Việc nghiên cứu về AXĐ có thể cho ta những kết quả tổng quát hóa trong lý thuyết cơ sở dữ liệu nói riêng và trong tin học nói chung; mở rộng khả năng vận dụng một công cụ toán học trợ gi
Trang 1ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG
PHẠM KHÁNH TOÀN
KHẢO SÁT CƠ SỞ CỦA ÁNH XẠ ĐÓNG
LUẬN VĂN THẠC SĨ KHOA HỌC MÁY TÍNH
THÁI NGUYÊN - 2013
Trang 2ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG
PHẠM KHÁNH TOÀN
KHẢO SÁT CƠ SỞ CỦA ÁNH XẠ ĐÓNG
Chuyên ngành: Khoa học máy tính
Trang 3LỜI CAM ĐOAN
Tôi xin cam đoan, kết quả của luận văn hoàn toàn là kết quả của tự bản thân tôi tìm hiểu, nghiên cứu và thực hiện theo sự hướng dẫn khoa học của PGS.TSKH Nguyễn Xuân Huy
Các tài liệu tham khảo được trích dẫn và chú thích đầy đủ
Thái Nguyên, ngày 10 tháng 11 năm 2013
Tác giả
Phạm Khánh Toàn
Trang 4LỜI CẢM ƠN
Học viên xin được bày tỏ lòng biết ơn chân thành và sâu sắc nhất đến thầy giáo PGS.TSKH Nguyễn Xuân Huy, người đã tận tình hướng dẫn và tạo mọi điều kiện tốt nhất để có thể hoàn thành luận văn này
Xin chân thành cảm ơn các thầy giáo, cô giáo Trường Đại học Công nghệ thông tin và Truyền thông - Đại học Thái Nguyên, Viện Công nghệ Thông tin - Viện Khoa học và Công nghệ Việt Nam đã trực tiếp giảng dạy, giúp đỡ và tạo mọi điều kiện thuận lợi trong quá trình học tập và nghiên cứu
Trân trọng cảm ơn các thầy cô giáo, gia đình, các bạn lớp cao học Khoa học máy tính CK10C và các bạn đồng nghiệp đã luôn quan tâm, hỗ trợ, khuyến khích học viên trong suốt thời gian học tập và thực hiện đề tài
Xin chân thành cám ơn!
Học viên
Phạm Khánh Toàn
Trang 5MỤC LỤC
Trang phụ bìa
Lời cam đoan
Lời cảm ơn
MỤC LỤC i
DANH MỤC CÁC KÝ HIỆU, CHỮ CÁI VIẾT TẮT iii
DANH MỤC CÁC BẢNG iv
DANH MỤC HÌNH VẼ iv
MỞ ĐẦU 1
1 Lý do chọn đề tài 1
1.1 Cơ sở lí luận 1
1.2 Cơ sở thực tiễn 1
2 Đối tượng và phạm vi nghiên cứu 1
2.1 Đối tượng nghiên cứu 1
2.2 Phạm vi nghiên cứu 2
3 Nhiệm vụ nghiên cứu 2
4 Hướng nghiên cứu 2
5 Phương pháp nghiên cứu 2
6 Ý nghĩa lý luận và thực tiễn 3
7 Cấu trúc của luận văn 3
Chương 1 CÁC KHÁI NIỆM CƠ SỞ 4
1.1 Ánh xạ đóng 4
1.2 Một số tính chất của ánh xạ đóng 5
1.3 Hội các ánh xạ đóng 6
1.4 Điểm bất động của ánh xạ đóng 6
1.5 Hạn chế trên ánh xạ đóng 7
1.6 Cơ sở của ánh xạ đóng [3] 7
1.7 Hệ sinh ánh xạ đóng 8
Trang 61.7.1 Định nghĩa hệ sinh [2] 8
1.7.2 Định lý hệ sinh cho ánh xạ đóng [2] 9
1.8 Thu gọn hệ sinh ánh xạ đóng 10
1.8.1 Định nghĩa [2] 10
1.8.2 Định lý về công thức biểu diễn ánh xạ đóng theo phép thu gọn hệ sinh 11
1.8.3 Hệ quả về công thức tính ảnh cho một tập 11
1.9 Biểu diễn cơ sở hệ sinh ánh xạ đóng 12
1.9.1 Cơ sở của hệ sinh 12
1.9.2 Hai dạng biểu diễn cơ sở của hệ sinh ánh xạ đóng 13
1.9.3 Thuật toán tìm cơ sở của hệ sinh ánh xạ đóng 18
1.10 Kết luận chương 1 20
Chương 2 HỆ SUY DẪN VÀ ỨNG DỤNG 21
