1. Trang chủ
  2. » Giáo án - Bài giảng

Bài giảng thiết kế đập phá sóng dạng đứng

72 256 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 72
Dung lượng 2,24 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

CHAPTER 35 DIFFRACTION DIAGRAMS FOR DIRECTIONAL RANDOM WAVES Yoshimi Goda, Tomotsuka Takayama, and Yasumasa Suzuki Marine Hydrodynamics Division, Port and Harbour Research Institute M

Trang 1

Thiết kế đập phá sóng dạng

đứng

TS M i Vă Cô

TS Mai Văn Công

Đại học Thủy lợi

Emails: CONG.M.V@wru.edu.vn & C.MAIVAN9@Gmail.com

Trang 2

Thùng chìm g

cảng Tiên Sa

Coastal & Marine Engineering 2 Coastal & Marine Engineering 2

Trang 4

cố tại các vị trí có khả năng xói

• Nước sâu: D < 20 ~ 25m, ứng suất đáy móng Nước sâu: D 20 25m, ứng suất đáy móng nằm trong giới hạn max  []

4

Trang 6

2 Cấu tạo hình học – cắt dọc

• Gốc đê nằm sâu vào bờ một đoạn 1,5 Hs

ạ ọ ọ

Gốc đê nằm sâu vào bờ một đoạn 1,5 Hs

• Phân đoạn lún 25  45 m tùy theo điều kiện địa chất Khe lún rộng 20 ~ 30 cm

lún rộng 20 ~ 30 cm.

• Nếu không làm đường giao thông thì cao trình của các phân đoạn dọc đê có thể khác nhau (dạng bậc thang) để tiết kiệm vật liệu.

Liên kết thùng chìm

Sãng tíi Sãng tíi

g

6

Trang 7

2 Cấu tạo hình học - cắt ngang

• Lựa chọn sơ bộ mặt cắt ngang

Coastal & Marine Engineering 7 Coastal & Marine Engineering 7

Trang 8

2 Cấu tạo hình học – cắt ngang

Trang 9

2 Cấu tạo hình học – cắt ngang

Trang 10

2 Cấu tạo hình học – cắt ngang

• Thành ngoài: 0.5÷0.8 m

Chọn kích thước sơ bộ theo đk cấu tạo BTCT

ạ ọ g g

g khi lấp bằng vật liệu rời;

• 0.25÷0.4 m khi lấp bằng

ữ BT vữa BT

• Vách ngăn: 0.15÷0.2 m Đáy: 0 4÷0 5 m

• Đáy: 0.4÷0.5 m

• Nắp đậy: > 0.5 m

BTC T

Coastal & Marine Engineering 10 Coastal & Marine Engineering 10

Trang 11

Mặt cắt ngang thùng chìm

Coastal & Marine Engineering 11 Coastal & Marine Engineering 11

Trang 12

• Giá thành xây dựng đê: C  Rc

Coastal & Marine Engineering 12

Giá thành xây dựng đê: C Rc

• Điều kiện thi công, giao thông

Coastal & Marine Engineering 12

Trang 13

Cao trình đỉnh theo điều kiện truyền ệ y

,  là các hệ số phụ thuộc vào hình dạng kết cấu;

His: Chiều cao sóng đến; tại vị trí trước chân công

Trang 16

Chiều rộng (đáy) đập ộ g ( y) ập

Điều kiện ổn định: Trượt & Lật ệ ị ợ ậ

Điều kiện cấu tạo

Điều kiện thi công / mục đích sử dụng kết ệ g / ụ ụ g

hợp

May 11, 2012 16 May 11, 2012 16

Trang 17

B max khi 2 max

Coastal & Marine EngineeringĐộ sâu thềm đá đổ d (m) 17

Độ sâu nước trước đập h (m)

Trang 18

Coastal & Marine Engineering 18

Độ sâu nước trước đập h (m)

