Chlorinefree extraction of cellulose from rice husk and whisker isolation Chlorinefree extraction of cellulose from rice husk and whisker isolationChlorinefree extraction of cellulose from rice husk and whisker isolationChlorinefree extraction of cellulose from rice husk and whisker isolationChlorinefree extraction of cellulose from rice husk and whisker isolationChlorinefree extraction of cellulose from rice husk and whisker isolationChlorinefree extraction of cellulose from rice husk and whisker isolationChlorinefree extraction of cellulose from rice husk and whisker isolation
Trang 1j our na l h o me p ag e : w w w e l s e v i e r c o m / l o c a t e / c a r b p o l
Simone M.L Rosa, Noor Rehman, Maria Inez G de Miranda, Sônia M.B Nachtigall, Clara I.D Bica∗
Chemistry Institute, Federal University of Rio Grande do Sul, PO Box 15003, ZIP 91501-970, Porto Alegre, RS, Brazil
a r t i c l e i n f o
Article history:
Received 13 May 2011
Received in revised form 1 August 2011
Accepted 24 August 2011
Available online 31 August 2011
Keywords:
Cellulose whiskers
Rice husk
Biomaterials
Microscopy
Peroxide bleaching
Thermal analysis
a b s t r a c t
Thisworkreportstheisolationofcellulosewhiskersfromricehusk(RH)bymeansofan environ-mentalfriendlyprocessforcelluloseextractionandbleaching.Themultistepprocessbeginswiththe removalofpectin,cutin,waxesandotherextractivesfromricehusk,thenanalkalinetreatmentfor theremovalofhemicellulosesandlignin, andatwo-stepbleachingwithhydrogen peroxide/tetra-acetylethylenediamine(TAED),followedbyamixtureofaceticandnitricacids,forfurtherdelignification
ofthecellulosepulp.Thetechniquesofinfraredabsorptionspectroscopy(ATR-FTIR),scanning elec-tronmicroscopy(SEM),thermogravimetricanalysis(TGA),modulateddifferentialscanningcalorimetry (MDSC)andX-raydiffraction(XRD)showedthattheoverallprocessisadequatetoobtaincellulosewith highpurityandcrystallinity.Thiscellulosewassubmittedtosulfuricacidhydrolysiswiththeaimto iso-latethewhiskers.Theyshowedthetypicalelongatedrod-likeaspectasrevealedbytransmissionelectron microscopy(TEM)andatomicforcemicroscopy(AFM)
© 2011 Elsevier Ltd All rights reserved
1 Introduction
Ricehusk (RH)isoneofthemajoragriculturalresidues
gen-eratedasa byproductduringtherice millingprocess.TheFood
andAgricultureOrganizationoftheUnitedNations(FAO)forecasts
thattheglobalriceproductionstandsataround466milliontonnes
in2010/2011(FAO,2010).About23%ofthis amountconsistsof
RH(Chandrasekhar,Satyanarayana,Pramada,Raghavan,&Gupta,
2003).TheBrazilianriceproductionhasbeenintheorderof12
mil-liontonne/yearandRioGrandedoSul(thesouthernmoststateof
Brazil)isresponsiblefor60%ofthisproduction(IBGE,2010).Most
oftheRHproducediseitherusedasabeddingmaterialforanimals
anddiscardedinlandfillingsorsimplyburnedinthefields
lead-ingtoairandsoilpollution.Theexpressivecontentofabout20%
silicainRHand,afterburning,morethan90%silicainRHashhave
stimulatedextensiveresearchwhichsuggestedthepotentialuse
ofRHanditsashassourcesofinorganicchemicals(Chandrasekhar
etal.,2003).InthepresentworkweproposetheuseofRHasanew
sourceforobtainingcellulosewhiskersandweemployatotally
chlorine-freetechnique(TCF)toextractandbleachcellulosefrom
RH.Theisolationofhighlypurecellulosefromwheatstraw(Sun,
Sun,Su,&Sun,2004)andbarleystraw(Sun,Xu,Sun,Xiao,&Sun,
2005)usingtotallychlorine-freetechnologieshasbeenaddressed
inthescientificliteraturebutnotyetfromricehusk
Itiswellknownthatthemaincomponentsofplantfibersare
cellulose,hemicellulosesandlignin.Cellulose,whichawardsthe
∗ Corresponding author Tel.: +55 51 3308 7236; fax: +55 51 3308 7304.
E-mail address: claraism@iq.ufrgs.br (C.I.D Bica).
