MỤC LỤCLỜI NÓI ĐẦU 1CHƯƠNG 1 : GIỚI THIỆU CHUNG VỀ MỎ BẠCH HỔ 31.1. Sơ lược về tình hình dầu khí Việt Nam 31.2. Giới thiệu các công trình khai thác dầu khí ở mỏ Bạch Hổ 51.2.1. Giàn khoan cố định MSP 61.2.2. Giàn nhẹ BK 71.2.3. Giàn công nghệ trung tâm CTP2 71.2.4. Hệ thống trạm rót dầu không bến UBN 71.2.5. Hệ thống đường ống 81.2.6. Giàn nén khí trung tâm CKP 91.2.7. Trạm nén khí nhỏ MKS 91.3. Công nghệ thu gom vận chuyển dầu khí ở mỏ
Trang 1LỜI NÓI ĐẦU
Ngành dầu khí Việt Nam tuy còn non trẻ, với hơn 30 năm xây dựng và phát triển nhưng đã sớm khẳng định vị trí của nó trong nền kinh tế quốc dân, cho tới nay dầu khí vẫn luôn được coi là ngành kinh tế mũi nhọn Tuy nhiên dầu khí Việt Nam chủ yếu là khai thác ngoài khơi, tập trung ở vùng thềm lục địa phía Nam Việt Nam, độ sâu nước biển không lớn và trải dài trên diện tích rộng Hiện nay nguồn dầu khí khai thác tại các mỏ đang giảm dần, Tập Đoàn dầu khí Quốc gia Việt Nam vẫn đang tiếp tục tìm kiếm, thăm dò và phát hiện các mỏ mới
Một trong những lĩnh vực của nền công nghiệp dầu khí hiện đang rất được quan tâm đó là vận chuyển dầu khí Nó là khâu quan trọng nối liền khai thác với chế biến và tiêu thụ, mà quá trình phát triển gắn liền với quá trình khai thác dầu khí Đặc thù chung trong việc khai thác dầu khí ở nước ta là các giếng khai thác ở xa ngoài biển nên việc đưa dầu khí vào đất liền đòi hỏi một
hệ thống đường ống dẫn lớn và yêu cầu làm việc hiệu quả, độ tin cậy cao Với điều kiện khai thác như vậy thì việc thi công, lắp đặt các hệ thống đường ống dẫn dầu khí ngoài biển trở nên hết sức khó khăn, phức tạp Việc tính toán công nghệ cho đường ống dẫn ngoài khơi trở nên cấp thiết hơn lúc nào hết Xác định được tính cấp thiết và tầm quan trọng đó, em đã tiến hành xây dựng
đồ án tốt nghiệp với nội dung là: “Tính toán công nghệ cho đường ống nội
mỏ Bạch Hổ”.
Được sự gợi ý và hướng dẫn của ThS Đào Thị Uyên cùng các thầy cô
trong Bộ môn Thiết bị dầu khí và Công trình, em đã chọn đề: “Tính toán
công nghệ cho tuyến ống dẫn khí từ giàn công nghệ trung tâm CTP2 đến giàn nén khí trung tâm CKP mỏ Bạch Hổ”
Đồ án gồm 4 chương như sau:
Chương 1: Giới thiệu chung về mỏ Bạch Hổ
Chương 2: Các bước cơ bản xây dựng một tuyến ống
Chương 3: Tính toán công nghệ cho tuyến ống dẫn khí từ giàn công nghệ trung tâm CTP2 đến giàn nén khí trung tâm CKP mỏ Bạch Hổ
Chương 4: Các sự cố thường gặp trong quá trình vận chuyển dầu khí và biện pháp khắc phục
Trang 2Để hoàn thành đồ án này em xin gửi lời cảm ơn chân thành tới ThS Đào Thị Uyên cùng các thầy cô trong Bộ môn Thiết bị dầu khí đã giúp đỡ em rất nhiều trong quá trình thực hiện đồ án.
Mặc dù em đã cố gắng tìm hiểu cũng như nghiên cứu các tài liệu có liên quan để xây dựng đồ án, nhưng do kinh nghiệm còn thiếu và trình độ còn hạn chế, nên đồ án này chắc chắn còn nhiều thiếu sót, em rất mong nhận được
sự quan tâm góp ý của tất cả các thầy và các bạn để sau này khi tiếp xúc với môi trường công việc có thể giải quyết các vấn đề được tốt hơn
Em xin chân thành cảm ơn!
Hà Nội, tháng 05 năm 2011
Sinh Viên
Nguyễn Văn Cường A
Trang 3CHƯƠNG 1 GIỚI THIỆU CHUNG VỀ MỎ BẠCH HỔ
1.1 Sơ lược về tình hình dầu khí Việt Nam
Qua quá trình tìm kiếm thăm dò cho đến nay, các tính toán dự báo đã khẳng định tiềm năng dầu khí Việt Nam tập trung chủ yếu ở thềm lục địa, trữ lượng khí thiên nhiên có khả năng nhiều hơn dầu Với trữ lượng đã được thẩm định, nước ta có khả năng tự đáp ứng được nhu cầu về sản lượng dầu khí trong những thập kỷ đầu tiên của thiên niên kỷ thứ 3
Trang 4Hình 1.1 Tiềm năng dầu khí tại các mỏ trầm tích của Việt Nam
Tổng tiềm năng dầu khí tại các bể trầm tích: Sông Hồng, Phú Khánh, Nam Côn Sơn, Cửu Long, Malay - Thổ Chu, Vùng Tư Chính - Vũng Mây
đã được xác định tiềm năng và trữ lượng đến thời điểm này là từ 0,9 đến 1,2
tỷ tấn dầu và từ 2100 đến 2800 tỷ m3 khí Trữ lượng đã được xác minh là gần
Trang 5550 triệu tấn dầu và trên 610 tỷ m3 khí Trữ lượng khí đã được thẩm lượng, đang khai thác và sẵn sàng để phát triển trong thời gian tới vào khoảng
400 tỷ m3 khí Với các biện pháp đồng bộ, đẩy mạnh công tác tìm kiếm - thăm
dò, khoảng từ 40 - 60% trữ lượng nguồn khí thiên nhiên của nước ta sẽ được phát hiện đến năm 2012
Hiện nay ngành Dầu khí nước ta đang khai thác dầu khí chủ yếu tại