Trang 19

Coastal & Marine Engineering 19

Độ sâu nước trước đập h (m)

Trang 21

Coastal & Marine Engineering 21

Độ sâu nước trước đập h (m)

Trang 22

Cấu tạo khối nền (thềm) đá đổ

Công dụng của đệm đá g ụ g ệ

• Phân bố ứng suất đều lên nền

Chố ói hâ đậ

• Chống xói chân đập

• Tạo mặt phẳng cho xây dựng kết cấu phía trên

• Tăng sức chịu tải cho nền, tăng ổn định trượt

Coastal & Marine Engineering 22 Coastal & Marine Engineering 22

Trang 23

Cấu tạo khối nền đá đổ

Cấu tạo lớp nệm phải phù hợp từng loại nền: ạ p ệ p p ợp g ạ

Coastal & Marine Engineering 23

vải địa kĩ thuật.

Coastal & Marine Engineering 23

Trang 24

Cấu tạo khối nền đá đổ

Cảng Thề

Coastal & Marine Engineering 24

• Hạn chế xói: độ sâu đệm đá khoảng >1.25Hs

• Cấp phối tốt để tăng độ chặt, giảm lún

Coastal & Marine Engineering 24

• Chiều dày tầng lọc >0.5 m

Trang 25

Kích thước viên đá nền/chân- CEM2000

Ns3 = {Hs/(Dn50)} 3

Coastal & Marine Engineering 25 Coastal & Marine Engineering 25

Trang 26

Thùng chìm với lăng thể đá đệm (1)

Coastal & Marine Engineering 26 Coastal & Marine Engineering 26

Trang 27

Thùng chìm với lăng thể đá đệm (2)

Coastal & Marine Engineering 27 Coastal & Marine Engineering 27

Trang 28

Thùng chìm với lăng thể đá đệm (3)

Coastal & Marine Engineering 28 Coastal & Marine Engineering 28

Trang 29

Goda (VI-5-53 p VI-5-139) cho cả sóng vỡ và không vỡ

Goda (VI-5-53, p.VI-5-139) cho cả sóng vỡ và không vỡ, sóng tràn và không tràn

Coastal & Marine Engineering 29 Coastal & Marine Engineering 29

Trang 31

Tính toán áp lực sóng

GODA (1976) (2)

Coastal & Marine Engineering 31 Coastal & Marine Engineering 31

Trang 32

Coastal & Marine Engineering h lấy tại vị trí cách tường bằng 5H1/3 về phía biển 32

Coastal & Marine Engineering y ạ ị g g 1/3 p 32

Trang 33

Tính toán áp lực sóng

GODA (1976) (4)

Coastal & Marine Engineering 33 Coastal & Marine Engineering 33

Trang 36

Lưu ý:

Xác định chính xác tham số sóng thiết kế quan trọng hơn

là công thức tính toán áp lực sóng

Coastal & Marine Engineering 36

Coastal & Marine Engineering 36

Trang 38

4 Cơ chế phá hỏng

A

Coastal & Marine Engineering 38 Coastal & Marine Engineering 38

Trang 39

B Trượt ngang

Lật

Mất ổn định tổng thể

nền đập

trượt phẳng

Coastal & Marine Engineering 39

ập (GEOSLOPE/PLAXIS)

trượt sâu/tròn

Coastal & Marine Engineering trượt sâu/tròn 39

Trang 41

F = (W U)

Coastal & Marine Engineering 41

F = (W-U)

 = 0.60 khi mặt tiếp xúc với đá

Coastal & Marine Engineering 41

Trang 42

m Hệ số điều kiện làm việc

Kn - Hệ số tin cậy = 1.10  1.25 (theo cấp CT)

