánh Tốc độ của phản ứng phụ thuộc vào điều kiện của phản ứng và chất lượng của xúc tác

[ ]: Giá trị RON tương ứng

Sơ đồ 1.1 Sản phẩm chính của quá trình đồng phân hóa n-hexan

- Phản ứng crackinh: Là phản ứng bẻ gẫy mạch hiđrocacbon Tốc độ

phản ứng crackinh tăng theo kích thước hiđrocacbon, độ axit của xúc tác và nhiệt độ phản ứng Sản phẩm của phản ứng crackinh có thể tiếp tục được đồng phân hoá, tạo

nên các isoparafin có khối lượng phân tử nhỏ hơn n-parafin ban đầu

Trang 13

- Phản ứng đehiđro hoá, proton hóa, đóng vòng và thơm hóa dẫn đến tạo các sản phẩm olefin, vòng no, vòng chưa no, hidrocacbon thơm, các quá trình oligome hóa, nhựa hóa, cốc hóa Đây là phản ứng không mong muốn do nhựa và cốc tạo ra bám trên bề mặt xúc tác, làm xúc tác mất hoạt tính

Bảng 1.2 Các sản phẩm của quá trình cracking, thơm hóa n-hexan [19,21]

Liên kết trong các hợp chất hữu cơ là liên kết cộng hoá trị, các phản ứng hữu

cơ xảy ra với tốc độ chậm, không triệt để và theo nhiều hướng khác nhau Về nhiệt động học, phản ứng đồng phân hóa là phản ứng thuận nghịch và tỏa nhiệt, vì vậy phản ứng sẽ không thuận lợi nếu nhiệt độ tăng quá cao Bảng 2 cho thấy nhiệt tạo thành của một số cấu tử trong phản ứng đồng phân hóa n-butan, n-pentan và n-hexan ở các nhiệt độ khác nhau

Bảng 1.3 Nhiệt tạo thành các isoparafin trong phản ứng đồng phân hóa một

số parafin ở các nhiệt độ khác nhau [4]

-1,75 -1,04

-1,7 -0,96

-1,72 -0,89

-1,67 -0,87

Trang 14

2,3-đimetylbutan

2,2-đimetylbutan

-2,52 -4,39

-2,55 -4,4

-2,5 -4,38

-2,4 -4,25

-2,4 -4,2

Sự đồng phân hóa không làm thay đổi số mol nên sự thay đổi áp suất không làm chuyển dịch cân bằng của phản ứng Cân bằng này chỉ phụ thuộc chủ yếu vào nhiệt độ Dễ thấy rằng hiệu suất của của phản ứng đồng phân hóa tăng lên khi nhiệt

độ giảm do phản ứng là tỏa nhiệt Để đạt được cực đại các đồng phân có chỉ số octan cao, phản ứng cần tiến hành ở nhiệt độ thấp nhất có thể Tuy nhiên, ở bất kì

nhiệt độ nào thì một vòng phản ứng chỉ chuyển hóa được một phần các n-parafin thành isoparafin Bởi vậy, người ta thường sử dụng quá trình hồi lưu các n-parafin

chưa chuyển hóa và cả những đồng phân iso có trị số octan thấp để tăng độ chuyển hoá, tăng hiệu suất của phản ứng

1.2.1 Phân loại xúc tác của quá trình đồng phân hóa n-ankan

Xúc tác sử dụng cho quá trình đồng phân hóa là xúc tác mang tính axit để thúc đẩy phản ứng tạo cacbocation Quá trình đồng phân hóa đầu tiên sử dụng xúc tác ở pha lỏng nhưng có nhiều nhược điểm nên xúc tác loại này đã dần dần được thay thế và ngày nay người ta sử dụng xúc tác lưỡng chức năng (kim loại quý trên chất mang axit)

Xúc tác pha lỏng

Trước đây tất cả các quá trình đồng phân hóa đều sử dụng xúc tác pha lỏng là

axit clohiđric Ngoài những xúc tác trên người ta còn sử dụng một số xúc tác axit

C để đồng phân hóa but-1-en thành

C để biến đổi n-anken thành

isoanken

Ưu điểm của hai loại xúc tác này là hoạt tính cao, ở khoảng nhiệt độ hơn

Trang 15

tác này lại mau mất hoạt tính, độ chọn lọc thấp và rất dễ tự phân hủy Quá trình phân hủy của chúng tạo ra môi trường axit mạnh gây ăn mòn thiết bị Bởi những hạn chế trên, đã có nhiều công trình nghiên cứu để tìm kiếm xúc tác thay thế, phát huy những ưu điểm, khắc phục những nhược điểm của xúc tác pha lỏng