mechanicalpropertiesofthesematerials,isorderedin microfib-rils enclosed by theother two components,hemicellulose and lignin(Morán,Alvarez,Cyras,&Vazquez,2008).Celluloseisthe most ubiquitous and abundant natural polymer onthe planet, given its presence in plants and its widespread usefor ropes, sails,paper,timberforhousingandmanyotherapplications.By far,the most commerciallyexploited natural resource contain-ingcelluloseiswood(Eichhornetal.,2010)butcellulose isthe main component of severalotherwell employednatural fibers suchascotton,flax,hemp,juteandsisal(Moránetal.,2008).It
isexpectedthatthesupplyofwoodatareasonablepricewillbe insufficientinthefutureand,apartfromthenaturalfibers men-tionedabove,agriculturalbyproductswillbecomemoreattractive
assourcesofcellulose(Leitner,Hinterstoisser,Wastyn,Keckes,& Gindl,2007)
In recent years therehasbeen a remarkableinterestin cel-lulose fibers of nanometricdimensions Cellulose whiskersand microfibrilsareexamplesofnanocelluloseandresultfrom differ-entisolationmethodsleadingtodiversedimensions andaspect ratios(Siró&Plackett,2010).Cellulosewhiskersareelongated crys-tallinerod-likenanoparticlesbeinggenerallyisolatedbymeansof acidhydrolysiswhichremovestheamorphousdomainsexisting
incellulosefibers.Cellulosemicrofibrilsinturnareobtainedfrom mechanicaltreatmentbeinglongandflexiblenanoparticleswhich consistofalternatingcrystallineandamorphousstrings(Siqueira, Bras,&Dufresne,2009).Cellulosewhiskershavebeenisolatedfrom differentvegetablesourcessuchascottonandeucalyptus(Berg, Capadona,&Weder,2007;Dong,Revol,&Gray,1998;Hafraouiet al.,2008)andfromanimalsourcessuchastunicates(Bergetal., 2007;Hafraouietal.,2008).Consideringvegetableorigin,there
0144-8617/$ – see front matter © 2011 Elsevier Ltd All rights reserved.
Trang 2areonly afew papers which describetheisolation ofwhiskers
fromagriculturalbyproducts,asforexamplewheatstraw(Herbert,
Cavaillé,&Dufresne,1996),peahullfiber(Chen,Liu,Chang,Cao,
&Anderson,2009),branch-barksofmulberry(Lietal.,2009)and
coconuthusks(Rosaetal.,2010)
Asfaras we know, theisolation of cellulose whiskersfrom
ricehusksourceshasnotbeenyetdescribedintheliteraturebut
onlytheisolationofsiliconcarbidewhiskersfromRH(Sujiroti&
Leangsuwan,2003)andofcellulosewhiskersfromricestraws(Orts
etal.,2005).So,thefractionationoflignocellulosicmaterialsofrice
husksintoitsconstitutivecomponentsbyenvironmentalfriendly
techniqueshasbeenthesubjectofourworkwiththeobjective
ofcellulosewhiskerisolation.RHandintermediateRHproducts
ofthemultistepextractionprocedurewerecharacterizedthrough
scanning electron microscopy (SEM), thermogravimetry (TGA)
andattenuatedtotalreflectance-infraredabsorptionspectroscopy
(ATR-FTIR) The purified cellulose was characterizedby
modu-lateddifferentialscanningcalorimetry(MDSC),wide-angleX-ray
diffraction(WAXD)aswellasTGAand ATR-FTIR.Thewhiskers
werecharacterizedbytransmissionelectronmicroscopy(TEM)and
atomicforcemicroscopy(AFM).Thepropertiesofpurified
cellu-loseisolatedfromricehuskwerecompared tothepropertiesof
commercialmicrocrystallinecellulose(MCC)
2 Experimental
2.1 Materials
Rice husk was supplied by Engenho Meirebe (Eldorado
do Sul/RS, Brazil) Hexane (Fmaia, Brazil), ethanol (Fmaia,
Brazil), sodium hydroxide (Labsynth, Brazil), hydrogen
perox-ide(CAQ Química,Brazil),nitricacid(Fmaia,Brazil),aceticacid
(CAQQuímica,Brazil),tetra-acetylethylenediamine(TAED)(Acros
Organics,NewJersey,USA)wereusedasreceived.Allsolventsand
reagentswereofanalyticalgrade.Microcrystallinecellulose(MCC)
wassuppliedbyQuimsul
2.2 Procedures
2.2.1 Isolationofcellulose
Ricehuskswerepreviouslyground.ThedriedRHwas
sequen-tiallydewaxedwithhexane/ethanol/waterinaSoxhletapparatus
Theextractivecontentwasfoundtobe6.8%.Delignificationwas
doneat121◦C,inautoclave(Stermax20EHD),usinga5%aqueous
NaOHwitha1:30strawtoliquorratio(g/mL)for30minbeing
this stepbased ona proceduredescribed by Uesu,Pineda, and
Hechenleitner(2000),adaptedtoricehusk.Thedispersionswere
treatedwithultrasoundfor30min.Inordertoremovethe
remain-ing hemicelluloses and lignin, theresulting pulp was bleached
followingaproceduredescribedbySun,Sun,Su,etal.(2004):the
pulpwastreated with2% H2O2 and0.2% TAED solution,atpH
11.8,for12h,at48◦C.Theliquortopulpratiowas25:1(mL/g)
Topurifythecellulosepulp,5.0mLof 80%(v/v)aceticacidand
0.5mLofconcentratednitricacid(70%,v/v)wereaddedto150mg