6 khu mỏ bao gồm: Bạch Hổ, Rồng, Đại Hùng, Hồng Ngọc, Rạng Đông, Bunga Kekwa - Cái Nước và chuẩn bị đưa vào khai thác mỏ khí Lan Tây, lô
06 - 1 Công tác phát triển các mỏ Rạng Đông, Ruby và Emeral, Lan Tây - Lan Đỏ, Sư Tử Đen, Sư Tử Vàng, Hải Thạch, Rồng Đôi, Kim Long, Cá Voi đang được triển khai tích cực theo chương trình đề ra, đảm bảo duy trì và tăng sản lượng khai thác dầu trong những năm tới
Những phát hiện về dầu khí mới đây ở thềm lục địa miền Nam nước ta rất đáng phấn khởi, tăng thêm niềm tin và thu hút sự quan tâm của nhà đầu tư là: Lô 09-2, giếng Cá Ngừ Vàng - IX, kết quả thử vỉa thu được 330 tấn dầu
và 170000 m3 khí/ngày đêm Lô 16-1, giếng Voi Trắng - IX cho kết quả
420 tấn dầu và 22000 m3 khí/ngày Lô 15-1, giếng Sư Tử Vàng - 2X cho kết quả 820 tấn dầu và giếng Sư Tử Đen - 4X cho kết quả 980 tấn dầu/ngày Triển khai tìm kiếm - thăm dò mở rộng các khu vực mỏ Bạch Hổ, Rồng, Đại Hùng với các giếng R-10, 05-ĐH-10 cho kết quả 650000 m3 khí/ngày đêm và dòng dầu 180 tấn/ngày đêm; giếng R-10 khoan tầng móng đã cho kết quả
500000 m3 khí/ngày đêm và 160 tấn Condensate/ngày đêm
Năm 2006, Tập đoàn Dầu khí Việt Nam bố trí kế hoạch khai thác 20,86 triệu tấn dầu thô quy đổi (tăng 1,5 triệu tấn so với mức đã thực hiện trong năm 2002) Đây là năm đầu tiên nước ta khai thác trên 20 triệu tấn dầu thô quy đổi, trong đó có 17,6 triệu tấn dầu thô và 3,7 tỷ m3 khí thiên nhiên
Dự kiến hết năm 2010, ngành Dầu khí nước ta sẽ khai thác từ trên 32 đến 35 triệu tấn dầu thô quy đổi, nhằm đáp ứng các ngành năng lượng và sản xuất công nghiệp của cả nước Dầu khí Việt Nam đang trở thành một trong những lĩnh vực đầu tư nước ngoài sôi động: nhiều tập đoàn Dầu khí lớn đang có kế hoạch đầu tư và mở rộng hoạt động tại Việt Nam Ngoài số hợp đồng thăm dò khai thác của Tập đoàn Dầu khí Việt Nam ký với các nhà thầu nước ngoài cho
Trang 6và Conocophillips cũng đang xúc tiến mở rộng hoạt động Dự kiến riêng vốn của hai tập đoàn Dầu khí này đầu tư vào Việt Nam trong lĩnh vực dầu khí dự tính sẽ đạt hơn 2 tỷ USD trong vài năm tới Các chuyên gia kinh tế nước ngoài dự báo: đầu tư trực tiếp nước ngoài của Việt Nam trong lĩnh vực dầu khí, một lĩnh vực sẽ hấp dẫn các nhà đầu tư nước ngoài hơn cả, sẽ tiếp tục tăng mạnh trong những năm tới Hiện tại có khoảng 29 hợp đồng dầu khí đang có hiệu lực tại Việt Nam, bao gồm 3 hợp đồng mới được ký kết cho 4 lô thuộc bể Phú Khánh, với sự góp mặt của hầu hết các Tập đoàn Dầu khí đứng đầu trên thế giới PetroVietnam cho biết sẽ tiếp tục ký kết các hợp đồng mời thầu còn lại với các công ty nước ngoài và mở rộng quan hệ hợp tác với các nước trong việc thăm dò khai thác dầu khí trong thời gian sắp tới.
1.2 Giới thiệu các công trình khai thác dầu khí ở mỏ Bạch Hổ
Để phục vụ cho khoan thăm dò và khai thác dầu khí ngoài biển ở mỏ Bạch Hổ, xí nghiệp liên doanh VietsovPetro đã xây dựng ở đây một hệ thống các công trình bao gồm: Giàn công nghệ trung tâm CTP, giàn khoan cố định MSP, giàn nhẹ BK, trạm rót dầu không bến UBN, hệ thống tuyến đường ống nội mỏ Hiện nay, mỏ Bạch Hổ có:
- 2 giàn công nghệ trung tâm CTP-2, CTP-3
- 10 giàn cố định MSP (MSP-1; 3; 4; 5; 6; 7; 8; 9; 10; 11)
- 09 giàn nhẹ BK: BK1, BK2, BK3, BK4, BK5, BK6, BK7, BK8, BK9
- 4 trạm rót dầu không bến UBN-1, UBN-2, UBN-3, UBN-4
- Giàn nén khí lớn, giàn nén khí nhỏ, giàn bơm nước, giàn ép vỉa, block nhà ở, các cầu dẫn…
Ngoài ra mỏ Bạch Hổ còn có hệ thống đường ống bao gồm:
- 22 tuyến ống dẫn nước ép vỉa với tổng chiều dài 43.041 km
- 24 tuyến ống dẫn dầu với tổng chiều dài 77.727 km
- 14 tuyến ống dẫn khí với tổng chiều dài 37.346 km
- 18 tuyến ống dẫn Gaslift với tổng chiều dài 38.729 km
- 18 tuyến ống dẫn hỗn hợp dầu, khí với tổng chiều dài 42.899 km Tổng chiều dài toàn bộ tuyến ống ngầm tại mỏ Bạch Hổ tính đến năm
2001 là 233.158 km Hiện nay, xí nghiệp liên doanh VietsovPetro đang cải tạo các giàn MSP trước đó và lắp đặt thêm các thiết bị khai thác, xây dựng và lắp đặt thêm các thiết bị khai thác, xây dựng thêm một số giàn nhẹ
Trang 7bộ khí đồng hành Mức độ xử lý tuỳ thuộc vào hệ thống thiết bị trên từng giàn Sản phẩm dầu khí được xử lý trên giàn MSP có thể là từ các giếng khoan của nó hoặc được thu gom từ giàn nhẹ BK