Xúc tác oxit có tính axit (axit rắn)

Qua nhiều nghiên cứu cải tiến, người ta sử dụng xúc tác rắn để thay thế xúc

làm xúc tác cho các quá trình đồng phân hóa

Loại xúc tác này có ưu điểm là rẻ tiền, dễ sản xuất nhưng lại có nhược điểm

là độ chuyển hóa không cao và nhanh mất hoạt tính do cốc tạo thành trên bề mặt xúc tác Vì vậy, chúng nhanh chóng nhường chỗ cho một loại xúc tác mới có hoạt tính và thời gian sử dụng lâu hơn, đó là xúc tác lưỡng chức năng

Xúc tác lưỡng chức năng

Xúc tác lưỡng chức năng là xúc tác có chức năng oxi hóa-khử và chức năng axit-bazơ Chức năng oxi hóa-khử có tác dụng làm tăng vận tốc của phản ứng đehiđro hóa và phản ứng hiđro hóa, được sử dụng điển hình là các kim loại chuyển tiếp như: Pt, Pd, Mo, Mn, Ni, Al, Sn …(hàm lượng mỗi kim loại thường nằm trong khoảng từ 0,5÷ 6% khối lượng) Chức năng axit có tác dụng thúc đẩy các phản ứng theo cơ chế cacbocation như đồng phân hóa hiđrocacbon, phản ứng đóng vòng hiđrocacbon parafin và các phản ứng không có lợi cho quá trình như hiđrocrackinh,

liệu này có tác dụng như một chất mang Chúng được tăng cường tính axit khi

Mỗi chất xúc tác chỉ chứa một chất tăng cường axit và thành phần % của chúng thường nằm trong khoảng 0,5÷30% khối lượng tùy thuộc vào mục đích sử dụng

Nếu xúc tác có độ axit yếu, sản phẩm sẽ chứa nhiều parafin mạch thẳng, phản ứng thơm hóa, đồng phân hóa xảy ra kém, trị số octan thu được thấp Ngược

Trang 16

lại, nếu tính axit quá mạnh thì trong giai đoạn đầu, quá trình chuyển hóa n-parafin

thành isoparafin đạt trạng thái cân bằng và tiếp theo đó hiđrocrackinh mạnh làm cho hàm lượng cốc tăng và lực axit giảm Vì vậy, cần tạo cho xúc tác độ axit phù hợp

C+y + O(x-y)

Bước 1: Giai đoạn tạo cacbocation

Hợp chất trung gian cacbocation được hình thành do sự hấp phụ phân tử ankan trên tâm axit Bronsted cũng như tâm Lewis

hoặc do sự chuyển hóa hiđrua từ phân tử ankan sang một cacbocation:

Bước 2: Quá trình đồng phân hóa cacbocation tạo thành cacbocation phân nhánh

Sơ đồ 1.2: Đồng phân hóa và crackinh parafin trên xúc tác axit

P: parafin; O: olefin; C + : cacbocation; x, y: số nguyên tử cacbon

Trang 17

Bước 3,3’: Hợp chất trung gian cacbocation bị phân cắt β để hình thành phân tử

anken và một cacbocation mới

Bước 4: Từ cacbocation hình thành phân tử parafin mới

không ăn mòn thiết bị phản ứng và không gây ô nhiễm môi trường Khi thêm một

ổn định hơn, hoạt tính được nâng cao, và thời gian phản ứng lâu hơn

nP = n-Parafin; nO = n-Olefin; iP = isoParafin

Sơ đồ 1.3: Cơ chế đồng phân hóa n- parafin trên xúc tác lưỡng chức

Khuếch tán

Các sản phẩm cracking

Khuếch tán

Kim loại

Kim loại

Trang 18

1.3.1 Giới thiệu về Fe 2 O 3 [17,20]

Sắt (ký hiệu: Fe) là tên một nguyên tố hóa học trong bảng tuần hoàn nguyên

tố có ký hiệu Fe và số hiệu nguyên tử bằng 26, nằm ở phân nhóm VIIIB chu kỳ 4, là