ofpulp,themixturewasthenplacedintoapreheatedoilbathat
120◦C,for15minor30min.Oncecooled,thesupernatantwasthen
carefullydecantedandthecellulosewaswashedsequentiallywith
95%ethanol(20mL),distilledwater(20mL),andagain95%ethanol
(20mL)toremoveextractionbreakdownproductsandtracesof
nitricacid.Finally,thepurifiedcellulosewasdriedinanovenat
60◦Cuntilconstantmass.Departingfromrawricehusks(∼9wt%
water),thetotalyieldofextractedcellulosewas28wt%
2.2.2 Isolationofthecellulosewhiskers
Thepurifiedcellulosewasmixedwithsulfuricacid64%(w/w)
ataratioof1:8.75(g/mL)asdescribedbyDongetal.(1998),at
temperatureof 25◦C The hydrolysis time wasfixedat 60min Thereactionswerestoppedbypouringthemixtureintoa large amountofcoldwater.Theexcessofsulfuricacidwasremovedby centrifugation(3000rpm,30min),usinganALCcentrifugePK120, followedbyaprolongeddialysis(regeneratedcellulosemembrane Fisher,cut-off10,000–14,000Da)againstpurewater.This proce-dureensuredthatallionicmaterialswereremovedexcepttheH3O+
counterionsassociatedwiththesulfategroupsonthesurfaceofthe whiskers(Dongetal.,1998).Thewhiskerswerefurtherdispersed
byanultrasonictreatment(UltrasonicequipmentThornton,Model USC-1400)
Althoughthestrongnitricandsulfuricacidswereusedinthe overallprocedure,theeffluentsturnedtobediluteandwereeasily neutralized
2.3 Characterization 2.3.1 Ricehuskandcellulose ScanningelectronmicrographsofdriedRH,extractivefreeand alkalinetreatedRHwereobtainedusingaJEOL®microscopeJSM
6060operatingat20kV.Thetestspecimenswereattachedtoan aluminumstubandsputteredwithgoldtoeliminatetheelectron chargingeffects
WAXD experimentswereperformed usinga Siemens D-500 diffractometer.PurifiedRHcellulose(after30minbleachingand alsocalledasRHcellulose)andMCCwerescannedinthereflection modeusinganincidentX-rayofCuK␣withwavelengthof1.54 ´˚A
atastepwidthof0.05◦min−1from2=0to40◦.TheSegalmethod wasusedtocalculatethecrystallinityofthesamples(Thygesen, Oddershede,Lilholt,Thomsen,&Stahl,2005).Eq.(1)wasusedto calculatethesamplecrystallinity(XCR)
XCR=I200−IAM
whereI200istheheightofthe200peak,which representsboth crystallineandamorphousmaterialandIAMisthelowestheight betweenthe 200 and 110peaks, which representsamorphous materialonly
Inourstudyweperformedapreliminaryexperimentinamuffle furnaceunderairatmospheretodeterminetheashcontentofrice husk
TGA scans werecarried out from35 to700◦C at a heating rateof10◦Cmin−1andunderinertatmosphereofN2inafluxof
50mLmin−1(TAInstrumentsmodelTGAQ5000IR).Sampleweight wastypicallykeptat17mg.TheTGAmicrobalancehasaprecision
of±0.1g
MDSCwas performed using a DSC Q2000 differential scan-ningcalorimeterfromTAInstruments.Sampleweightwaskeptat
∼7mgusinghermeticallysealedpanswithapinholeinthelid.Two proceduresweremadeusingpurifiedRHcellulose(after30min bleaching)inMDSC.Inthefirstone,thesampleswereanalysedas obtainedafterbleachingtreatment,equilibratedat35◦Cfor5min andheatedupto395◦Catheatingrateof5◦Cmin−1.Inaddition,a secondprocedurewasmadeapplyingarampof30◦Cmin−1from roomtemperatureto150◦Candequilibratingatthistemperature for5mintoremoveadsorbedwater,assuggestedintheliterature (Cabrales&Abidi,2010;Picker&Hoag,2002).Afterthisisothermal condition,sampleswerecooleduntil35◦Candasecondscanwas performedat5◦Cmin−1upto395◦C.TheMDSCanalyseswere car-riedonunderinertatmosphereofN2inafluxof50mLmin−1using
anamplitudeof temperaturemodulationof±1◦C anda period
modulationof60s
StructuralchangesbetweenMCC, RH,RHintermediate prod-uctsand purifiedRHcellulosewererevealedbyusingATR-FTIR with 64 scans and a resolution of 2cm−1, in a Nicolet 6700 spectrophotometer
Trang 3Fig 1. ATR-FTIR spectra for RH, RH extractive-free, alkaline treated RH (RH after
15 min autoclave), RH cellulose (after 30 min bleaching) and commercial cellulose
(MCC) in the range from 2000 to 800 cm −1
2.3.2 Cellulosewhiskers
FortheTEMimages,dropsofRHwhiskeraqueoussuspensions
weredepositedonglow-dischargedcarboncoatedTEMgridsand
theexcessofwaterwaslettoevaporate.Thespecimenswere
neg-ativelystainedwith2%uranylacetateandobservedusingaJEOL
JEM1200FxIIelectronmicroscopeoperatingat80kV.Thewhisker
dimensionsweredeterminedwiththeaidoftheImageTools
soft-ware
AFMobservations werecarried outusing a Molecular
Imag-ingPicoPlusmicroscopeoperatinginairandintermittentcontact
modewithaMicromashNC36tip.Dropsofdiluteaqueous
suspen-sionsofRHcellulosewhiskersweredepositedontofreshlycleaved
mica.After30min,theexcessliquidwasremovedandthe