- Về mặt cấu tạo giàn khoan gồm có phần móng cứng, khối chân đế và phần kết cấu thượng tầng Phần móng cứng gồm hai khối nối với nhau bằng sàn chịu lực (MSF) ở phía trên và cố định xuống đáy biển bằng các cọc Khối chân đế là kết cấu thép không gian làm từ thép ống, còn thượng tầng có cấu trúc module được lắp ghép trên sàn chịu lực
+ Mỗi chân đế có 8 ống chính (đường kính 812,8×20,6 mm) Phần dưới
của chân đế ở từng cọc trụ chính có 2 ống dẫn hướng cho cọc phụ Các phần
tử cấu thành mạng Panel và ống giằng ngang của chân đế là từ các ống có đường kính từ 426×12 mm đến 720×16 mm Những chỗ tiếp giáp với đáy
biển cọc chính và cọc phụ được trang thiết bị bơm trám xi măng Module chịu lực (sàn chịu lực MSF) là các dầm thép tổ hợp Do điều kiện thi công ngoài biển nên kết cấu này chia làm 3 phần riêng biệt, 2 trong số đó đặt hẳn lên các trụ đỡ còn phần tử thứ 3 chịu lực có đặt các thùng chứa với các chức năng khác nhau cần thiết cho quy trình công nghệ thực hiện trên giàn
+ Móng khối chân đế là các cọc thép đường kính 720×20 mm Cần
đóng tất cả 16 cọc chính và 32 cọc phụ
+ Kết cầu thượng tầng của giàn MSP được thiết kế bởi trung tâm thiết
kế Corall (Liên Xô cũ) gồm những block và module riêng được chia làm 2 tầng và được trang bị những thiết bị công nghệ cần thiết Thành phần của kết cấu thượng tầng gồm có tổ hợp khoan khai thác, năng lượng và khu nhà ở
1.2.2 Giàn nhẹ BK
Giàn nhẹ BK là giàn nhỏ nhẹ không có tháp khoan, không có người ở, công tác khoan sẽ do tàu khoan tự nâng thực hiện Giàn BK có các thiết bị
Trang 8giàn BK sẽ được dẫn bằng đường ống về giàn MSP hoặc giàn công nghệ trung tâm CPP để xử lý
Về mặt kết cấu, phần chân đế giàn BK là kết cấu giàn khung thép không gian có một mặt thẳng đứng, được cấu tạo từ thép ống có đường kính khác nhau Chân đế có 4 ống chính Hệ thống móng cọc gồm 4 cọc chính đường kính 720×20 mm và 8 cọc phụ; thượng tầng có sân bay trực thăng, các
thiết bị công nghệ, máy phát điện
1.2.3 Giàn công nghệ trung tâm CTP-2
- Tổ hợp giàn công nghệ trung tâm gồm có:
+ Giàn công nghệ CTP-2
+ Giàn nhẹ BK2
+ Cầu nối các đường ống và dây dẫn
+ Cơ cấu đuốc với các đường ống tựa trên các Block chân đế
1.2.4 Hệ thống trạm rót dầu không bến UBN
Dầu thô từ các giàn MSP, BK về giàn CPP để xử lý thành dầu thương phẩm sau đó chúng được bơm đến các tàu chở dầu nhờ các trạm rót dầu không bến UBN và các thiết bị chuyên để tiếp nhận dầu
Một vài thiết bị có trên trạm rót dầu không bến UBN:
- Bể trao đổi nhiệt dạng tấm phẳng (dầu - dầu)
- Bể trao đổi nhiệt dạng tấm phẳng (dầu - nước)
- Hệ thống khử nước bằng điện có khối đốt nóng và phân li
- Hệ thống phân li kiểu tháp
- Khối chứa và chuyển hoá sản phẩm (chất khử nhũ và kìm hãm ăn mòn) Ngoài ra trạm còn có các thiết bị đo và kiểm tra cần thiết, hệ thống van
Trang 9áp lực, hệ thống tín hiệu báo hiệu sự cố và phòng cháy đảm bảo vận hành hữu hiệu hệ thống tiếp dầu
Các giải pháp chính trong thiết kế đường ống ngầm:
- Nguyên tắc chính để xác định lưu lượng là cần đảm bảo vận chuyển không ngừng sản phẩm từng giếng khoan với chi phí thấp nhất về vật tư và năng lượng Chi phí vật tư xác định bởi tổng chiều dài đường ống, đường kính ống và chiều dày ống; chi phí năng lượng được xác định bởi áp suất cần thiết
để bơm vận chuyển Để đảm bảo vận chuyển không ngừng cần phải có đường ống dự phòng và hệ thống đường ống khép kín Trong trường hợp cần thiết đường ống dự phòng còn cho phép tăng lưu lượng vận chuyển của hệ thống
- Tất cả các đường ống ngầm được sử dụng với áp suất dưới 100 atm và nhiệt độ dưới 100oC
- Chống ăn mòn cho ống bằng cách sơn phủ lên bề mặt ống lớp sơn phủ epoxy kết hợp với bảo vệ bằng Protector
- Từ yêu cầu kỹ thuật của sản phẩm sau khi đi vào và ra khỏi đường ống ngầm cũng như nhiệt độ thực tế của sản phẩm thì đường ống ngầm nên được bọc cách nhiệt
- Ống đứng của các đường ống đang vận chuyển được chế tạo từ các loại ống dùng để xây phần tuyến Khi đặt ống đứng vào kết cấu để đứng cố định được thì dùng nẹp cứng và nửa cứng
- Việc vận chuyển sản phẩm theo hệ thống đường ống ngầm nhờ áp suất của máy bơm ly tâm (đối với dầu), áp suất bình tách khí (đối với khí) và
áp suất của vỉa (đối với hỗn hợp dầu - khí) Chính vì vậy việc xác định khả năng vận chuyển của tuyến ống giữ vai trò quan trọng
- Các số liệu ban đầu của ống được xác định theo độ nhớt cực đại của nhũ tương, nước dầu hay hỗn hợp khí với khả năng vận chuyển được