Coastal & Marine Engineering 42

Trang 43

Sức chịu tải của nền

Yêu cầu:

teW

e

W

t B t

Trang 44

Tăng ổn định, hạn chế hư hỏng

Coastal & Marine Engineering 44 Coastal & Marine Engineering 44

Trang 45

Buồng tiêu năng + g g

turbine phát điện

Coastal & Marine Engineering 45 Coastal & Marine Engineering 45

Trang 46

Buồng tiêu năng g g

Coastal & Marine Engineering 46 Coastal & Marine Engineering 46

Trang 47

Mặt cắt tính toán

Đỉnh đê BĐỉnh đê

Mũ BT B

Cấu kiện BT bảo vệ chân ệ 5~10 thùng chìmThân đê bảo vệ chânCấu kiện BT ệ >1.25Hs

Áo bảo vệ nệm đá

thùng chìm

5~10 m

s

Nệm đá đổ >1.5m

Coastal & Marine Engineering 47

Coastal & Marine Engineering 47

Trang 48

Ổn định trong lai dắt

thùng chìm nổi

khi lai dắt trở nên mất ổnđịnh

trở về trạng thái ổn định

MC+cb < gb MC+cb > gb

G - Trọng tâm phần thùng chìm (cách đáy khoảng gb) V - Thể tích choán nước (m 3 )

C - Trọng tâm phần chìm (cách đáy khoảng cb) I - Mô men quán tính, I = LB 3 /12

Coastal & Marine Engineering 48

M - Trọng tâm chung MC = I/V

L - Chiều dài thùng chìm

Coastal & Marine Engineering 48

Trang 49

Các bước tính toán MC ngang thùng chìm

B1 Xác định các tham số điều kiện biên thiết kế

B4 Xác định chiều rộng B ; bố trí chia khoang

B5 Kiểm tra điều kiện ổn định trượt ngang, trượt sâu, lật, sức chịu tải của nền

Coastal & Marine Engineering 49

B6 Lặp lại B4 (thay đổi B) nếu B5 không thỏa mãn

Coastal & Marine Engineering 49

Trang 50

CHAPTER 35

DIFFRACTION DIAGRAMS FOR DIRECTIONAL RANDOM WAVES

Yoshimi Goda, Tomotsuka Takayama, and Yasumasa Suzuki

Marine Hydrodynamics Division, Port and Harbour Research Institute

Ministry of Transport, Nagase, Yokosuka, Japan

ABSTRACT

Conventional wave diffraction diagrams often yield erroneous

estimation of wave heights behind breakwaters in the sea, because

they are prepared for monochromatic waves while actual waves in

the sea are random with directional spectral characteristics

A proposal is made for the standard form of directional wave spectrum on the basis of Mitsuyasu's formula for directional

spreading function A new set of diffraction diagrams have been constructed for random waves with the proposed directional

spectrum Problems of multi-diffraction and multi-reflection within a harbour can also be solved with serial applications

of random wave diffraction

INTRODUCTION

Since the proof by Penny and Price [1] that the diffraction of water waves by breakwaters can be analyzed with Sommerfeld's solution,

wave heights behind breakwaters have been estimated with the aid of

several diffraction diagrams [2^6] The phenomenon of wave diffraction

is a typical problem for which the solution of velocity potential can

be applied with accuracy Published as well as unpublished laboratory

investigations have provided the proof of the validity of wave diffract-

ion theory Disagreement between the theory and experiment if any is usually attributed to inaccuracy in laboratory measurements The only exception is the appearance of secondary waves around the tip of a

breakwater owing to an excessive gradient of wave energy density there

[7]

Such a success of theory, however, should be accepted with a caution when the theory is applied for sea waves characterized with

irregularity Most of diffraction diagrams currently available are

those prepared for monochromatic waves with a single period from

a single direction The irregularity of sea waves especially of direct-

ional spreading produces the pattern of wave diffraction quite different from conventional diffraction diagrams An experimental study by