Đó là nguyên tố cuối cùng được tạo ra ở trung tâm các ngôi sao thông qua quá trình tổng hợp hạt nhân, vì vậy sắt là nguyên tố nặng nhất được tạo ra mà không cần phải qua một vụ nổ siêu tân tinh hay các biến động lớn khác Cũng do vậy mà sắt khá phổ biến trong vũ trụ đặc biệt là trong các thiên thạch hay trong các hành tinh lõi đá như Trái Đất hay Sao Hỏa Sắt phổ biến trong tự nhiên dưới dạng các hợp chất khác nhau Bình thường sắt có 8 điện tử ở vùng hóa trị, và do độ âm điện của ôxi nên sắt

có thể kết hợp với ôxi tạo nên hợp chất hóa trị 2 và 3

tiện nhất cho việc nghiên cứu tính chất từ và chuyển pha cấu trúc Sự tồn tại của

xác nhận, trong đó pha alpha (hematite) có tinh thể mặt thoi (rhombohedral) hoặc lục giác (hexagonal) dạng như cấu trúc mạng corundum và gamma (maghemite) có cấu trúc lập phương spinel là đã được tìm thấy trong tự nhiên Hai dạng khác của

được tổng hợp và nghiên cứu rộng rãi trong những năm gần đây

Epsilon là pha chuyển tiếp giữa hematite và maghemite Tài liệu khoa học

- Guillain) Đặc điểm cấu trúc chi tiết của pha epsilon được Klemm công bố năm

alpha bằng cacbon, nhiệt phân dung dịch sắt (III) clorua, hay là phân hủy sắt (III)

Trang 19

sunphat Beta Fe2O3 có tính thuận từ Gamma và epsilon Fe2O3 có từ tính mạnh,

Mặc dù từ rất sớm, các phép đo bề mặt tinh thể và X-ray đã kết luận rằng tinh thể hematite có cấu trúc mặt thoi (Brag and Bragg, 1924), nhưng phải đến năm

1925 chi tiết cấu trúc hematite mới được Pauling và Hendricks công bố Cả α-

được nói là có cấu trúc corundum Cấu trúc này có thể coi như là cấu trúc mặt thoi hoặc trực giao

Dưới 260 K, hematite có tính phản sắt từ, trên 260 K hematite thể hiện tính sắt từ yếu Sự chuyển tiếp ở nhiệt độ khá thấp này gọi là chuyển tiếp Morin - TM Nhiệt độ Morin phụ thuộc mạnh vào kích cỡ của hạt Nói chung nhiệt độ Morin giảm khi kích thước của hạt giảm và biến mất khi hạt có hình cầu dưới 8 nm Dưới

8 nm, hạt nano hematite có tính siêu thuận từ, nhưng nói chung kích cỡ này phụ thuộc mạnh vào phương pháp chế tạo

Hematite có thể điều chế dễ dàng bằng cả phương pháp phân hủy nhiệt lẫn kết tủa trong pha lỏng Tính chất từ của nó phụ thuộc vào nhiều tham số chẳng hạn như áp suất, kích cỡ hạt và cường độ từ trường

Maghemite có cấu trúc lập phương spinel, không bền và dễ bị chuyển thành

Không giống như hematite (các ion ôxi có cấu trúc lập phương xếp chặt và sắt chỉ xuất hiện trong lỗ hổng 8 mặt), trong cấu trúc tinh thể của maghemite và maghetite, các ion ôxi có cấu trúc lập phương xếp chặt với các lỗ hổng 6 và 8 mặt (octahedral and tetrahedral sites) bị sắt chiếm chỗ Sự khác biệt cơ bản giữa maghemite và maghetite là sự xuất hiện của Fe (II) trong maghetite và sự xuất hiện của các chỗ trống tại vị trí cation trong maghemite làm giảm đi tính đối xứng Bán kính iron của

Fe (II) lớn hơn của Fe (III) vì vậy liên kết Fe (II) – O dài và yếu hơn liên kết Fe (III) – O

Trang 20

γ- Fe2O3 là vật liệu feri từ, có từ tính thấp hơn khoảng 10% so với Fe3O4 và

siêu thuận từ Maghemite có thể được điều chế bằng các khử nước bằng nhiệt (thermal dehydratation) gamma sắt(III) oxit-hidroxit, ôxi hóa một cách cẩn thận sắt (II,III) oxit

a) Ảnh hưởng của nguồn lưu huỳnh sử dụng trong quá trình sunfat hoá

mất đi trên một mol lưu huỳnh đưa vào giảm dần theo thời gian sunfat hoá, ngược lại, hàm lượng lưu huỳnh trên chất mang lại tăng dần Điều đó chứng tỏ tính axit

phản ứng với nền để tách nước và tạo ra các nhóm sunfat, nhờ vậy nó sẽ góp phần làm giảm sự chuyển pha cấu trúc của nền, tạo sự ổn định và làm tăng diện tích bề

tán của kim loại lên bề mặt chất mang, từ đó làm giảm hoạt tính của xúc tác

Như vậy, nguồn chứa lưu huỳnh cho quá trình sunfat hoá sắt hiđroxit có tính

Trang 21

b) Ảnh hưởng của các phương pháp sunfat hoá đến hoạt tính xúc tác

Theo một số nhà nghiên cứu, đường cong biểu diễn mối quan hệ giữa hàm lượng lưu huỳnh và hoạt tính xúc tác có một điểm cực đại, chứng tỏ một trong những yếu tố ảnh hưởng đến hoạt tính xúc tác là hàm lượng lưu huỳnh