- Với hệ thống thu gom vận chuyển dầu đã tách khí, cần thiết phải thiết
Trang 101.2.6 Giàn nén khí trung tâm CKP
CKP là bộ phận cơ bản trong hệ thống vận chuyển khí ở mỏ Bạch Hổ
và đưa khí đồng hành vào bờ
- Vị trí: Công trình đứng tách riêng trong khu vực của giàn công nghệ trung tâm CTP-2 thuộc phía Nam mỏ và có liên quan công nghệ với CTP-2 thông qua giàn ống đứng bằng cầu nối
- Công dụng: Nén khí đồng hành tại mỏ Bạch Hổ đảm bảo lưu lượng,
áp suất khí đưa vào bờ tiêu thụ (12,5 MPa) đến hệ thống gaslift và các nhu cầu cho bản thân Giàn nén khí trung tâm gồm hệ thống nén khí áp lực cao và
- Công dụng: Nén khí đồng hành khu vực bắc mỏ Bạch Hổ đảm bảo việc chuyển khí đến hệ thống gaslift cho sử dụng bản thân và trong trường hợp cần thiết đưa vào bờ
1.3 Công nghệ thu gom vận chuyển dầu khí ở mỏ Bạch Hổ
Mỏ Bạch Hổ nằm ở lô 9 trong bể Cửu Long do XNLD “Vietsovpetro” điều hành, cách thành phố Vũng Tàu 150km về phía Đông Nam và được đưa vào khai thác từ năm 1986 Đây là mỏ dầu lớn nhất tại Việt Nam với tỷ phần khai thác chiếm hơn 3/4 tổng số dầu khai thác từ tất cả các mỏ đang khai thác tại Việt Nam
Ở khu vực phía Bắc của mỏ, dầu được khai thác từ tầng móng, Oligoxen dưới và Mioxen dưới Ở đây, người ta xây dựng các giàn khoan cố định để khoan tối đa 16 giếng bằng kỹ thuật khoan định hướng, giàn đồng thời là trạm thu gom khu vực có nhiệm vụ xử lý chủ yếu là tách pha
Sinh viên: Nguyễn Văn Cường A Lớp: Thiết bị Dầu khí K51
Trang 11Hình 1.2 Mỏ Bạch Hổ - XNLD Vietsovpetro
Ngoài các thiết bị tách chuyên dụng như đo, gọi dòng, gaslift sử dụng cho các giếng riêng biệt theo từng thời điểm, còn lại quá trình tách tổng được thực hiện theo hai bậc, với áp suất bậc I từ 14 ÷ 16 kG/cm2 và bậc II với áp suất 1,5 ÷ 3 kG/cm2 Từ đây, dầu với hàm lượng nước khoảng 15% được bơm
về tàu chứa (kho nổi chứa - xuất dầu) để xử lý; còn khí được chuyển theo đường ống riêng về giàn nén khí trung tâm Sơ đồ thu gom dầu trên các giàn
cố định làm việc theo nguyên tắc hở Ở khu vực trung tâm người ta xây dựng các giàn nhẹ Sản phẩm khai thác từ giàn nhẹ ở dạng hỗn hợp dầu khí hay dầu bão hòa khí được vận chuyển về giàn công nghệ trung tâm số 2 (CTP-2), số 3 (CTP-3) để tách khí và tách nước triệt để Các giàn nhẹ thường được xem là các cụm đầu giếng, việc thu gom được thực hiện theo nguyên tắc kín, khí chỉ
Trang 12Chi tiết về quá trình thu gom sản phẩm khai thác ở mỏ Bạch Hổ được tiến hành như sau: Sản phẩm khai thác trên giàn BK-1, BK-2 và BK-3 được đưa về CTP-2 để tách khí và tách nước Sau đó dầu đã được tách khí và nước được bơm đến kho nổi chứa - xuất dầu số 1 (UBN-1) “Ba Vì”, một phần theo chu kỳ được chuyển đi UBN-4 “Vietsovpetro- 01” Sản phẩm từ BK- 4,5,6,8
và 9 theo các đường ống bọc cách nhiệt được vận chuyển về CTP-3 Sau khi được tách khí và nước, dầu được bơm đi UBN-4 và UBN-3 “Chí Linh” Vào cuối năm 2003, mỏ Bạch Hổ đã tiến hành thử nghiệm công nghiệp vận chuyển sản phẩm không dùng máy bơm từ giàn cố định MSP-7 về MSP-5 và
từ MSP-6 về MSP-4, sau đó hỗn hợp dầu bão hòa khí được tách khí triệt để và bơm về UBN
Việc thu gom sản phẩm các giàn MSP phía bắc mỏ Bạch Hổ được thực hiện như sau: Trước khi đưa đường ống bọc cách nhiệt MSP-4→ MSP-9 vào làm việc, dầu từ các MSP phía Bắc (MSP-3,4,5,6,7,8) được bơm theo tuyến đường ống MSP-7→ MSP-5→ MSP-3→ MSP-4→ MSP-8 qua MSP-1, BK-2
và giàn ống đứng RB sang UBN-4 Sau khi đưa tuyến đường ống bọc cách nhiệt từ giàn MSP-4→ MSP-9 vào làm việc, việc thu gom dầu trong nội
mỏ có sự thay đổi Hỗn hợp dầu bão hòa khí được vận chuyển từ giàn MSP-6→ MSP-4, sau khi tách khí cùng với sản phẩm của giàn MSP-4 được bơm sang MSP-9 theo tuyến ống MSP-4→ MSP-9 Cùng đến MSP-9 còn có sản phẩm đã tách khí của MSP-3,5,7 và MSP-10,11 Từ MSP-9 dòng sản phẩm sẽ đi theo tuyến ống MSP-9→ BK-3→ CTP-2 sau đó được đưa đến UBN-1 Sản phẩm của MSP-1 và BK-7 được tách khí trên giàn MSP-1 sau đó được bơm trực tiếp đến UBN-1 Vào cuối tháng 4 năm 2006, sau khi xảy ra
sự cố vỡ đường ống dẫn dầu từ MSP-3→ MSP-4, việc thu gom dầu trong khu vực nội mỏ đã có sự thay đổi Hỗn hợp dầu bão hòa khí từ MSP-6 được vận chuyển sang MSP-4 để tách khí cùng với sản phẩm trên MSP-4, sau đó được bơm sang MSP-9 theo tuyến đường ống MSP-4→ MSP-9 Hỗn hợp dầu bão hòa khí từ giàn MSP-7 được vận chuyển sang MSP-5 để tách khí Sản phẩm