2.1 Hệ suy dẫn 21
2.1.1 Định nghĩa 21
2.1.2 Các quy tắc suy dẫn 21
2.2 Các dạng toán của một hệ suy dẫn 21
2.2.1 Dạng toán 1 21
2.2.2 Dạng toán 2 22
2.2.3 Các thí dụ 23
Chương 3 CÀI ĐẶT CHƯƠNG TRÌNH 38
3.1 Giới thiệu 38
3.2 Các lớp đối tượng của chương trình 38
3.3 Giao diện của chương trình 39
3.4 Kiểm thử, đánh giá 43
KẾT LUẬN VÀ ĐỀ NGHỊ 58
1 Kết luận 58
2 Đề nghị 58
TÀI LIỆU THAM KHẢO 59
Trang 7DANH MỤC CÁC KÝ HIỆU, CHỮ CÁI VIẾT TẮT
Thuộc Không thuộc
Là tập con Chứa tập con
Phép giao tập hợp Phép hợp tập hợp Tương đương Khác
Với mọi LS(f) Tập các vế trái của luật sinh f
RS(f) Tập các vế phải của luật sinh f
Tập rỗng Hợp họ các tập
Trang 8DANH MỤC CÁC BẢNG
Bảng 2.1 Ký pháp - Ngữ nghĩa các tập đối tượng về các hình đa giác
và tính chất 24 Bảng 2.2 Luật - Ngữ nghĩa các tập đối tượng về các hình đa giác và
tính chất 24 Bảng 2.3 Ký pháp - Ngữ nghĩa các tập đối tượng về hình tam giác,
hình thang và các tính chất 27 Bảng 2.4 Luật - Ngữ nghĩa các tập đối tượng về hình tam giác, hình
thang và các tính chất 28 Bảng 2.5 Ký pháp - Ngữ nghĩa các tập đối tượng về các học phần
chuyên ngành ĐHSP Ngữ văn 34 Bảng 2.6 Luật - Ngữ nghĩa các tập đối tượng về các học phần chuyên
ngành ĐHSP Ngữ văn 35
Trang 9DANH MỤC HÌNH VẼ
Hình 3.1 Giao diện chính chương trình 39
Hình 3.2 Giao diện chương trình khi mặc định lấy dữ liệu 40
Hình 3.3 Giao diện chương trình khi chạy file Test1 40
Hình 3.4 Giao diện chương trình hiển thị ngữ nghĩa các luật 41
Hình 3.5 Giao diện chương trình đưa ra kết quả dạng toán 1 42
Hình 3.6 Giao diện chương trình đưa ra kết quả dạng toán 2 42
Hình 3.7 Đọc đề bài từ file dagiac1 44
Hình 3.8 Kết quả câu 1a bài toán dagiac1 45
Hình 3.9 Kết quả câu 1b bài toán dagiac1 45
Hình 3.10 Kết quả câu 1c bài toán dagiac1 45
Hình 3.11 Đọc đề bài từ file tamgiac1 47
Hình 3.12 Kết quả câu 2a, 2b bài toán tamgiac1 47
Hình 3.13 Đọc đề bài từ file dagiac2 50
Hình 3.14 Kết quả câu 2a bài toán dagiac2 50
Hình 3.15 Kết quả câu 2b bài toán dagiac2 51
Hình 3.16 Kết quả câu 2c bài toán dagiac2 51
Hình 3.17 Đọc đề bài từ file tamgiac2 53
Hình 3.18 Kết quả câu 4a, 4b bài toán tamgiac2 53
Hình 3.19 Đọc đề bài từ file tinchi2 57
Hình 3.20 Kết quả câu 5a bài toán tinchi2 57
Trang 10Việc nghiên cứu về AXĐ có thể cho ta những kết quả tổng quát hóa trong lý thuyết cơ sở dữ liệu nói riêng và trong tin học nói chung; mở rộng khả năng vận dụng một công cụ toán học trợ giúp phát triển một số kết quả trong một số vấn đề lý thuyết về các hệ cơ sở dữ liệu và tri thức, các hệ suy dẫn, khai phá dữ liệu
1.2 Cơ sở thực tiễn
AXĐ được xem là một cấu trúc toán học hỗ trợ cho việc nghiên cứu về mặt
lý thuyết cơ sở dữ liệu quan hệ và chỉ ra rằng có thể vận dụng ngôn ngữ AXĐ để nhận lại được các kết quả về cơ sở, phản cơ sở, bao đóng, chuẩn hóa AXĐ cũng