remain-ingfilmallowedtodry
3 Results and discussion
3.1 Characterizationofthericehuskandricehuskcellulose
3.1.1 Spectroscopiccharacterization
FTIR spectroscopy has been extensively used in cellulose
research,sinceitpresentsarelativelyeasymethodofobtaining
directinformationonchemicalchangesthatoccurduringvarious
chemicaltreatments(Sun,Sun,Zhao,&Sun,2004).Byidentifying
thefunctionalgroupspresent,FTIRallowstoknowaboutthe
chem-icalstructureofeachcompound.InthisworkFTIRwasemployed
withtheaimofverifyingifligninandhemicelluloseswereremoved
fromtheextractedcellulose
InthisworkFTIRspectraofRH,RHfreeofextractives,
com-mercialcellulose(MCC),andpurifiedRHcellulosewereobtained
Allsamplespresentedtwomainabsorbanceregions.Thefirstone
athighwavenumberscorrespondstotherange2700–3500cm−1
(Fig.1S,Supplementarymaterial),and thesecondone atlower
wavenumbers,totherange800–1800cm−1approximately.The
lat-tercanbeseeninFig.1.Thebroadabsorptionbandwithpeaks,
dependingonthesample,locatedfrom3330to3360cm−1isdue
tostretchingof–OHgroupsandthatonenear2900cm−1isrelated
totheC–Hstretchingvibrations
Thebandat1640cm−1couldbeassignedtotheC Cstretching
ofaromaticringsofligninbutitisalsopresentinthespectrum
ofcommercialcellulose.Accordingtovariousauthors(Moránet
al., 2008; Sun, Sun, Su, et al.,2004; Zuluaga, Putaux, Restrepo, Mondragon,&Ga ˜nán,2007),thisbandrelatestothebendingmode
ofadsorbedwater.Allsampleswerecarefullydriedbeforethe ATR-FTIRspectraweretaken, but,as reportedintheliterature,it is difficulttocompletelydrycelluloseduetoitsstronginteraction withwater(Moránetal.,2008;Szczesniak,Rachocki,&Tritt-Goc,
2008).Allmaterialsanalysedpresentedthisabsorptionbandbut specificabsorptionscanalsobeseeninthespectra.The absorp-tionbandat1176cm−1correspondstoC–O–Casymmetricalbridge stretching.AspointedoutbySun,Sun,Su,etal.(2004),astrong peakat1049cm−1arisesfromC–O–Cpyranoseringskeletal vibra-tion.InFig.1itcanbeseenthatthispeakchangesitsforminthe
RHcelluloseasfarasitappearsasadoublet.Incomparisontothe spectrumofcommercialcellulose,itcanbeconcludedthat hemi-celluloseswereextensivelyremoved.Thesharppeakat910cm−1
ischaracteristicof-glycosidiclinkagesbetweenthesugarunits (Sun,Sun,Su,etal.,2004).ThespectraofRHandRHfreeof extrac-tivesshowtwoabsorptionscharacteristicoflignin:aweakbandat
1510cm−1(alsoC Cstretchingofaromaticring)andabroad shoul-derat1244cm−1 (C–Ostretchingoftheetherlinkage)whichare absentinthespectrumofRHcelluloseaswellasthatof commer-cialcellulose.AccordingtoVieraetal.(2007),theabsenceofthese bandsindicatesthatmostoftheligninwasremoved.SoinRH cel-lulosetheextractionproceduresremovedmostofligninpolymers becauseofthedisappearanceofthelignin-associatedabsorbances
at1510cm−1and1244cm−1.InthespectrumofRHcelluloseitcan alsobeidentifiedapeakat1725cm−1(C Oofketone)which proba-blyarisesfrompartialacetylationofRHcelluloseduringthesecond bleachingstepwhereaceticacidisemployedasalsomentioned
byotherauthors(Moránetal.,2008;Sun, Sun,Su,etal.,2004; Zuluagaetal.,2007).InthespectraofRHandRHfreeof extrac-tivesapeakat1734cm−1canbeseenwhichcanalsobeassigned
toC Oofketonebutduetohemicelluloses.Fig.1alsoshowsan ATR-FTIRspectrumofextractive-freecellulosepulpobtainedafter
15minofalkalinetreatment,inautoclave,andbeforethebleaching steps.Inthisspectrumthereisnotanyabsorbanceinthecarbonyl region
3.1.2 Scanningelectronmicroscopy(SEM)
BySEMitwaspossibletodetectdifferenteffectsontheRH sur-faceaccordingtothestagesofpre-extractionandpulping,asshown
inFig.2.Thechangesintheouterepidermisshowthechemical attacksufferedbythematerialatdifferentstages
Incomparisontoextractive-freericehusk(Fig.2a),after15min
ofalkalinetreatmentinautoclave,itcanbeseenthatthericehusk particleschangedfromflattorolledshape(Fig.2b).Fig.2cshows thesurfaceofextractive-freericehuskwiththepresenceof sil-icaparticles.AsimilaraspectofRHsurfacewasalsoreportedby Chandrasekharetal.(2003).Fig.2 showsthattheseparticleswere removedafter15mininautoclave.InFig.2 filamentscanbeseen
ontheouterepidermisintheregionswhereprotuberanceswere removedafter30mininautoclave.Fig.2fshowsthatafter1hin autoclavethesurface didnot changesignificantly.So30minin autoclavewaschosenastheoptimumtime.BycomparingFig.2 (15mininautoclave)andFig.2h(30mininautoclave)itcanbe noticedthattheinnerepidermisisalsomodifiedwhenthe auto-clavetreatmentisincreasedto30min.Thisalkalinetreatmentin autoclavealsocausesareductionoftheaveragesizeofRHparticles (Fig.2S,Supplementarymaterial)