Trang 13của giàn MSP-5,7 sau khi tách khí cùng với sản phẩm của giàn MSP-3 được bơm qua MSP-9 theo tuyến đường ống MSP-5→ MSP-10→ MSP-9, sau đó cùng với sản phẩm đã tách khí của MSP-9,10,11,4 và MSP-6 được vận chuyển đến CTP-2 Sản phẩm của MSP-8 sau khi tách khí được bơm về MSP-1, cùng với sản phẩm của MSP-1 chuyển sang CTP-3 để xử lý tiếp theo bơm sang UBN-4
Giàn CTP-2 và CTP-3 thu nhận sản phẩm đến từ các BK và dầu đã tách khí đến từ các MSP để tách khí và nước sơ bộ trong bình tách ba pha, sau đó chất lỏng được đưa qua bình tách nước sử dụng điện trường cao để tách nước triệt để Dầu thương phẩm từ CTP-2 và CTP-3 được bơm đi UBN-4, UBN-1, trong trường hợp cần thiết có thể bơm sang UBN-3
Tại các tàu chứa, dầu tiếp tục được xử lý để tách khí, tách nước Trên tất
cả các UBN công nghệ xử lý dầu đến chất lượng thương phẩm được thực hiện bằng phương pháp lắng đọng trong bể công nghệ ở nhiệt độ 50 ÷ 60oC Ngoài ra, trên UBN-3 còn lắp đặt thêm thiết bị tách nước sử dụng điện trường cao Dầu được xử lý nước tới hàm lượng 0,5 %, nước sau khi xử lý sẽ xả ra biển
Mỏ Bạch Hổ hiện có 02 giàn nén khí: giàn nén nhỏ (MKS) ở cạnh MSP-4 và giàn nén lớn (CKP) bên cạnh CTP-2 Khí cao áp từ các giàn MSP phía Bắc được đưa về MKS, còn CKP thu nhận khí cao áp của MSP-1,8,9,10
và MSP-11, BK-3,4,5,6,8, CTP-2 và CTP-3 Trên các MSP, khí bậc một đã được thu gom, còn khí bậc tách thứ hai (trong bình 100 m3) hiện đốt bỏ trên fakel của MSP Khí bậc tách 1 trên CTP-2 và CTP-3 được thu gom thẳng về CKP mà không sử dụng máy nén khí Trên CKP và MKS, khí được xử lý và nén lên áp suất khoảng 120 at, sau đó theo đường ống ngầm được vận chuyển
về nhà máy chế biến khí trên bờ
CHƯƠNG 2 CÁC BƯỚC CƠ BẢN XÂY DỰNG MỘT TUYẾN ỐNG
Trang 14nói chung được sử dụng rộng rãi ở nhiều phạm vi khác nhau Nó có tác dụng quan trọng trong việc vận chuyển và cất giữ các sản phẩm công nghiệp mà thiếu nó thì quá trình tự động hoá của một số ngành công nghiệp sẽ gặp nhiều khó khăn, thậm chí không thực hiện được Vì vậy, việc xây dựng một tuyến ống phải được tuân thủ nghiêm ngặt theo các bước cơ bản sau:
- Công tác khảo sát: khảo sát chiều dài, vật liệu ; khảo sát địa hình, địa mạo; khảo sát nền móng (ổn định đường ống)
- Tính toán công nghệ: tính toán bền, nhiệt, thủy lực
- Xây lắp, thi công tuyến ống: ở đất liền, trên biển
2.1 Công tác khảo sát
Công việc đầu tiên để tiến hành lắp đặt hệ thống đường ống là khảo sát địa hình thực tế khu vực tuyến ống sẽ đi qua, làm cơ sở cho việc thiết kế tuyến ống và lắp đặt sau này Những vấn đề quan trọng cần phải quan tâm là:
- Việc lựa chọn tuyến ống là công việc then chốt trong quá trình xây lắp đường ống trên đất liền và cần xem xét toàn diện các vấn đề liên quan đến xây lắp trước khi hoàn thành tuyến ống Thông thường sau khi đã xác định tuyến ống sơ bộ bằng các bản đồ có sẵn, các kỹ sư phải khảo sát dọc tuyến ống để thay đổi tuyến ống sơ bộ bằng các bản đồ có sẵn, để thay đổi tuyến ống cho phù hợp với các vị trí gây khó khăn cho quá trình lắp ống Trong giai đoạn này người kỹ sư có thể lựa chọn các tuyến ống thay thế tại các đoạn trong tuyến ống đã được xác định trước đó Trong điều kiện hệ thống giao thông tốt, việc vận chuyển thiết bị ra vào để lắp đặt tuyến ống trở nên dễ dàng
Tuy nhiên, nếu điều kiện giao thông đường bộ và đường sắt yếu kém, các kỹ sư cần phải giải quyết vấn đề vận chuyển một số lượng lớn ống đến các vị trí dọc theo tuyến ống Nếu các đường để vận chuyển không có sẵn thì phải xem xét khả năng xây dựng các đường mới Do vậy thường tuyến ống được chọn sao cho nằm dọc theo hệ thống đường bộ và đường sắt có sẵn Quá trình khảo sát để lựa chọn tuyến ống chính xác đi kèm với quá trình đóng các trụ bê tông đánh dấu các điểm giao nhau của tuyến ống Thường thì cứ khoảng 250 m sẽ được đóng một cọc bê tông để đánh dấu tuyến ống
- Vật liệu chế tạo ống: chúng ta phải xác định được ngoại lực tác động lên đường ống khi làm việc rồi chọn vật liệu và bề dày thích hợp để ống làm việc an toàn
Trang 15- Tổn thất áp suất trên tuyến: đây là vấn đề quan trọng nhất, để đảm bảo các thông số vận hành Vấn đề này liên quan đến việc lựa chọn đường kính ống, lựa chọn những góc ngoặt thay đổi hướng của tuyến ống, lựa chọn các thiết bị và phụ kiện của đường ống phải thích hợp.