là một công cụ hữu ích trong việc giải một số bài toán quan trọng khác
Mỗi AXĐ được đặc tả bởi một hệ suy dẫn gọi là hệ sinh AXĐ Có thể vận dụng hệ suy dẫn để giải quyết các bài toán trong thực tiễn cuộc sống, các lĩnh vực khoa học khác
Những vấn đề nêu trên là cơ sở cho việc xác lập đề tài nghiên cứu của luận văn: “KHẢO SÁT CƠ SỞ CỦA ÁNH XẠ ĐÓNG”
2 Đối tƣợng và phạm vi nghiên cứu
2.1 Đối tượng nghiên cứu
Xuất phát từ khuôn khổ của bậc học thạc sĩ, với khả năng thực tế của cá nhân, học viên nghiên cứu, khảo sát cơ sở của ánh xạ đóng làm nền tảng phát triển các hệ suy dẫn
Trang 112.2 Phạm vi nghiên cứu
- Dạng biểu diễn cơ sở hệ sinh ánh xạ đóng, bao gồm dạng biểu diễn thứ nhất và dạng biểu diễn thứ hai của cơ sở
- Ứng dụng ánh xạ đóng vào các hệ suy dẫn
3 Nhiệm vụ nghiên cứu
Thực hiện đề tài này, luận văn giải quyết các nhiệm vụ sau:
- Tìm hiểu cơ sở lí luận của đề tài
- Tìm hiểu tính chất của ánh xạ đóng và 2 dạng biểu diễn cơ sở của hệ sinh ánh xạ đóng
4 Hướng nghiên cứu
- Giới thiệu tổng quan thuật toán và các kỹ thuật liên quan
- Vận dụng ngôn ngữ ánh xạ đóng để phát triển các kết quả về cơ sở, biểu diễn cơ sở, suy luận trong hệ suy dẫn,…
- Nghiên cứu ánh xạ đóng để tổng quát hóa trong lý thuyết cơ sở dữ liệu và các hệ suy dẫn
- Cài đặt thử nghiệm các thuật toán sử dụng cơ sở ánh xạ đóng
5 Phương pháp nghiên cứu
Để giải quyết các nhiệm vụ trong đề tài luận văn, học viên sử dụng chủ yếu các phương pháp sau đây:
- Phương pháp phân loại, tổng hợp các công trình nghiên cứu trong và ngoài nước đã công bố liên quan đến đề tài
- Phương pháp xây dựng chương trình khảo sát các tình huống khác nhau
- Phương pháp toán học rời rạc và logic
- Kết hợp chặt chẽ giữa lý thuyết và thực hành, sử dụng và phát triển các phần mềm nói chung và các phần mềm toán học nói riêng để thể hiện các kết quả lý thuyết
Trang 126 Ý nghĩa lý luận và thực tiễn
Giải quyết tốt nhiệm vụ nghiên cứu của đề tài là một công việc có ý nghĩa cả về lí luận và thực tiễn
- Về lí luận: luận văn góp phần làm sáng tỏ thêm một số vấn đề về ánh
xạ đóng, đồng thời tổng hợp được lý thuyết về cơ sở của ánh xạ đóng
- Về thực tiễn: vận dụng khái niệm ánh xạ đóng để giải quyết một số vấn đề trong quản lý ngữ nghĩa của dữ liệu; ứng dụng xây dựng các bài toán của một hệ suy dẫn để chứng minh tự động trong toán học hay việc hỗ trợ xây dựng kế hoạch dạy - học của giảng viên, sinh viên trong đào tạo theo hệ thống tín chỉ,
7 Cấu trúc của luận văn
Ngoài phần mở đầu, kết luận, tài liệu tham khảo, nội dung luận văn được trình bày trong ba chương:
Chương 1: Các khái niệm cơ sở
Chương 2: Hệ suy dẫn và ứng dụng
Chương 3: Cài đặt chương trình
Trang 13Chương 1
CÁC KHÁI NIỆM CƠ SỞ
Các khái niệm trong phần này được trình bày trong tài liệu [1], [2], [3],