2 

lên bề mặt chất mang một cách hiệu quả không chỉ là xác định thời gian cần thiết để dung dịch ngấm được vào chất rắn, khối lượng thực của dung dịch được hấp thụ mà còn phụ thuộc vào phương pháp sunfat hoá, khối lượng chất nền, độ xốp của chất rắn, kích thước và phân bố kích thước hạt rắn Vì vậy, tìm phương pháp tối ưu để đảm bảo khối lượng lưu huỳnh trên bề mặt xúc tác là một vấn đề được các nhà khoa học rất quan tâm

Có hai phương pháp sunfat hoá thường được sử dụng hiện nay là phương pháp thấm và phương pháp ngâm tẩm

lớp chất nền sắt hiđroxit trước khi nung Phương pháp này rất khó đánh giá hàm

này, trong trường hợp hàm lượng lưu huỳnh trên bề mặt vượt qua % tính toán ban đầu, có thể điều chỉnh lại bằng cách tăng nhiệt độ nung, nhưng như vậy những tính chất khác của chất mang sẽ bị ảnh hưởng

độ sấy thấp Ưu điểm của phương pháp này là có thể điều chỉnh được hàm lượng

đoạn hấp phụ lên bề mặt chất mang, đồng thời có thể thêm vào một lượng axit phụ

để bù trừ cho sự mất mát xảy ra khi nung Ngoài ra, trong quá trình ngâm xảy ra

2 

làm tăng diện tích bề mặt chất mang và ổn định hàm lượng lưu huỳnh trên chất mang

Như vậy, theo các kết quả thực nghiệm thì sự mất lưu huỳnh trên bề mặt chất mang xảy ra trong cả hai phương pháp thấm và ngâm tẩm Tuy nhiên, điều chế theo phương pháp ngâm tẩm thì hàm lượng lưu huỳnh bị mất ít hơn và xúc tác có sự ổn

Trang 22

định hơn Vì vậy, sunfat hoá sắt hiđroxit theo phương pháp ngâm tẩm sẽ cho hiệu quả cao hơn các phương pháp khác

Trang 23

CHƯƠNG 2 CÁC PHƯƠNG PHÁP THỰC NGHIỆM 2.1 Phương pháp nhiễu xạ tia X (XRD)[1,10]

Chùm tia Rơnghen đi qua tinh thể bị tán xạ bởi các nguyên tử trong tinh thể Hiện tượng này xảy ra trên lớp vỏ điện tử của các nguyên tử Các nguyên tử trở thành các tâm phát sóng cầu, các sóng này sẽ giao thoa với nhau Cấu trúc tinh thể

sẽ quyết định vị trí hình học cũng như cường độ của các cực đại giao thoa Vì vây, mỗi cấu trúc tinh thể sẽ có một ảnh nhiễu xạ tia X đặc trưng

Theo lý thuyết cấu tạo tinh thể, mạng tinh thể cấu tạo từ những nguyên tử hay ion được phân bố một cách tuần hoàn trong không gian theo quy luật xác định Khoảng cách giữa các nguyên tử hay ion trong tinh thể khoảng vài Angstrom (cỡ bước sóng tia X) Khi chùm tia X tới bề mặt tinh thể và đi vào bên trong thì mạng tinh thể đóng vai trò như một cách tử nhiễu xạ đặc biệt Các tia tán xạ từ nguyên tử hay ion khác nhau nếu thoả mãn một số điều kiện nhất định sẽ giao thoa với nhau

Giao thoa là hiện tượng tăng cường biên độ dao động ở những điểm này và giảm yếu cường độ dao động ở những điểm khác trong không gian do sự chồng chất của hai hay nhiều sóng kết hợp cùng lan truyền đến các điểm đó

Trang 24

Nếu θ tăng đều đặn tương ứng với các giá trị n = 1, 2, 3 thì sự phản xạ sẽ cực đại tương ứng với các giá trị của θ như sau:

X có thể nhận được các thông tin về sự sắp xếp các mặt phẳng của các nguyên tử khác nhau trong tinh thể