3.1.3 Thermogravimetricanalysis(TGA) Fig.3showsthethermaldegradationpatternofthe commer-cialcellulose(MCC),crudeRH,andRHcellulose(after15minand
30min bleaching) All samples showed a thermal event below
150◦Ccorrespondingtodehydration.Themasslossofwaterinthis stepwasdeterminedfrom45◦Cto150◦C.Itwasabout3.8wt%for
Trang 4Fig 2.SEM micrographs of RH after various stages of chemical attack: a, b) outer epidermis of RH extractive-free (bars: 200 m and 10 m, respectively); c, d) RH outer epidermis after 15 min in autoclave (100 m and 10 m, respectively); e) RH outer epidermis after 30 min in autoclave (bar: 10 m, both); f) RH outer epidermis after 60 min
in autoclave (bar: 10 m); g) RH inner epidermis after 15 min in autoclave (bar: 10 m); h) RH inner epidermis after 30 min in autoclave (bar: 10 m).
MCC,9.0wt%forcrudeRH,5.8wt%forRHcelluloseafter15min
bleachingand5.7wt%forRHcelluloseafter30minbleaching.The
effectivethermaldegradationoftheRHconstituentsbeginsabove
200◦Candreferstobondcleavageofhemicellulose,celluloseand
lignin
ItispossibletoverifythatRHcelluloseshowedhigher
ther-malstabilitythan theprecursorRH,since inthesesamplesthe
componentsthatstarttodegradeatlowertemperaturehadbeen
removed.ThecrudeRHmaindecompositionpeakisconsiderably
widerthanthoseoftheothersamplesduetothedecompositionof
hemicellulosesandlignin.CommercialcelluloseandRHcellulose
decomposedinasinglestep.Thisbehaviorsuggeststheabsence
ofhemicelluloseandligninintheRHcelluloseobtained.TheDTG
curveofRHcellulosedoesnotshowtheshoulderclosetothe
cellu-losepeakthatreferstothehemicellulose.Thisisinaccordancewith
theFTIRresultspreviouslyshown.Themaximumrateof
decompo-sitionofRHcelluloseoccurredat345◦C.Thistemperatureagrees
wellwiththevalueof348◦CfoundbyMoránetal.(2008)forthe
Fig 3. DTGA curves for commercial cellulose (MCC), RH, RH cellulose after 15 min
decompositionpeakofcommercialcelluloseand355◦Cfoundby Yang,Yan,Chen,Lee,&Zheng(2007),determinedatsame heat-ingrate.ThecommercialcelluloseshowedhigherTmaxthanthe
RHcelluloseisolatedinthisstep.Accordingtotheliterature,the higherthedecompositiontemperatureobtainedby thermogravi-metricanalysisthegreaterthecrystallinityofcellulose(Alemdar& Sain,2008;Chenetal.,2011;Uesu,Pineda,&Hechenleitner,2000) However,thediscussionshavebeenrecentlyimprovedconsidering othereffectsthatcaninfluencethetemperaturepeakof degrada-tion:presenceofsubstancesbondedtomicrofibrilsurfaces(Vila, Barneto,Fillat,Vidal,&Ariza,2011),crystalsizeofcellulose(Kim, Eom,&Wada,2010)andtheatmosphereenvironmentused (usu-allynitrogenorair)(Mamleev,Bourbigot,&Yvon,2007;Vilaetal.,
2011)
RHpresenteda highresidualmassat theend ofthe experi-ment(700◦C),around26%.Theashcontentofricehuskdetermined underairatmosphereinthisworkwas16wt%at1000◦C.Theresult agreesperfectlywellwithZhaoetal.(2009).Evenconsideringthat theanalysiswasperformedundernitrogenatmosphere,thiswas
anespeciallyhighvalueanditwasrelatedtothehighsilica con-tentofRH(Rosa,Nachtigall,&Ferreira,2009).At700◦Cresiduesof about8%forcommercialcellulose,15%forRHcelluloseafter15min bleachingand11%forRHcelluloseafter30minbleachingcanbe determinedfromtheTGAcurves(Fig.3S,Supplementarymaterial)
AsindeedevidencedbytheX-raydiffractionstudy,thecrystallinity indexofRHcelluloseislowerthanthatofthecommercialcellulose AnotherexplanationmayberelatedtothepartialacetylationofRH celluloseevidencedbythepresenceofanabsorptionat1725cm−1
intheATR-FTIRspectrum
3.1.4 Modulateddifferentialscanningcalorimetry(MDSC) Modulated differentialscanningcalorimetry(MDSC) permits theseparationofthetotalheatflowsignalintoitsreverseheatflow andnon-reverseheatflowcomponents.Theseparationisbasednot onlyonthermodynamicreversibilitybutalsoonchangesoccurring whenasinusoidalmodulationisoverlaidonaconventionallinear heatingrateduringanexperiment.Inthissense,MDSCarisesasan excitingwaytoincreasetheunderstandingofricehuskcellulose thermalproperties.Theeffectsoftemperatureonamorphousand crystallineregionsofricehuskcellulosewerestudiedbyMDSC
Trang 5Fig 4. MDSC curves of total (1), reverse (2) and non-reverse (3) heat flow at 5 ◦ C min −1 : (a) RH cellulose (30 min bleaching), under first procedure; (b) RH cellulose (30 min bleaching), under second procedure; (c) MCC, under first procedure; (d) MCC, under second procedure.