[4] Các phần tử của tập hợp được ký hiệu bằng các chữ Latin viết thường đầu bảng chữ a, b, c, Các tập được ký hiệu bằng các chữ LATIN HOA cuối bảng chữ X, Y, Z, Các phần tử trong một tập thường được liệt kê như một xâu ký
tự, không có các ký hiệu biểu diễn tập, chẳng hạn ta viết X = abc thay vì viết X
= {a,b,c} XY biểu diễn hợp của hai tập X và Y, X Y Phép trừ hai tập X và Y được ký hiệu là X\Y Tập vũ trụ hay tập nền U được cho trước luôn luôn là hữu
hạn và khác trống Kí hiệu SubSet(U) là tập các tập con của U với thứ tự bộ phận bao hàm ( )
Các khái niệm về lược đồ quan hệ (LĐQH) và phép dịch chuyển LĐQH trình bày trong [1] là trường hợp riêng của khái niệm về hệ sinh của AXĐ và phép thu gọn hệ sinh thông qua các tương ứng sau đây:
Cơ sở dữ liệu Ánh xạ đóng
Tập thuộc tính U Tập phần tử U
Phụ thuộc hàm X Y Luật sinh X Y
Bao đóng của tập thuộc tính ()+
Ánh xạ đóng f()
1.1 Ánh xạ đóng
Định nghĩa
Cho tập U Ánh xạ f: SubSet(U) SubSet(U) được gọi là đóng trên tập
U nếu với mọi tập con X, Y U thỏa các tính chất [1] sau đây:
(C1) Tính phản xạ: f(X) X,
(C2) Tính đồng biến hay đơn điệu: Nếu X Y thì f(X) f(Y),
(C3) Tính lũy đẳng: f(f(X)) = f(X)
Trang 14Thí dụ
Các ánh xạ sau đây là đóng:
- Ánh xạ tối đại: (X) = U với mọi X U,
- Ánh xạ đồng nhất: e(X) = X với mọi X U,
- Ánh xạ tịnh tiến: h T (X) = TX với mọi X U và T là tập con cố định tùy ý cho trước trong U
Trường hợp T = U thì ánh xạ tịnh tiến theo T trở thành ánh xạ tối đại,
hU = , trường hợp T = thì ánh xạ tịnh tiến theo T trở thành ánh xạ đồng
nhất, h = e Điều này cho thấy có thể dùng ánh xạ tịnh tiến làm cơ sở đặc tả
họ các AXĐ { , h T , e}
1.2 Một số tính chất của ánh xạ đóng
Mệnh đề
Ta ký hiệu Close(U) là tập tất cả các AXĐ trên tập U cho trước Sau
đây ta xét một số tính chất của AXĐ
Giả sử f Close U Khi đó với mọi X,Y U ta có:
(C4) f(f(X)Y) = f(Xf(Y)) = f(XY)
(C5) f XY f X f Y
(C6) f(X Y) f(X) f(Y)
Thí dụ
Ta xét phản thí dụ cho các tính chất (C5) và (C6) trong mệnh đề trên
Cụ thể, ta sẽ xây dựng AXĐ f sao cho f(XY) f(X)f(Y) và f(X Y) f(X) f(Y) với các tập X và Y cụ thể
Xét ánh xạ f trên tập U = ABC như sau:
f(AB) = f(BC) = U,
Với mọi X U, X AB và X BC ta đặt f(X) = X
Dễ thấy f là AXĐ và
f(AB) = ABC AB = f(A)f(B), minh họa cho tính chất (C5)
f(AB BC) = f(B) = B ABC = f(AB) f(BC), minh họa cho tính chất (C6)
Trang 151.3 Hội các ánh xạ đóng
Định nghĩa
Cho các AXĐ f và g trên U Ta xác định ánh xạ h trên U như sau,
h(X) = f(X) g(X), với mọi X U Ta gọi ánh xạ h là hội của các ánh xạ f
Ký hiệu Fix(f) là tập toàn bộ các điểm bất động của AXĐ f
Vì f(U) = U nên Fix(f) luôn chứa U như phần tử lớn nhất Ngoài ra, dựa vào tính lũy đẳng của các AXĐ ta có thể đặc tả Fix(f) như sau:
Thật vậy, theo định nghĩa của h T , ta có, h T (TX) = TTX = TX