Do vật liệu xốp MQTB có cấu trúc thành lỗ ở dạng vô định hình nên kết quả

giản đồ nhiễu xạ tia X của vật liệu này chỉ xuất hiện những pic ở góc 2θ nhỏ

Từ giản đồ nhiễu xạ tia X ta có thể thu được một số thông tin quan trọng như mức độ trật tự của các lỗ xốp, giá trị khoảng cách giữa các mặt phẳng có cùng chỉ

số Miler, từ đó có thể suy ra khoảng cách giữa hai tâm mao quản liền kề nhau [1] Dựa vào giá trị khoảng cách đó kết hợp với dữ liệu đường kính mao quản thu được

từ phương pháp hấp thụ Nitơ ta có thể tính được độ dày của thành mao quản

Tuy nhiên, phương pháp nhiễu xạ tia X cũng có một số hạn chế như không phát hiện được những chất có hàm lượng thấp và tùy theo bản chất và mạng không gian của vật liệu mà độ nhạy phân tích định tính thay đổi từ 1% đến 30%

Thực nghiệm:

Trang 25

Phổ nhiễu xạ Rơnghen được ghi trên máy HUT-PCM Brucker D8, sử dụng ống tia

Đại học Khoa học Tự nhiên

2.2 Phương pháp phổ EDX [12]

Phổ tán sắc năng lượng tia X, hay Phổ tán sắc năng lượng là kỹ thuật phân

tích thành phần hóa học của vật rắn dựa vào việc ghi lại phổ tia X phát ra từ vật rắn

do tương tác với các bức xạ (mà chủ yếu là chùm điện tử có năng lượng cao trong các kính hiển vi điện tử) Trong các tài liệu khoa học, kỹ thuật này thường được viết tắt là EDX hay EDS xuất phát từ tên gọi tiếng Anh Energy-Dispersive X-ray Spectroscopy

Nguyên lý của EDX

Kỹ thuật EDX chủ yếu được thực hiện trong các kính hiển vi điện tử, trong

đó, ảnh vi cấu trúc vật rắn được ghi lại thông qua việc sử dụng chùm điện tử có năng lượng cao tương tác với vật rắn Khi chùm điện tử có năng lượng lớn được chiếu vào vật rắn, nó sẽ đâm xuyên sâu vào nguyên tử vật rắn và tương tác với các lớp điện tử bên trong của nguyên tử Tương tác này dẫn đến việc tạo ra các tia X có bước sóng đặc trưng tỉ lệ với nguyên tử số (Z) của nguyên tử theo định luật Mosley:

2 0

4

3 8

A c c

Có nghĩa là, tần số tia X phát ra là đặc trưng với nguyên tử của mỗi chất có mặt trong chất rắn Việc ghi nhận phổ tia X phát ra từ vật rắn sẽ cho thông tin về các nguyên tố hóa học có mặt trong mẫu đồng thời cho các thông tin về tỉ phần các nguyên tố này

Có nhiều thiết bị phân tích EDX nhưng chủ yếu EDX được phát triển trong các kính hiển vi điện tử, ở đó các phép phân tích được thực hiện nhờ các chùm điện

tử có năng lượng cao và được thu hẹp nhờ hệ các thấu kính điện từ Phổ tia X phát

ra sẽ có tần số (năng lượng photon tia X) trải trong một vùng rộng và được phân tich nhờ phổ kế tán sắc năng lượng do đó ghi nhận thông tin về các nguyên tố cũng

Trang 26

như thành phần Kỹ thuật EDX được phát triển từ những năm 1960 và thiết bị thương phẩm xuất hiện vào đầu những năm 1970 với việc sử dụng detector dịch chuyển Si, Li hoặc Ge

Khi chùm điện tử có năng lượng cao tương tác với các lớp vỏ điện tử bên trong của nguyên tử vật rắn, phổ tia X đặc trưng sẽ được ghi nhận

Kỹ thuật ghi nhận và độ chính xác của EDX

Tia X phát ra từ vật rắn (do tương tác với chùm điện tử) có năng lượng biến thiên trong dải rộng, sẽ được đưa đến hệ tán sắc và ghi nhận (năng lượng) nhờ detector dịch chuyển (thường là Si, Ge, Li ) được làm lạnh bằng nitơ lỏng, là một con chip nhỏ tạo ra điện tử thứ cấp do tương tác với tia X, rồi được lái vào một anốt nhỏ Cường độ tia X tỉ lệ với tỉ phần nguyên tố có mặt trong mẫu Độ phân giải của phép phân tích phụ thuộc vào kích cỡ chùm điện tử và độ nhạy của detector (vùng hoạt động tích cực của detector)