- Công việc lắp đặt phải thuận tiện: nơi tuyến ống lắp đặt thuận tiện khi vận chuyển tập kết vật tư ống cùng các phụ kiện cũng như phương tiện cơ giới, sử dụng máy móc phục vụ công tác lắp đặt
- Tuổi thọ lâu dài của đường ống thể hiện ở chất lượng thép vật liệu làm ống, độ bền vững của các mối hàn ống, phương pháp bảo vệ ăn mòn đường ống, thiết bị cũng như việc bảo vệ và bảo dưỡng sau này
- Đảm bảo tính ổn định của đường ống, thể hiện ở việc tính toán khối lượng, số lượng các gối đỡ, khối bê tông gia tải (đối với đường ống trên bờ trong các trạm phân phối khí) Để tránh hiện tượng giãn nở vi nhiệt
- Yêu cầu về môi trường: nhằm mục đích đảm bảo sức khoẻ cho con người, tuổi thọ của thiết bị và bảo vệ môi trường trong suốt quá trình xây dựng và vận hành tuyến ống Luật môi trường Việt Nam được áp dụng trong phần lớn các trường hợp Luật môi trường Quốc tế sẽ được sử dụng chỉ khi luật môi trường Việt Nam chưa đầy đủ hoặc không thích hợp
2.2 Tính toán công nghệ
Để hệ thống đi vào sử dụng, đáp ứng những thông số đặt ra, chúng ta phải tính toán thật chi tiết.Việc tính toán công nghệ khi thiết kế, thi công đường ống bao gồm:
- Tính toán bền,
- Tính toán nhiệt,
- Tính toán thủy lực
2.2.1 Tính toán bền cho đường ống
Chúng ta phải xác định được ngoại lực tác động lên đường ống khi làm việc rồi chọn vật liệu và bề dày thích hợp để ống làm việc an toàn
* Vật liệu chế tạo ống
Trong công nghiệp dầu khí, theo vật liệu ta chia ra ống cứng và ống mềm Ống cứng được chế tạo từ thép Cacbon, thép không gỉ, thép hợp kim Ngoài ra, tùy theo yêu cầu đặc biệt ta có thể dùng các vật liệu khác như gang,
Trang 16kim loại màu: đồng, nhôm, titan ; ống phi kim: bê tông, bê tông cốt thép, thủy tinh, sứ gốm; ống mềm chế tạo từ chất dẻo, cao su, sợi kim loại.
Ống thép chiếm tỷ lệ cao nhất, chúng có yêu cầu nhất định về cơ tính
và về thành phần hóa học, nhất là hàm lượng lưu huỳnh và phốt pho cùng với các tạp chất khác Thông thường người ta sử dụng thép hợp kim thấp, chịu gia công nhiệt và có thể được thường hóa
Đối với các môi trường ăn mòn, ta phải sử dụng loại thép chịu ăn mòn cao và thành phần hóa học cũng đòi hỏi khắt khe hơn
Theo tiêu chuẩn API, các loại thép thông thường mác 40÷110 có giới
hạn chảy cực tiểu 28÷77 kG/mm2 và cực đại từ 56÷98 kG/mm2 và giới hạn bền kéo tối thiểu từ 42÷88 kG/mm2 Hàm lượng phốt pho cực đại từ 0,04÷0,11%, lưu huỳnh từ 0,06÷0,065%.
Thép có độ bền cao được chế tạo ở mức độ ít hơn và không quy chuẩn,
có giới hạn chảy thấp nhất 67÷120 kG/mm2 và cao nhất 77÷126 kG/mm2, giới hạn bền kéo tối thiểu từ 77÷134 kG/mm2, có hàm lượng C < 0,45%;
Mn 1,3÷1,7%; Si 0,15÷0,3%, được tôi, ram và thường hóa Các thép bền cao thường giòn, không phù hợp với điều kiện khí hậu nóng lạnh đột ngột và khó gia công cắt gọt Với thép chịu ăn mòn, thành phần cực đại các nguyên tố như bảng sau:
Bảng 2.1 Thành phần phần trăm của thép chịu mòn
Để chế tạo ống, người ta dùng công nghệ chủ yếu là cán và hàn, cá biệt
là có thể đúc, ống thép cán trực tiếp thường có chất lượng không cao do bề dày không đều và có độ ôval lớn Ống hàn thường chế tạo từ thép tấm theo kỹ thuật hàn thẳng, để có chất lượng cao hơn thường dùng kỹ thuật hàn xoắn ốc
Trong các hệ thống phân phối khí, người ta thường dùng các vật liệu như sắt đúc, thép, polyetylen (PE), polyamit và đồng Sắt đúc không dùng cho ống có áp lực trên 200 kPa; ống thép dùng cho trường hợp áp lực rất cao; ống polyetylen càng ngày càng được phổ cập nhất là hệ thống phân phối, chế
Trang 17tạo theo công nghệ polyme hóa etylen, có tỷ trọng từ 0,91÷0,96 có thể xem là
một vật liệu nhớt - dẻo Có 2 loại phổ biến cho ống dẫn khí là PE-80 (tới
áp suất 420 kPa) và PE-100 (tới áp suất 700 kPa) So với ống thép thì ống polyetylen bền với hóa chất, không bị ăn mòn, dễ vận chuyển và có tính kinh
tế, nhưng loại ống này không chịu được áp lực cao, khi nhiệt độ tăng thì độ bền giảm Ống polyamit có tính chất tương tự như ống PE nhưng có giới hạn chảy, giới hạn bền, độ cứng và mật độ cao hơn, việc ghép nối không dùng phương pháp hàn mà chỉ cán Đồng là một loại vật liệu tuổi thọ cao, dễ sử dụng song rất đắt tiền nên chỉ dùng cho các mạng phân phối trong nhà, không dùng cho các ống dẫn chính
Ống mềm trong các hệ thống khai thác trên biển có 2 loại chính, khác nhau về mật độ phù hợp với hai điều kiện nổi trên mặt nước và chìm xuống đáy biển Đường ống mềm có hai phần là các đầu nối bằng kim loại và phần thân ống, đầu nối liên kết với thân nhờ keo dán chuyên dụng Mặt cắt của thân ống mềm cứng từ ngoài vào trong thường có các lớp: lớp vỏ, lớp vải, lớp kim loại - cao su, lớp sợi, lớp cao su, lớp dây kim loại, lớp dây sợi thứ hai và lớp kim loại - cao su
Khi làm việc, ống sẽ chịu kéo nén do trọng lượng bản thân, do áp suất bơm, chịu áp suất của chất lưu và các ống ngầm còn chịu áp suất ngoài do nước biển, đất đá, các ngoại lực do biến đổi nhiệt độ, các mạch đập áp suất Tuy nhiên, ống dẫn được xem như là ống nằm ngang nên tải trọng kéo nén do trọng lượng bản thân có thể bỏ qua
Sau đây là bảng đặc tính ống thép do Nga sản xuất:
Trang 18Bảng 2.2 Đặc tính ống thép do Nga sản xuất
chuẩn
Đường kính ngoài (mm)
Bề dày (mm)
Chiều dài (m)
Trang 19Là tải trọng quan trọng nhất đối với ống vận chuyển Để tính ứng suất
do áp suất trong gây ra, người ta thường dùng công thức Barlow cho tất cả các loại vật liệu và các ống có quy chuẩn khác nhau:
D x
875,072,
(2-2)Hoặc bề dày an toàn của ống phải là:
0
875 , 0 72 , 0 2
.