Ngược lại, nếu h T (M) = M với M U thì ta có, h T (M) = TM = M
Từ đây suy ra T M
Trang 161.5 Hạn chế trên ánh xạ đóng
Định nghĩa [3]
Cho AXĐ f trên U và một tập con M của U Hạn chế của ánh xạ f trên
M, ký hiệu f M là ánh xạ trên M được xác định như sau:
Cho AXĐ f trên U Tập con K của U được gọi là cơ sở của AXĐ f nếu
K thỏa đồng thời hai tính chất sau:
(i) Tính toàn thể: f(K) = U, và
(ii) Tính tối tiểu: X K: f(X) U
Nếu K thỏa tính chất (i) thì K được gọi là siêu cơ sở của AXĐ f
Kí hiệu X K cho biết X là tập con thực sự của K, tức là X K và X K
Mệnh đề
1 Mọi AXĐ trên tập hữu hạn đều có ít nhất một cơ sở
2 Hai cơ sở bất kỳ của cùng một AXĐ không bao nhau
3 Số cơ sở tối đại của một AXĐ là tổ hợp chặp n/2 của n, trong đó n
là số phần tử của U, x là nền nguyên của x (số nguyên lớn nhất không vượt quá x), tức là bằng Cn
Do f(X) K = f K (X), do đó biểu thức trong bổ đề trên cho thấy X
là điểm bất động (tập đóng) đối với hạn chế f K
Trang 17- Bổ đề 2: Cho AXĐ f trên U và siêu cơ sở K của f
Nếu X K: f(X) K = X thì K là cơ sở của f
Định nghĩa (Phần tử cơ sở và phần tử không cơ sở)
Cho f là AXĐ trên tập hữu hạn U Phần tử A trong U được gọi là phần
tử cơ sở hoặc phần tử nguyên thủy của AXĐ f nếu A có trong một cơ sở nào
đó của f A được gọi là phần tử không cơ sở hoặc phần tử phi nguyên thủy của AXĐ f nếu A không có trong bất kỳ cơ sở nào của f
Ta ký hiệu U K là tập các phần tử cơ sở của AXĐ f trên U và U o là tập của các phần tử không cơ sở của f Khi đó U = U K | U o là một phân hoạch
của U Ngoài ra, ta ký hiệu U I là giao các cơ sở của f
Định lý (Giao các cơ sở của ánh xạ đóng)
Cho AXĐ f trên tập hữu hạn U Khi đó giao các cơ sở của f được tính
theo công thức:
U X
U \ ( ( ) \ )
1.7 Hệ sinh ánh xạ đóng
1.7.1 Định nghĩa hệ sinh [2]
Cho tập hữu hạn U, một luật sinh f trên U là biểu thức dạng f: L R;
L, R U Các tập L và R được gọi tương ứng là vế trái và vế phải của luật
sinh f và được kí hiệu tương ứng là LS(f) và RS(f)
Ta gọi một hệ sinh AXĐ là cặp = (U,F), trong đó U là một tập hữu
hạn, F là tập các luật sinh trên U
Trang 181.7.2 Định lý hệ sinh cho ánh xạ đóng [2]
Với mỗi AXĐ h trên U, tồn tại một hệ sinh = (U,F) thỏa tính chất:
f (X) = h(X)
Thuật toán
Cho hệ sinh = (U,F) và tập con X của U Hãy tính f (X)
Thuật toán Image dưới đây tính f (X) với thời gian đa thức theo chiều dài dữ liệu vào, O(|U|2
.|F|) Tư tưởng của thuật toán là xây dựng dãy các tập con bao nhau X 0 X 1 X 2 … X i … như sau:
Trang 191.8 Thu gọn hệ sinh ánh xạ đóng
1.8.1 Định nghĩa [2]
Cho hai hệ sinh = (U,F), = (V,G) và tập M U Ta nói hệ sinh nhận được từ hệ sinh qua phép thu gọn theo tập M, và kí hiệu là = \M, nếu sau khi loại bỏ mọi xuất hiện của các phần tử của M trong hệ sinh thì
thu được hệ sinh