Hình 2.2: Nguyên lý của phép phân tích EDX

Ngày đăng: 07/01/2015, 17:12

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1. Lê Công Dưỡng (2004), Kỹ thuật phân tích cấu trúc bằng tia Rơnghen, Nxb KHKT, tr.15-18 Sách, tạp chí
Tiêu đề: Kỹ thuật phân tích cấu trúc bằng tia Rơnghen
Tác giả: Lê Công Dưỡng
Nhà XB: Nxb KHKT
Năm: 2004
2. PGS.TS. Trần Thị Đà( Chủ Biên)- GS.TS. Nguyễn Hữu Đĩnh (2007), Phức chất - Phương pháp tổng hợp và nghiên cứu cấu trúc, Nhà xuất bản khoa học và kĩ thuật, tr. 156-162 Sách, tạp chí
Tiêu đề: Phức chất - Phương pháp tổng hợp và nghiên cứu cấu trúc
Tác giả: PGS.TS. Trần Thị Đà( Chủ Biên)- GS.TS. Nguyễn Hữu Đĩnh
Nhà XB: Nhà xuất bản khoa học và kĩ thuật
Năm: 2007
3. Trần Thị Như Mai. Hóa học dầu mỏ, Phần II: Giáo trình dành cho sinh viên năm thứ tư Ngành hóa học và Công nghệ hóa học, Trường Đại học Khoa học Tự nhiên, tr. 196-201 Sách, tạp chí
Tiêu đề: Hóa học dầu mỏ, Phần II: Giáo trình dành cho sinh viên năm thứ tư Ngành hóa học và Công nghệ hóa học
4. Nông Hồng Nhạn (2007), Tổng hợp, đặc trưng và hoạt tính của xúc tác SO 4 2-/ZrO 2 -Al 2 O 3 , Khóa luận Tốt nghiệp, Trường Đại học Khoa học Tự nhiên Sách, tạp chí
Tiêu đề: Tổng hợp, đặc trưng và hoạt tính của xúc tác SO"4"2-"/ZrO"2"-Al"2"O"3
Tác giả: Nông Hồng Nhạn
Năm: 2007
5. Nguyễn Hữu Phú, Vũ Anh Tuấn (1997),"Isome hoá 1 - buten thành isobuten trên các chất xúc tác AlPO-11, SAPO-11 và Zr-SAPO-11", Tạp chí Hoá Học, T.35 (4), tr. 6-8 Sách, tạp chí
Tiêu đề: Isome hoá 1 - buten thành isobuten trên các chất xúc tác AlPO-11, SAPO-11 và Zr-SAPO-11
Tác giả: Nguyễn Hữu Phú, Vũ Anh Tuấn
Năm: 1997
6. Nguyễn Hữu Phú (2008), Hấp phụ và xúc tác trên bề mặt vật liệu vô cơ và mao quản, Nxb KHKT, tr. 122-131 Sách, tạp chí
Tiêu đề: Hấp phụ và xúc tác trên bề mặt vật liệu vô cơ và mao quản
Tác giả: Nguyễn Hữu Phú
Nhà XB: Nxb KHKT
Năm: 2008
7. Nguyễn Hữu Phú (2007), "Vật liệu nano mao quản: hiện trạng, thách thức và triển vọng", Hội nghị xúc tác và hấp phụ toàn Quốc IV, tr. 77-82 Sách, tạp chí
Tiêu đề: Vật liệu nano mao quản: hiện trạng, thách thức và triển vọng
Tác giả: Nguyễn Hữu Phú
Năm: 2007
8. Hồ Sĩ Thoảng, Lưu Cẩm Lộc (2007), Chuyển hóa hiđrocacbon và cacbon oxit trên các hệ xúc tác kim loại và oxit kim loại, NXB Khoa học Tự nhiên và Công nghệ, Hà Nội Sách, tạp chí
Tiêu đề: Chuyển hóa hiđrocacbon và cacbon oxit trên các hệ xúc tác kim loại và oxit kim loại
Tác giả: Hồ Sĩ Thoảng, Lưu Cẩm Lộc
Nhà XB: NXB Khoa học Tự nhiên và Công nghệ
Năm: 2007
9. Ngô Thị Thuận, Phạm Xuân Núi (2006), "Nâng cao hoạt tính xúc tác và độ bền của zirconi sunfat hóa có chứa nhôm", Tạp chí Hoá học, 44 (6), tr. 625-631 Sách, tạp chí