σ
δ
x x
P D
D D P P
δ δ σ
2 1
2
Trang 20+ Áp suất làm việc: là giá trị lớn nhất để làm việc lâu dài ở nhiệt độ
thực tế của môi trường được vận chuyển Với các ống thép, phạm vi này trong khoảng 0 ÷2500C, ống đồng (Cu), đồng thau : 0 ÷1200C
+ Áp suất thử: là áp suất thử nghiệm thủy lực bằng nước về độ bền, độ
kín khi nhiệt độ không vượt quá 1000C
* Tải trọng do áp suất ngoài ống
Tải trọng do áp suất bên ngoài ống có thể làm méo ống Áp suất này ít gây nguy hiểm cho ống dẫn, trừ trường hợp lắp ngầm sâu và trong ống rỗng (không có áp suất bên trong) Giá trị áp suất bóp méo được tính bằng lý thuyết
và thực nghiệm, các đường ống có độ oval nhất định, bề dày không đều Công thức lý thuyết quen thuộc do Sarkixốp đề xuất đã lưu ý đến hai đặc điểm trên:
b a e
Trang 21hạn chảy của thép chiếm vai trò quan trọng, với De/δ lớn sẽ thuộc vùng đàn hồi, và lúc đó kích thước hình học giữ vai trò chính Thực ra, không tồn tại một quan điểm chính xác về sự thay đổi giữa hai vùng mà sự chuyển tiếp xảy
ra từng bước, nghĩa là có sự chuyển tiếp giữa hai vùng, các công thức phổ biến của API như sau:
75 ,
δ δ
e e d
D D
2.2.2 Tính toán nhiệt
Khi vận chuyển trong đường ống, nhiệt độ của chất truyền tải được truyền từ ống ra môi trường khí quyển nên nhiệt độ chất tải sẽ giảm dần theo khoảng cách
Với khí, nhiệt độ giảm sẽ dẫn tới sự ngưng tụ các thành phần lỏng hoặc hình thành các chất ở thể rắn.Việc tính toán nhiệt là xác định sự thay đổi nhiệt độ dọc theo tuyến ống để xác định vị trí có thể xảy ra hiện tượng độ nhớt chất lỏng vượt quá giới hạn thiết kế hoặc chất khí bắt đầu ngưng tụ Từ
đó, chúng ta có các giải pháp phù hợp, chủ yếu là:
- Ngăn cản hoặc giảm thiểu sự truyền nhiệt ra môi trường xung quanh,tức là giải quyết bài toán về bảo ôn tuyến ống
Trang 22- Dùng các giải pháp vật lý và hóa học để hạ thấp hoặc ngăn chặn sự ngưng tụ chất khí.
Sự hiểu biết về quy luật thay đổi nhiệt độ theo đường ống là cần thiết cho các nhà thiết kế cũng như vận hành Viện sỹ Sukhôp là một trong những người đầu tiên nghiên cứu về quy luật này Ông đã tiến hành tính toán tổn thất nhiệt cho đường ống dẫn một pha ở chế độ ổn định cho trường hợp chung
nhất Trên tuyến ống tại khoảng x, ta khảo sát một phân tố dx (hình 2.1) và
xác định sự cân bằng nhiệt trong phân tố Tổn hao nhiệt của phân tố trong một đơn vị thời gian ra môi trường là:
Trong đó:
t - Nhiệt độ chất lưu trong phân tố, 0C
t0 - Nhiệt độ môi trường, 0C
πDe.dx - bề mặt của phân tố
K - Hệ số truyền nhiệt từ của chất lưu ra môi trường, wat/m2.0C
Hệ số truyền nhiệt K, thực tế khi chế độ chảy ổn định vẫn thay đổi theo chiều dài nhưng không đáng kể (< 3%) nên có thể xem là hằng số
Mặt khác, khi chảy qua phân tố dx, nhiệt độ sẽ giảm đi dt.0C do vậy tổn hao nhiệt sẽ là:
Trang 23Công thức (2-15) được gọi là công thức Sukhop
Hình 2.1 Sự thay đổi nhiệt độ, độ nhớt theo chiều dài
Khi xét đoán một cách chi li, ta lưu ý đến tổn hao masat dọc theo tuyến ống sẽ biến thành nhiệt và nhiệt này bổ sung cho chất lưu
Do đó viện sỹ Laybenzon về sau đã bổ sung thêm vào công thức Sukhop bằng một hệ số b: t = t0 + b + (t1 - t0 - b)c-al (2-15a)
b =
e
G.i D K.E
ρ
Trong đó:
i - Độ dốc thủy lực trung bình, tổn hao thủy lực trên một đơn vị chiều dài
E - Đương lượng cơ học của nhiệt
∆t = b(1 - eaL)
Ở đầu tuyến ống L = 0, ∆t = 0
Do dòng khí chứa các thành phần nặng, quá trình làm lạnh sẽ có một số khác biệt từ nhiệt độ đầu ống t1 đến với vị trí có nhiệt độ kết tinh của các thành phần nặng vẫn tuân theo quy luật (2-15a) Trong phần đường ống xảy ra kết tinh, tốc độ làm lạnh chậm lại do được bổ sung nhiệt tách ra từ quá trình kết tinh, do đó ở phần này sự biến thiên nhiệt độ theo khoảng cách sẽ tuân theo công thức Tremrhink
t = t0 + K 0
C
Trang 24tk - Nhiệt độ kết tinh của các thành phần nặng
l - Khoảng cách từ đầu tuyến (t1) đến vị trí kết tinh (tk), xác định theo công thức (2-15)
ε - Số lượng các thành phần nặng tách ra khi tăng nhiệt độ từ tk đến tx
x - Khoảng cách tính từ đầu tuyến, x > 1
x - Nhiệt ẩn của quá trình kết tinh
Để tính nhiệt độ dòng chảy tại điểm bất kỳ trong đường ống vận chuyển
Hình 2.2 Đoạn ống tính toán nhiệt dòng chảy.