Thao tác loại bỏ M thực hiện trên hệ sinh = (U,F) để thu được hệ sinh = (V,G) như sau:
1 Tính V = U\M có độ phức tạp O(n) với n = |U|
2 Với mỗi luật sinh X Y trong F ta tạo một luật sinh X\M Y\M cho
G Thủ tục này xác định tập các luật sinh được ký hiệu là F\M Tính F\M đòi
hỏi độ phức tạp O(mn), với m = |F|
Như vậy = \M = (U\M, F\M) được thực hiện với độ phức tạp O(mn),
tức là tuyến tính theo chiều dài dữ liệu vào của hệ sinh
Sau khi thực hiện thủ tục G = F\M, nếu:
- G chứa các luật sinh tầm thường (dạng X Y, X Y) thì loại các luật
sinh này khỏi G,
- G chứa các luật sinh trùng lặp thì ta lược bớt các luật sinh này
Trang 20Với M = adh, ta xác định = (V,G) = \M như sau:
Ta có, V = U\adh = abcdeh\adh = bce,
G = {e (loại), (loại), bc e, e bc} ≡ {bc e, e bc}
Nhận xét
Phép thu gọn thỏa tính kết hợp và giao hoán, cụ thể là nếu là hệ sinh
trên tập U và X, Y là hai tập con rời nhau của U thì:
\(XY) = ( \X)\Y = ( \Y)\X
1.8.2 Định lý về công thức biểu diễn ánh xạ đóng theo phép thu gọn hệ sinh
Cho hệ sinh = (U,F) và hai tập con không giao nhau X và Y trong U Khi đó f (XY) = Xf \X (Y) [2]
1.8.3 Hệ quả về công thức tính ảnh cho một tập
Cho hệ sinh = (U, F) và tập X U
Nếu có những luật như vậy, ta gom các vế phải R của chúng đưa vào
kết quả và lại thực hiện tiếp các phép rút gọn trên hệ sinh Quá trình này sẽ
kết thúc khi trong không còn luật dạng R, R
Trang 21Tính: 1 f (ahe) và 2 f (e) ?
Ta có, theo hệ quả về công thức tính ảnh cho một tập:
1 f (ahe) = ahe f \ahe( );
1.9 Biểu diễn cơ sở hệ sinh ánh xạ đóng
1.9.1 Cơ sở của hệ sinh
Định nghĩa [4]
Ta gọi cơ sở của hệ sinh là cơ sở của ánh xạ cảm sinh của hệ sinh đó
Với mỗi hệ sinh = (U,F), ta kí hiệu:
- Base( ) là tập các cơ sở của ánh xạ cảm sinh của hệ sinh
- U K là tập các phần tử cơ sở của hệ sinh , tức là tập các phần tử có
trong một cơ sở của
- U 0 là tập các phần tử phi cơ sở của , tức là tập các phần tử không có
trong bất kỳ cơ sở nào của
- U I là giao các cơ sở của
Ta có U = U K | U 0 là một phân hoạch của U
Định lý 1
Cho hệ sinh AXĐ = (U,F) với n phần tử trong tập U và m luật sinh trong F Khi đó có thể xác định giao các cơ sở bằng một thuật toán tuyến tính theo mn qua công thức:
F R L
U \ ( \ )
Trang 22Bổ đề 1
Với mọi AXĐ f trên U và mọi tập con X,Y U ta có:
f(Xf(Y)) = f(f(X)Y) = f(XY)
Bổ đề 2 [4]
Cho hai hệ sinh = (U,F), = (V,G) và X U Biết = \X Khi đó: (i) Nếu M là siêu cơ sở của thì M\X là siêu cơ sở của
(ii) Nếu Z là siêu cơ sở của thì XZ là siêu cơ sở của Nói riêng, nếu
X U o và Z là siêu cơ sở của thì Z là siêu cơ sở của
(Dạng biểu diễn thứ nhất cơ sở hệ sinh ánh xạ đóng)
Nếu thu gọn hệ sinh = (U,F) theo tập X U để nhận được hệ sinh = \X thì:
1 Base( ) = Base( ) khi và chỉ khi X U0
2 Base( ) = X Base( ) khi và chỉ khi X U I
Trang 23Ta tính giao các cơ sở là U I = abcdeh\de = abch