Tiêu đề: Nâng cao hoạt tính xúc tác và độ bền của zirconi sunfat hóa có chứa nhôm
Tác giả: Ngô Thị Thuận, Phạm Xuân Núi
Năm: 2006
11. Nguyễn Đình Triệu (2006), Các phương pháp vật lý ứng dụng trong hoá học, NXB Đại học Quốc gia Hà Nội, tr. 157-158 Sách, tạp chí
Tiêu đề: Các phương pháp vật lý ứng dụng trong hoá học
Tác giả: Nguyễn Đình Triệu
Nhà XB: NXB Đại học Quốc gia Hà Nội
Năm: 2006
12. Phạm Đình Trọng (2009), Nghiên cứu đặc trưng và hoạt tính xúc tác của vật liệu mao quản trung bình biến tính, Khóa luận Tốt nghiệp, Đại học Khoa học Tự nhiên, tr. 34-57 Sách, tạp chí
Tiêu đề: Nghiên cứu đặc trưng và hoạt tính xúc tác của vật liệu mao quản trung bình biến tính
Tác giả: Phạm Đình Trọng
Năm: 2009
13. Hoàng Trọng Yêm, Dương Văn Tuệ, Nguyễn Đăng Quang, Trịnh Thanh Đoan (2000), Hoá học Hữu cơ. T.2, T.3, Nxb KHKT,tr.71-95.TIẾNG ANH Sách, tạp chí
Tiêu đề: Hoá học Hữu cơ
Tác giả: Hoàng Trọng Yêm, Dương Văn Tuệ, Nguyễn Đăng Quang, Trịnh Thanh Đoan
Nhà XB: Nxb KHKT
Năm: 2000
16. A. Vinu, V. Murugesan, W. Bửhlmann, M. Hartmann (2004), J. Phys. Chem. B 108, p. 11496 Sách, tạp chí
Tiêu đề: J. Phys. Chem. B
Tác giả: A. Vinu, V. Murugesan, W. Bửhlmann, M. Hartmann
Năm: 2004
17. A. Vinu, D.P. Sawant, K. Ariga, V. Hartmann, S.B. Halligudi (2005), Mesoporous Materials, 80, p. 195 Sách, tạp chí
Tiêu đề: Mesoporous Materials
Tác giả: A. Vinu, D.P. Sawant, K. Ariga, V. Hartmann, S.B. Halligudi
Năm: 2005
18. A.V. Ivanov, L.M. Kustov (1998), Russ. Chem. Bull., 47, p. 1061 Sách, tạp chí
Tiêu đề: Russ. Chem. Bull
Tác giả: A.V. Ivanov, L.M. Kustov
Năm: 1998
19. A.V. Ivanov et al. (2002), "Isomerization of n-alkanes on Pt/WO 3 -SO 4 /ZrO 2 systems", Catalysis Today, 73, pp 95-103 Sách, tạp chí
Tiêu đề: Isomerization of n-alkanes on Pt/WO3-SO4/ZrO2systems
Tác giả: A.V. Ivanov et al
Năm: 2002
20. B. Dragoi et al. (2009), " Catalytic Applications of Sulfate Grafted Fe2O3-ZrO2 Nanocomposite Oxides for Solvent Free Fine Chemical Synthesis ", Microporous and Mesoporous Materials, 121, pp 7-17 Sách, tạp chí
Tiêu đề: Catalytic Applications of Sulfate Grafted Fe2O3-ZrO2 Nanocomposite Oxides for Solvent Free Fine Chemical Synthesis
Tác giả: B. Dragoi et al
Năm: 2009
21. Meyers R. A. (1996), Handbook of Petroleum refining Processes, M.C Graw Hill Book Company, Inc, pp 178-189 Sách, tạp chí
Tiêu đề: Handbook of Petroleum refining Processes
Tác giả: Meyers R. A
Năm: 1996
22. John Willey & Son, Encyclopedia of Chemical Technology, Vol 11 Sách, tạp chí
Tiêu đề: Encyclopedia of Chemical Technology
10. Ngô Thị Thuận, Phạm Xuân Núi, Nông Hồng Nhạn (2008), "Tổng hợp và đặc trưng của xúc tác SO 4 Khác