Mobarek and Wiegel [8] seems to be the first in demonstrating the appli-

cation of directional wave spectrum to diffraction problems, though

they did not present general diffraction diagrams for engieers' usage

Being aware of these facts, Nagai [9,10] constructed diffraction diagrams for sea waves in 1972, which have been utilized by harbour

engineers in Japan Figure 1 is one of his diagrams, which shows the

diffraction diagram for sinusoidal (monochromatic) waves in the left half and that for spectral waves in the right half for the opening width

628

Trang 51

DIAGRAMS FOR WAVES 629

The directional wave spectrum employed for computation was of SWOP type

[11], which is primarily for wind waves In the present paper, recal-

culation is made of diffraction diagrams of random waves with a new

proposal of directional wave spectrum, which is a modification of the spectrum originally formulated by Mitsuyasu et al.[12] Though these

diagrams were previously published in Japanese [13], slight corrections

have been found necessary and they are duely corrected hereon

The present paper also discusses the behaviour of waves reflected by

breakwaters, which can be deduced from Sommerfeld's solution as proved

by one of the authors [14] With the above knowledge, the problem of

multi-diffraction and multi-reflection within a harbour can be solved

numerically

SPECTRAL CALCULATION OF WAVE DIFFRACTION

Random waves in the sea are described with a directional wave

spectrum under the presumption that random wave profiles are the result

of linear superposition of infinite number of infinitesimal wavelets with various frequencies and directions According to this presumption,

the spectrum of diffracted waves at a point (x,y) is calculated as

where S-j(f,e) denotes the directional spectrum of incident waves and

Kd(fj6|x,y) is the diffraction coefficient at a point (x,y) for waves with the frequency f and the direction e The spectrum of diffracted

waves is given here in the form of frequency spectrum only, because

the directional spreading of diffracted waves is limited by the aperture

of the breakwater gap looked from the point (x,y)

The representative heights of incident and diffracted waves are

derived from the zeroth moment of spectrum by the theory of Longuet- Higgins [15] For example, the significant heights are given by

Though the constant of 4.0 in Eqs 2 and 3 is better replaced by that

of 3.8 for waves observed in the sea on the average, it does not affect

the coefficient of diffraction for random waves, which is defined as

The representative periods of diffracted waves are not necessarily the same with those of incident waves The change of wave period by

diffraction can be estimated by the theory of Rice [16] as

Trang 52

with the angle of approach of 60° The diffraction coefficient is cal-

culated with the approximate method by superposition of Sommerfeld's solutions for two semi-infinite breakwaters The upper diagram is for

monochromatic waves and uni-directional irregular waves (with frequency

spectrum only) The difference between them is small, thus indicating

unimportance of frequency-wise irregulariry The lower diagram is for uni-frequency random waves with directional spreading and very random

waves with a directional spectrum, which corresponds to the case of

Smax = 10 to be discussed in the next chapter The difference between

them is small, but the both are quite different from those in the upper diagram Thus, Fig 2 indicates that the directional spreading rather

than the frequency-wise irregularity is important in the diffraction

of random waves

PROPOSAL OF DIRECTIONAL WAVE SPECTRUM

Functional Fo-tm

The directional wave spectrum is generally expressed as the product

of a frequency spectrum S(f) and a directional spreading function G(f,e),

that is,

one, while G(f,e) is normalized so as to yield the unit value without

a dimension when integrated over the full range of wave direction

The functional form of S(f) can be taken as Bretschneider's spectrum [17] modified by Mitsuyasu [18] to satisfy the condition of Eq 2 Thus,

This is a type of two-parameter spectrum designated by an arbitrary

combination of significant wave height and period, H1/3 and T1/3

The modal frequency or the frequency at spectral peak is set to satisfy

the following relation:

Trang 53

DIAGRAMS FOR WAVES 631

This relation was proposed by Mitsuyasu [18] and has been confirmed to

be representative of sea waves [19] Spectral forms other than Eq 11 are also eligible as the standard spectrum, but the change of frequency-

wise spectral form will affect little the diffraction of random waves

as suggested by Fig 2

As to the directional spreading function, the formula proposed by

Mitsuyasu et al [12] on the basis of their detailed observations seems most reliable at present In a slightly modified form, it is written as

where,

Go =

max nnn

concentration parameter S has the maximum value at f = fp and decreases

at the both sides of spectral peak

max

Figure 3 is a demonstration of wave patterns, which shows the

contours of surface elevations above the mean water level; the portion

of wave troughs is left as blank This figure is a result of numerical

simulation by the principle of linear superposition with the spectrum

of Eqs 10 to 15 The maximum directional concentration parameter Smax

is subjectively chosen as 10 and 75, respectively It will be seen

pattern of swell

it with the nondimensional frequency parameter as

where U denotes th

Equation 16 is not

the design wave he

to the wind speed

method suggests th

associated with th

can be assumed to tion is supported

e wind speed and g is the acceleration of gravity,

readily applicable for engineering problems because ight and period are often designated without reference

The knowledge of wave growth depicted in the SMB

at the increase of the parameter 2irfpU/g ( = U/Cn) is

increase as the wave steepness decreases The assump-

by the example of Fig 3 discussed in the above

From the above discussions, the authors propose the following

->max

MO : for wind waves,

\25 : for swell with short to medium decay distance,

[75 : for swell with medium to long decay distance

(17)

Trang 54

632 COASTAL ENGINEERING—1978

Though the above proposal is somewhat subjective, Smax = 10 for wind waves is not without ground because it yields the overall direct-

ional distribution almost the same with the law of (2/ir)cos2e and the

formula of SWOP Figure 4 shows the nondimensional cumulative curves

of wave energy calculated for the directional wave spectrum of Eqs 10

to 15 The term of PE(S) is calculated by

PE(0) = ^r f e f s < f > e ) df de • O 8 )

m0 J-TT/2 JO

The diagram can be utilized to allocate the relative wave energy to

several wave directions such as expressed in sixteen points bearings

Calculation of P|r(9) also yields the approximate relation of

for the type of G(f,e) of the following:

G(f,e) E G(e) = ^-i)!! cos2£e, (20) where 2n!! = 2n-(2n-2)••-4-2 and (2n-l)!! = (2n-l)-(2n-3)• • -3-1

When applying the above spectrum in shallow water, some correction

to Smax is necessary because the phenomenon of wave refraction makes

the directional spreading to lessen Calculation of wave refraction

in the water of parallel straight bathmetry has yielded the diagram for the change of Smax in shallow water as shown in Fig 5 The angle

(ap)0 denotes the incident wave angle to the boundary of deep to shallow waters As the effect of (ap)0 is small, the diagram may be utilized

for waters of general bathmetry

RANDOM WAVE DIFFRACTION BY A SEMI-INFINITE BREAKWATER

With the directional wave spectrum specified in the above, the computation of random wave diffraction is straightforward so long as

the value of diffraction coefficient for monochromatic waves correspond-

ing to spectral components are computable The integrals in Eqs 1, 4, and others are to be evaluated in the form of finite series

The number of frequency components does not need to be great, but the

number of directional components should be carefully selected in consi- deration of the trade-off between the accuracy and computation time

When the diffraction coefficient in the area far distant from the break- water is to be calculated, a large number of directional components are

required

Examples of the diffraction diagrams of semi-infinite breakwater are shown in Fig 6 for the case of normal incidence for waves with Smax

= 10 and 75 The diffraction coefficient of wave heights, or (Kd)?ff,

is shown with contours of solid lines, while the ratio of wave period

is shown with contours of dashed lines A characteristic feature of Fig 6 is that the diffraction coefficient takes the value of about 0.7 along the boundary of geometric shadow This value is about 1.4 times

the coefficient of monochromatic wave diffraction In the sheltered area, the random wave diffraction yields the coefficient far larger

than that of monochromatic waves

Ngày đăng: 06/01/2015, 14:22

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w