1. Trang chủ
  2. » Công Nghệ Thông Tin

sliek môn máy tự động chương 4 properties of regular languages

30 196 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 105,89 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Chapter 4: Properties of Regular LanguagesOctober 11, 2009... Theorem 4.3 - Linz ’s bookTheorem The family of regular languages is closed under homomorphism.. IfLis regular, then so ishL

Trang 1

Chapter 4: Properties of Regular Languages

October 11, 2009

Trang 2

Objectives

Trang 3

Theorem 4.1 - Linz ’s book

Theorem

concatenation, complement, and star-closure

IfL1 andL2 are regular, then so areL1∩ L2,L1∪ L2 ,L1L2 ,L1,L∗1

Trang 4

Proof of Theorem 4.1 - Linz ’s book

By theorem 3.2 - Linz ’s book:

L1 = L(r1) and L2= L(r2)

L(r1+ r2) = L(r1) ∪ L(r2)

L(r1.r2) = L(r1)L(r2)

L(r1∗) = (L(r1))∗

Trang 5

Proof of Theorem 4.1 - Linz ’s book

M = (Q,P, δ, q0, F ) accepts L1

M = (Q,P, δ, q0, Q − F ) accepts L1

Trang 6

Proof of Theorem 4.1 - Linz ’s book

Trang 7

Example 4.1

L2 = {anb | n ≥ 0}

Trang 9

a

a

b

bb

Trang 10

Theorem 4.2 - Linz ’s book

Theorem

IfLis regular, then so isLR

Proof: ???

Trang 13

Definition

h(L) = {h(w ) : w ∈ L}

Trang 15

Definition

symbol of r

Trang 17

Theorem 4.3 - Linz ’s book

Theorem

The family of regular languages is closed under homomorphism

IfLis regular, then so ish(L)

Trang 18

Proof of Theorem 4.3 - Linz ’s book

Let L(r) = L for some regular expression r

h(L(r)) = L(h(r))

Trang 19

Right Quotient

Definition

quotientof L1 with L2 is defined as:

L1/L2= {x | xy ∈ L1∧ y ∈ L2}

Trang 20

Example 4.5

L1/L2 = {anbm| n ≥ 1, m ≥ 0}

Trang 23

Theorem 4.4 - Linz ’s book

Theorem

The family of regular languages is closed under right quotient

IfL1 andL2 are regular, then so isL1/L2

Trang 24

Example 4.6

L1 = L(a∗baa∗)

L2 = L(ab∗)

L1/L2 =?

Trang 28

Questions about RL

Problem (Theorem 4.5 - Linz ’s book)

Problem (Theorem 4.6 - Linz ’s book)

Is there an algorithm to determine whether or not a regularlanguage isempty,finite, or infinite?

Problem (Theorem 4.7 - Linz ’s book)

Problem (Theorem 4.8 - Linz ’s book)

Is there an algorithm to determine whether or not a language is

regular?

Trang 29

Theorem 4.8 - Linz ’s book

Theorem (Pumping Lemma)

positive integer m such that any w ∈ L with |w | ≥ m can be

Trang 30

Exercises: 2, 4, 6, 8, 9, 11, 18, 22 of Section 4.1 - Linzs book

Exercises: 1, 2, 3, 5, 9 of Section 4.2 - Linzs book

Exercises: 3, 4, 5, 6, 8, 10, 12 of Section 4.3 - Linzs book

Ngày đăng: 23/10/2014, 17:47

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w