HÌNH ẢNH LIÊN QUAN

Bảng 1.1. Trị số octan của một số parafin nhẹ [21] - nghiên cứu tổng hợp và tính chất xúc tác của fe2o3 được biến tính bằng al2o3 và anion hóa trong phản ứng đồng phân hóa n-ankan
Bảng 1.1. Trị số octan của một số parafin nhẹ [21] (Trang 11)
Bảng 1.3. Nhiệt tạo thành các isoparafin trong phản ứng đồng phân hóa một  số parafin ở các nhiệt độ khác nhau [4] - nghiên cứu tổng hợp và tính chất xúc tác của fe2o3 được biến tính bằng al2o3 và anion hóa trong phản ứng đồng phân hóa n-ankan
Bảng 1.3. Nhiệt tạo thành các isoparafin trong phản ứng đồng phân hóa một số parafin ở các nhiệt độ khác nhau [4] (Trang 13)
Sơ đồ 1.2: Đồng phân hóa và crackinh parafin trên xúc tác axit. - nghiên cứu tổng hợp và tính chất xúc tác của fe2o3 được biến tính bằng al2o3 và anion hóa trong phản ứng đồng phân hóa n-ankan
Sơ đồ 1.2 Đồng phân hóa và crackinh parafin trên xúc tác axit (Trang 16)
Sơ đồ 1.3: Cơ chế đồng phân hóa n- parafin trên xúc tác lưỡng chức. - nghiên cứu tổng hợp và tính chất xúc tác của fe2o3 được biến tính bằng al2o3 và anion hóa trong phản ứng đồng phân hóa n-ankan
Sơ đồ 1.3 Cơ chế đồng phân hóa n- parafin trên xúc tác lưỡng chức (Trang 17)
Sơ đồ 1.4 . Cơ chế hình thành 3MP và 2MP - nghiên cứu tổng hợp và tính chất xúc tác của fe2o3 được biến tính bằng al2o3 và anion hóa trong phản ứng đồng phân hóa n-ankan
Sơ đồ 1.4 Cơ chế hình thành 3MP và 2MP (Trang 22)
Sơ đồ 1.6. Cơ chế hình thành 3MP - nghiên cứu tổng hợp và tính chất xúc tác của fe2o3 được biến tính bằng al2o3 và anion hóa trong phản ứng đồng phân hóa n-ankan
Sơ đồ 1.6. Cơ chế hình thành 3MP (Trang 22)
Sơ đồ 1.5.  Cơ chế hình thành 2,2DMB và 2,3DMB - nghiên cứu tổng hợp và tính chất xúc tác của fe2o3 được biến tính bằng al2o3 và anion hóa trong phản ứng đồng phân hóa n-ankan
Sơ đồ 1.5. Cơ chế hình thành 2,2DMB và 2,3DMB (Trang 22)
Hình 2.1:  Sự phản xạ tia X trên các mặt tinh thể. - nghiên cứu tổng hợp và tính chất xúc tác của fe2o3 được biến tính bằng al2o3 và anion hóa trong phản ứng đồng phân hóa n-ankan
Hình 2.1 Sự phản xạ tia X trên các mặt tinh thể (Trang 23)
Hình 2.2: Nguyên lý của phép phân tích EDX - nghiên cứu tổng hợp và tính chất xúc tác của fe2o3 được biến tính bằng al2o3 và anion hóa trong phản ứng đồng phân hóa n-ankan
Hình 2.2 Nguyên lý của phép phân tích EDX (Trang 26)
Hình 2.4: Nguyên lý máy chụp SEM - nghiên cứu tổng hợp và tính chất xúc tác của fe2o3 được biến tính bằng al2o3 và anion hóa trong phản ứng đồng phân hóa n-ankan
Hình 2.4 Nguyên lý máy chụp SEM (Trang 29)
Hình  2.5 . Thiết bị tiến hành phản ứng isome hóa n-hexan ở pha khí - nghiên cứu tổng hợp và tính chất xúc tác của fe2o3 được biến tính bằng al2o3 và anion hóa trong phản ứng đồng phân hóa n-ankan
nh 2.5 . Thiết bị tiến hành phản ứng isome hóa n-hexan ở pha khí (Trang 35)
Hình 4.1. Giản đồ nhiễu xạ tia X của mẫu - nghiên cứu tổng hợp và tính chất xúc tác của fe2o3 được biến tính bằng al2o3 và anion hóa trong phản ứng đồng phân hóa n-ankan
Hình 4.1. Giản đồ nhiễu xạ tia X của mẫu (Trang 41)
Hình 4.2. Giản đồ nhiễu xạ tia X của mẫu  (a) SF-0,1Al, (b)SF-0,15Al, (c)SF-0,25Al - nghiên cứu tổng hợp và tính chất xúc tác của fe2o3 được biến tính bằng al2o3 và anion hóa trong phản ứng đồng phân hóa n-ankan
Hình 4.2. Giản đồ nhiễu xạ tia X của mẫu (a) SF-0,1Al, (b)SF-0,15Al, (c)SF-0,25Al (Trang 43)
Hình 4.3. Ảnh hiển vi điện tử quét SEM của mẫu SF-0,1Al, SF-0,15Al, SF-0,25Al - nghiên cứu tổng hợp và tính chất xúc tác của fe2o3 được biến tính bằng al2o3 và anion hóa trong phản ứng đồng phân hóa n-ankan
Hình 4.3. Ảnh hiển vi điện tử quét SEM của mẫu SF-0,1Al, SF-0,15Al, SF-0,25Al (Trang 44)

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w