Đặt = (V,G) với V = U\abch = de, G = F\abch = {e d, e}
Ta tính được Base( ) = { }
Vậy Base( ) = abch Base( ) = abch { } = abch
2 Với hệ sinh đã cho ta tính được:
U K = abch nên U 0 = U\U K = abcdeh\abch = de
Đặt = \de = (P, W)
Ta có P = U\de = abch, W = F\de = {a (loại), bc (loại)}
Do đó Base( ) = abch
Theo định lý về dạng biểu diễn thứ nhất của cơ sở, vì U 0 = de nên
Base( ) = Base( ) = abch
Hệ quả 2 [4]
(Thu gọn hệ sinh theo các bộ phận không cơ sở và giao các cơ sở)
Cho hệ sinh = (U,F) và các tập phần tử X U 0 , Y U I
Nếu thực hiện phép thu gọn theo XY để nhận được hệ sinh = \XY thì:
Base( ) = Y Base( )
Dạng biểu diễn thứ hai
Cho (M, ) là một tập hữu hạn có thứ tự bộ phận Phần tử m trong được gọi là cực tiểu nếu từ x m và x M ta luôn có x = m Ta ký hiệu
MIN(M) là tập các phần tử cực tiểu của M Dễ thấy rằng với mỗi phần tử x
trong M luôn tồn tại phần tử m trong MIN(M) thỏa m x
Với mỗi họ các tập con của một tập hữu hạn U cho trước ta xét thứ tự
bộ phận
Từ thời điểm này trở đi ta luôn giả thiết rằng mọi hệ sinh = (U, F) đều có tập U hữu hạn và không rỗng, tập luật sinh F không rỗng và thỏa các
tính chất :
Trang 241 F không chứa các luật sinh tầm thường:
Trang 251 f (a) = acehbd = U Vậy a là cơ sở của
2 f (e) = ebc U Vậy e không phải là cơ sở của
3 f (bd) = bdc U Vậy bd không phải là cơ sở của
Định lý 3 [1]
(Dạng biểu diễn thứ hai cơ sở hệ sinh ánh xạ đóng)
Cho hệ sinh = (U, F) Khi đó mọi cơ sở K của hệ sinh đều biểu diễn được dưới dạng K = LM, trong đó L là một vế trái cực tiểu của F và M là
cơ sở của hệ sinh \f (L)
Bổ đề 5 [4]
Cho hệ sinh = (U, F) và vế trái cực tiểu L Khi đó nếu K L
Base( \f (L)) và K không chứa vế trái cực tiểu nào khác ngoài L thì K là cơ sở
Trang 26ac eh,
bd c}
Ta có ML(F) = {a, e, bd}
Xét vế trái cực tiểu e
Ta thấy, f (e) = ebc U
Vậy e không phải là cơ sở của
Ta thực hiện thu gọn hệ sinh theo f (e)
Ta có β = \f (e) = (V,G),
V = abcdeh\ebc = adh,
d (loại)} ≡ {a dh, h a}
Dễ dàng tính được Base(β) = {a, h}, do đó e Base(β)={ea, eh}
Thành phần eh không chứa thêm vế trái cực tiểu nào khác e, do đó eh là
cơ sở của
Bổ đề 6 [4]
Cho hệ sinh = (U, F) và vế trái cực tiểu L Khi đó M
Base( \f (L)), mọi cơ sở K của chứa trong LM đều phải chứa M
Trang 27Ta thấy, f (e) = ebc U
Vậy e không phải là cơ sở của hệ sinh
Ta thu gọn theo f (e) Đặt β = \f (e) = (V,G), ta có:
V =abcdeh\ebc = adh,
= {a d, h a, a h} {a dh, h a}
Dễ thấy h là cơ sở của β
Như vậy eh là cơ sở của , trong đó e là một vế trái cực tiểu, h là cơ sở của \f (e)
1.9.3 Thuật toán tìm cơ sở của hệ sinh ánh xạ đóng
Tư tưởng: Xuất phát từ một siêu cơ sở K tùy ý của hệ sinh, duyệt lần
lượt các phần tử A của K, nếu bất biến (K {A}) = U được bảo toàn thì loại A khỏi K Có thể thay kiểm tra (K {A}) = U bằng kiểm tra A ( {A})?