Considering literature using DSC technique, as reported by
Morán et al (2008) and Yang et al (2007), the fusion of the
crystalline fractionof some types of cellulose shows a narrow
endothermicpeakcloseto330◦C.Thistransitioncanmovetolower
temperatures depending on factors such as molecular weight,
amountofamorphouscontent,crystallitesizes,etc Sometimes,
anexothermicpeakisfoundinthesameregion,whichhasbeen
relatedtoadegradationprocess(Moránetal.,2008).Accordingto
Mamleevetal.’sstudies(2007),adepolymerizationby
transglyco-sylationoccursat310◦Cduringcellulosepyrolysis.Asbothevents
canbesuperimposed,theycannotbeeasilydistinguishedinmany
cases
Fig.4ashowstheheatflowcurvesofRHcelluloseanalysedby
MDSC.Consideringtotaland non-reverseheatflow curves,they
showtwomainevents.Thefirstendothermicpeakobservedbelow
150◦Cisduetolossofwater.Thesecondendothermictransition
startsaround270◦Cwitha peakat320◦Candisrelatedto
cel-lulosemelting.Asmooth exothermictransitioncanbedetected
near340◦C.Thiseventhasitsonsetoverlappedwiththeendofthe
endothermicregionandcanberelatedtothedepolymerizationof
celluloseassupportedbytheequivalentpeakinthenon-reverse
heatingcurve.Such conclusionisalsocorroboratedbytheTGA
studywhichshowsamaximumofweightlossforRHcelluloseinthe
sametemperatureregion.Ontheotherhand,animportantchange
intheheatcapacityofthemediumcanalsobeseenbetween300◦C
and330◦Cinthereverseheatflowcurve.Thisindicatesachange
inchemicalcompositionasaresultofthedepolymerization
reac-tion.Theabsenceofanendotherminreversingsignalindicatesthat
thisthermaleventisakinetictransformation.Byvisualinspection
ofthepan,veryfewsolidresidueswerefoundatthisstageand charringprocesswasevident
Fig.4 showstheMDSCcurvesofRHcellulosesubmittedtothe secondproceduredescribedintheexperimentalsection,withan isothermalsteptoeliminatewater.Asexpected,itwasnotfound anypeakduetowaterrelease.Awell-definedendothermic tran-sitionispresentbeyond300◦CwhichissimilartothatofFig.4a beingrelatedtomeltingandvolatilizationaswell.Howeverthe smallexothermicpeakfollowing this transitionwasnotclearly seeninthetotalandnon-reversecurves.Thethermogramsprofiles
ofRHcelluloseareverysimilartothoseofMCCwhichareshown
inFig.4candd.IncomparisontoMCC,thepeakmaximumofthe endothermictransitiondetectedbeyond300◦Coccurredatlower temperatureforRHcellulose(asassignedbyarrowsTRH=321◦C,
inFig.4aandb,andTMCC=344◦CinFig.4candd)independentlyof waterpresenceasitwasobservedintotalandnon-reverseheating curves
Inthis study,itwasobservedthatallsamplesshowed well-defined endothermic peaks corresponding to the fusion of its crystallinepart,asshown inFig.4a–d.However,cellulose sam-pleswithwateradsorbed(Fig.4aandc)showedmoreclearlythe exothermicpeaksfollowingmelting.Thissuggeststhatthe degra-dationmechanismresponsiblefortheexothermicpeakisaffected
bythepresenceofwater
3.1.5 WideangleX-raydiffraction(WAXD)
It can be observed in Fig.5 that the major crystallinepeak foreachsampleoccurredataround2=22◦whichrepresentsthe cellulosecrystallographicplane(200).Thecrystallinityindexof
Trang 6Fig 5.X-ray diffraction patterns of MCC and RH cellulose (30 min bleaching).