TL = TS + (T1 - TS)exp(-L/A) (2-16)Trong đó:
TS - Nhiệt độ môi trường xung quanh
T1 - Nhiệt độ tại điểm vào (L = 0)
TL - Nhiệt độ tại vị trí L
L - Khoảng cách nơi tính so với điểm đầu chất khí vào
A - Khoảng cách hồi phục nhiệt
Trang 25W - Tổng lưu lượng khối lượng
ρL - Khối lượng riêng pha lỏng tại điều kiện tiêu chuẩn, 1bm/ft3
γg - Tỷ trọng khi (γair = 1)
D - Đường kính trong của ống
U - Hệ số truyền nhiệt
Phương trình sai số khoảng 5%
Thực tế, một đường ống có bảo ôn thường bao gồm các lớp: ống thép, lớp chống ăn mòn, lớp cách nhiệt và lớp bảo vệ Bài toán nhiệt phải tính toán chi tiết: Truyền từ đầu ống và từ ống lần lượt qua các lớp được đặc trưng bởi
hệ số truyền nhiệt Ki và bề dày khác nhau
2.2.3 Tính toán thủy lực và các phương pháp tính
Chiếm khối lượng lớn khi thiết kế các tuyến ống mới cũng như khi kiểm tra, sửa chữa các tuyến ống sẵn có cho phù hợp với yêu cầu cụ thể Nhiệm vụ của tính toán là phải xác định một trong các thông số: Khả năng vận chuyển Q, áp suất đầu hoặc cuối tuyến, đường kính ống D, hoặc cả hai thông số P và D Quan hệ giữa P và D, P = f(Q) được gọi là đặc tính của tuyến ống Các kết quả tính toán phụ thuộc vào sơ đồ thủy lực, tính chất vật lý của chất chuyển tải
Căn cứ vào sơ đồ thủy lực, người ta phân chia ra ống đơn giản chỉ bao gồm một cấp đường kính và không phân nhánh, còn ống phức tạp là tuyến có đường kính thay đổi hoặc có phân nhánh Loại ống đơn giản lại được phân chia ra ống dài và ống ngắn Nguyên tắc phân chia căn cứ vào tỷ lệ giữa tổn hao cục bộ và tổn hao theo chiều dài Thông thường khi tổn hao cục bộ bé
Trang 26ống phức tạp có thể được phân chia ra nhiều đoạn đơn giản cho nên việc tính toán cho ống đơn giản là cơ bản.
Căn cứ vào tính chất chất lưu người ta phân chia ra: Khí khô (1 pha khí), khí ẩm (2 pha lỏng - khí) Mỗi một mô hình sẽ được lựa chọn cho phù hợp với điều kiện cụ thể
2.2.3.1 Tính toán đường ống dẫn 1 pha khí
+ Lưu lượng khí trong ống:
Với điều kiện đẳng nhiệt, phương trình chuyển động Bernouli viết cho cột áp:
dP/ρg - Thế năng của áp suất khí
νdν/2g - Tỷ động năng của khí chuyển động, qua tính toán do giá trị bé nên bỏ qua
dz - Năng lượng vị trí, ta thường xem ống nằm ngang nghĩa là dz = 0
.
− = λLấy tích phân cho đoạn ống dài L, áp suất đầu vào P1, đầu ra P2, thay S =
Trang 27Giải ra tốc độ khối: G = 2 ( 2 2)
P P D D
4 ZRTL
− π
Từ phương trình trạng thái của khí và không khí với hằng số Ra
a a
R R
−
(2-28)Một số công thức tương đối tổng hợp để tính toán là:
λ = 67.102
0.2 3
2K 158
Trang 28Ở chế độ thủy lực phẳng, λ không phụ thuộc độ nhám ta cho K3 = 0 Và
ở chế độ ma sát bình phương, λ không phụ thuộc Re nên xem Re = 0 để có các công thức đơn giản hơn
Với một hỗn hợp khí nhiều cấu tử, thì ta tính giá trị hệ số Raynold trung bình:
ρ0 - Mật độ khí ở điều kiện bình thường
P0, P - Áp suất ở điều kiện thường và trung bình trong ống, Pa
T0, T - Nhiệt độ ở điều kiện thường 2370K và nhiệt độ trung bình trên đường ống
2.2.3.2 Sự thay đổi áp suất trên đường ống.
Do tiêu hao năng lượng để duy trì chuyển động nên áp suất sẽ giảm liên tục Để xác định giá trị tại một bất kỳ có tọa độ x trên đường ống đơn A-C
(hình 2.3) có đường kính D áp dụng công thức (2-26) để tính giá trị Q vào
Trang 29P 2
2.2.3.3 Tính toán đường ống áp suất cao
* Tuyến ống có đường kính không thay đổi
Trên đó có các nhánh gom (nạp) phân phối (chia) như (hình 2.4).
Tuyến ống được phân nhánh với các khoảng cách l1, l2, ln với tổng chiều dài
L, từ các nhánh vào ra ± qi, do đó phải vận chuyển các giá trị Qi Từ công thức (2-7) và (2-28) với T0 = 2880K, p0 = 1,02 at, ta có:
Trang 30* Tuyến ống có đường kính thay đổi.
Khi tuyến ống dài, số nhánh thu (nạp) hoặc cấp (chia) không nhiều thì việc vận dụng một cấp đường kính là không kinh tế, mỗi đoạn ống giữa hai trạc ba (vào hoặc ra) sẽ được tính toán như một ống riêng biệt theo gradient
áp suất (giảm áp trên một đơn vị chiều dài) là một hằng số
Trên toàn tuyến: ∆P = P 1 P n 1
L(P1 - Pn+1)Trên mỗi đoạn, ta biết li, Qi, Qi (đầu vào) và tính Pi+1 (đầu ra) để tính toán đường kính, ta sử dụng công thức lưu lượng; chẳng hạn ta dùng công thức (2-34);
Trang 31D =
3/16 3/8
i
Z .T.l Q
.x 395.10 P P+
2.2.3.4 Tính toán đường kính áp suất thấp
Với ống áp suất thấp và ngắn (bé hơn 10 km) có thể dùng công thức được đơn giản hóa, coi áp suất trong tuyến là giá trị trung bình số học
P P P
−
Do giá trị áp suất thấp ta cũng có thể xem Z ≈ l
Với các ống thu gom bằng hút chân không, ta xem P = 1at, công thức (2-38) trở thành:
Đường ống thu gom ở mỗi đoạn, đường kính có thể thay đổi hoặc không thay đổi để với áp suất thấp hoặc hút chân không, trên mỗi đoạn có lưu lượng Qi và chiều dài l, việc tính toán tương tự như ống áp suất cao, sử dụng các giá trị lưu lượng phù hợp theo các công thức từ (2-38) đến (2-40)
* Ống nối tiếp (hình 2.5)
Trong một số trường hợp, để thu gom hoặc cung cấp khí nén, người ta dùng ống nhiều đoạn có đường kính khác nhau để vận chuyển Q Với đoạn thứ i, chiều li, đường kính Di áp suất đầu vào Pi và đầu ra Pi+1