Algorithm Base
Function: Tìm cơ sở của hệ sinh
Format: Base (U,F)
Input: - Tập phần tử U
- Tập luật sinh F Output: Cơ sở K U thoả:
Trang 28Độ phức tạp tính toán: Thuật toán duyệt n phần tử, với mỗi phần tử thực hiện
phép lấy tập bao với độ phức tạp n 2 m Tổng hợp lại, độ phức tạp tính toán của
thuật toán là O(n3m)
Hãy tìm cơ sở của hệ sinh đã cho?
Dễ thấy rằng, hệ sinh có có cơ sở K = c, vì thoả hai điều kiện:
Hãy tìm cơ sở của hệ sinh đã cho?
Ta thấy, hệ sinh có cơ sở K = a, vì thoả hai điều kiện:
(i) f(K) = f(a) = abcde = U
(ii) a tối tiểu (theo nghĩa f(K \ {a}) U)
Trang 29Tìm hiểu và nghiên cứu tổng quát về AXĐ làm nền tảng phát triển các
hệ suy dẫn Việc vận dụng hệ sinh cho các bài toán suy dẫn sẽ được trình bày
và ứng dụng ở trong chương 2
Trang 30Định lý: Mệnh đề h: X Y là đúng đắn khi và chỉ khi Y f (X), trong
đó f là ánh xạ cảm sinh của
Câu hỏi dạng toán 1: X Y
Yêu cầu bài toán: Y f (X)?
Các bước thực hiện dạng toán 1:
Bước 1: Tính M = f (X)
Tìm f (X) trong hệ sinh = (U, F):
1 Thực hiện phép thu gọn hệ sinh để được hệ sinh = (V, G) (Hệ sinh nhận được từ hệ sinh qua phép thu gọn theo tập X):
Trang 31Bước 2: Sau khi thực hiện thủ tục G = F\X trong hệ sinh , nếu:
1 Xuất hiện luật sinh dạng R , : Loại
2 Xuất hiện luật sinh dạng R, với R thì:
- Gom các vế phải R của chúng đưa vào kết quả;
- Thực hiện tiếp các phép các phép rút gọn trên hệ sinh
Quá trình này sẽ kết thúc khi trong không còn luật dạng R,
R , cho kết quả M
Bước 3: Kiểm tra phần tử Y có trong tập M không
+ Nếu Y có trong tập M: Đúng
+ Nếu Y không có trong tập M: Sai
Bước 4: Kết luận bài toán trên cơ sở kết quả tìm được ở Bước 3
Câu hỏi dạng toán 2: X ?
Yêu cầu bài toán: f (X) Y = ?
Các bước thực hiện dạng toán 2:
Trang 32Bước 1: Tính M = f (X)
Tìm f (X) trong hệ sinh = (U, F):
1 Thực hiện phép thu gọn hệ sinh để được hệ sinh = (V, G) (Hệ sinh nhận được từ hệ sinh qua phép thu gọn theo tập X):
Bước 2: Sau khi thực hiện thủ tục G = F\X trong hệ sinh , nếu:
1 Xuất hiện luật sinh dạng R , : Loại
2 Xuất hiện luật sinh dạng R, với R thì:
- Gom các vế phải R của chúng đưa vào kết quả;
- Thực hiện tiếp các phép các phép rút gọn trên hệ sinh
Quá trình này sẽ kết thúc khi trong không còn luật dạng R,
Trang 33+ Có 2 đường chéo vuông góc
x Có 2 đường chéo bằng nhau
Bảng 2.2 Luật - Ngữ nghĩa các tập đối tƣợng
về các hình đa giác và tính chất
#2 T Tứ giác có 2 cạnh song song là hình thang
#s H Tứ giác có 2 cặp cạnh song song là hình bình hành
H1 N Hình bình hành có 1 góc vuông là hình chữ nhật
H+ O Hình bình hành có 2 đường chéo vuông góc là hình thoi
Nk V Hình chữ nhật có 2 cạnh kề bằng nhau là hình vuông
Hx N Hình bình hành có 2 đường chéo bằng nhau là hình chữ nhật
Tx C Hình thang có 2 đường chéo bằng nhau là hình thang cân
Ox V Hình thoi có 2 đường chéo bằng nhau là hình vuông
Trang 34Xóa N F = {2 T, 1 (loại), + O, k V, , T C, O V }