RHcellulose(calculatedbySegalformula)wasapproximately67%
whilethatofMCCwasestimatedas79%.Forcomparison,the
crys-tallinityindexofothersamples,asreportedintheliterature,was
foundtobearound66%forpotatotubercellulose,68%forricestraw
celluloseand71%forwoodcellulose(Abe&Yano,2009).Itcan
beconcludedthattheprocedureemployedinthisstudyfor
cel-luloseextractionfromricehuskisadequateforobtainingsamples
withhighcrystallinity.Itwasreportedthathighlycrystallinefibers
andfibrilaggregatescouldbemoreeffectiveinachievinghigher
reinforcementforcompositematerials(Cheng,Wang,Rials,&Lee,
2007).InadditionitcanbenoticedinFig.5thatRHcellulosecan
beclassifiedascelluloseI,sincethereisnodoubletintheintensity
ofthepeakatca.2=22◦.AsimilarfindingwasreportedbyMorán
etal.(2008)forsisalcelluloseextractedbyotherprocedures
3.2 Characterizationofcellulosewhiskers
Basically, microscopy has been the preferred technique for
themorphologicalcharacterizationinstudiesinvolvingcellulose
whiskers.Inthisstudy,AFMandTEMwereusedtoinvestigatethe
morphologyandsizeofthedispersedstructures
TheatomicforcemicrographinFig.6showsthesampleobtained
after60minofhydrolysis.Itwaspossibletoseetheisolated
cellu-losefibrilsfreefromtheothercomponentsofricehusks.Mostof
Fig 6.AFM image of RH cellulose whiskers obtained after 60 min of acid hydrolysis.
thehydrogenbondsthatkeptthewhiskersassociatedwere prob-ablydisruptedafterthisprocedure.However,someaggregatesare stillpresent
ByTEM(Fig.7aandb),structuresintheformofneedles rang-ingfrom100to400nminlengthand6to14nminwidthwere observed.TheaveragelengthvaluewasL=(143±64)nmwhilethe averagethicknesswasd=(8±2)nm.Suchdimensionsare compara-bletothoseofwhiskersoriginatingfromcotton(Beck-Candanedo, Roman, & Gray, 2005; Bica, Borsali, Rochas, & Geissler, 2006; Hafraouietal.,2008),wood(Beck-Candanedoetal.,2005),peahull fiber(Chenetal.,2009)andcoconuthusks(Rosaetal.,2010).The
RHwhiskersshowlengthsshorterthaninthecaseofbranch-barks
ofmulberry(Lietal.,2009)butRHwhiskersaremuch thinner Theaspectratioshowsanaveragevaluenear18.InFig.6someRH whiskersappearedmoreaggregatedintheformofbundlesasalso observedbyHeux,Chauve,andBonini(2000)inthecaseofcotton whiskers.AccordingtoHafraouietal.(2008),suchnanostructures canbecomposedofavaryingnumberofparallelsubunitsof cellu-losechains.Thehighaspectratioofthecellulosewhiskersobtained fromrice huskindicatesthatthesestructuresexhibitpromising
Trang 7ofthisworldwideproducedagriculturalwaste
4 Conclusions
Residuesfromplants areinterestingalternativesascellulose
sourcesforseveralapplications.Inthisworkachlorine-free
pro-cedurefortheisolationofcellulosefromricehuskwasshownto
beveryefficient.Theoverallprocessdoesnotproduceanytoxic
effluents.Onthebasisofthewholecellulosecontentexpectedfor
ricehusk,thismethodresultedinayieldaround74%.TGA
anal-ysisperformedundernitrogenshowedhighresidualmassforRH
at700◦C.Thiscanbepartiallyattributedtothehighsilica
con-tentofthematerial.Inourstudy,theashcontentofRHat1000◦C
wasdeterminedtobe16wt%.FTIR,TGAandMDSCanalysesagreed
wellwithrespecttotheeliminationofhemicelluloseandlignin
fromricehuskafterthepurificationprocedureusedtoisolate
cel-lulose.WAXDexperimentsindicated thatthecrystallinityofRH
cellulose (67%)waslower than thatof MCC(79%) Lower
crys-tallinityhasbeenpointedoutasafactor,amongothers,thatcan
lowerthethermaldegradationtemperature.Thedecomposition
temperatureofRHcellulosewasfoundtobelowerthan
commer-cialmicrocrystallinecellulose.Besideswaterelimination,theMDSC
analysesshowedonemainendothermiceventforcellulosesamples
(RHcelluloseandMCC),whichwasrelatedtothemeltingof
cellu-losecrystals.TheTGAandMDSCresultsagreewellwithrespectto
thethermalstabilityofricehuskcelluloseandhelpedtoimprove
theknowledgeonthecomplexbehaviorofcellulosedegradation
Cellulosewhiskersweresuccessfullyobtainedbysulfuricacid
hydrolysisofthericehuskcellulose.AccordingtoTEMandAFM
images,itwaspossibletoisolateneedle-likestructuresof
cellu-losewhiskers,withsizesvaryingfrom6to14nminwidthand
100–400nminlength.Theaveragevaluesoflengthandthicknessof
thesewhiskersgiveanaspectratioaround18.Suchavalueofaspect
ratioisadequateforapplicationofRHwhiskersasnanofillersin
polymermatrices.Inthiswaytheuseofricehuskasanovelmaterial
sourceallowstoobtainnewparticleswithnanometricdimensions
wideningthesupplyofnanostructuredmaterialsusablefor
poly-mernanocomposites
Acknowledgements
TheauthorswouldliketothankConselhoNacionalde
Desen-volvimentoCientíficoeTecnológico(CNPq)forgrant
474278/2007-7andfellowshipTWAS/CNPq;Coordenac¸ãodeAperfeic¸oamento
dePessoaldeEnsinoSuperior(CAPES)andFundac¸ãodeAmparo
àPesquisadoEstadodoRioGrandedoSul(FAPERGS)for
fellow-ships(alsoCAPES/REUNI);CentrodeMicroscopiaEletrônicaofthe
FederalUniversityofRioGrandedoSul(CME/UFRGS)andMs.M
Queirozfor technicalassistanceduring theTEMandSEM
anal-yses;Mr.O.Machado(InstitutodeFísica/UFRGS)forperforming
theWAXDmeasurements,Dr.J.Vaghetti(IQ/UFRGS)fortechnical
assistanceduringTGAandMDSCanalysesandMs.N.Reisforhelp
inthefirstexperimentsofthisproject
Appendix A Supplementary data
Supplementarydataassociatedwiththisarticlecanbefound,in
theonlineversion,atdoI:10.1016/j.carbpol.2011.08.084
References
Abe, K., & Yano, H (2009) Comparison of the characteristics of cellulose microfibril
aggregates of wood, rice straw and potato tuber Cellulose, 16, 1017–1023.
Alemdar, A., & Sain, M (2008) Isolation and characterization of nanofibers from
reading may be available for this article To view references and further reading you must purchase this article Bioresource Technology, 99, 6554–6561 Beck-Candanedo, S., Roman, M., & Gray, D G (2005) Effect of reaction conditions
on the properties and behavior of wood cellulose nanocrystal suspensions Biomacromolecules, 6, 1048–1054.
Berg, O., Capadona, J R., & Weder, C (2007) Preparation of homogeneous disper-sions of tunicate cellulose whiskers in organic solvents Biomacromolecules, 8, 1353–1357.
Bica, C I D., Borsali, R., Rochas, C., & Geissler, E (2006) Dynamics of cel-lulose whiskers spatially trapped in agarose hydrogels Macromolecules, 39, 3622–3627.
Cabrales, L., & Abidi, N (2010) On the thermal degradation of cellulose in cotton fibers Journal of Thermal Analysis & Calorimetry, 102, 485–491.
Chandrasekhar, S., Satyanarayana, K G., Pramada, P N., Raghavan, P., & Gupta, T N (2003) Processing, properties and applications of reactive silica from rice husk – An overview Journal of Materials Science, 38, 3159–3168.
Chen, Y., Liu, C., Chang, P R., Cao, X., & Anderson, D P (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolysed from pea hull fibre: Effect of hydrolysis time Carbohydrate Polymers, 76, 607–615.
Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., & Hai, Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonic combined with chemical pretreatments Carbohydrate Polymers, 83, 1804–1811.
Cheng, Q., Wang, S., Rials, T G., & Lee, S.-H (2007) Physical and mechanical prop-erties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers Cellulose, 14, 593–602.
Dong, X M., Revol, J.-F., & Gray, D G (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose Cellulose, 5, 19–32 Eichhorn, S J., Dufresne, E A., Araguren, E M., Marcovich, E N E., Capadona, E J R., Rowan, E S J., et al (2010) Review: Current international research into cellulose nanofibres and nanocomposites Journal of Materials Science, 45, 1–33 FAO (2010) Global cereal supply and demand brief Crop prospects & food situation (no 4 (Dec), p 5) http://www.fao.org/giews/ Accessed 06.02.11.
Hafraoui, S., Nishiyama, Y., Putaux, J.-L., Heux, L., Dubreuil, F., & Rochas, C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose Biomacromolecules, 9, 57–65.
Herbert, W., Cavaillé, J Y., & Dufresne, A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers Part I: Processing and mechanical behavior Polymer Composites, 17, 604–611.
Heux, L., Chauve, G., & Bonini, C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents Langmuir,
16, 8210–8212.
IBGE (2010) Grupo de Coordenac¸ ão de Estatísticas Agropecuárias (Dec 2010).
http://www.ibge.gov.br/home/estatistica/indicadores/agropecuaria/lspa/lspa
201012 12.shtm Accessed 06.02.11.
Kim, U., Eom, S H., & Wada, M (2010) Thermal decomposition of native cellulose: Influence on crystalline size Polymer Degradation and Stability, 95, 778–781 Leitner, J., Hinterstoisser, B., Wastyn, M., Keckes, J., & Gindl, W (2007) Sugar beet cellulose nanofibril-reinforced composites Cellulose, 14, 419–425.
Li, R., Fei, J., Cai, Y., Li, Y., Feng, J., & Yao, J (2009) Cellulose whiskers extracted from mulberry – A novel biomass production Carbohydrate Polymers, 76, 94–99 Mamleev, V., Bourbigot, S., & Yvon, J (2007) Kinetic analysis of the thermal decom-position of cellulose: The main step of mass loss Journal of Analytical and Applied Pyrolysis, 88, 151–165.
Morán, J I., Alvarez, V A., Cyras, V P., & Vazquez, A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers Cellulose, 15, 149–159 Orts, W J., Shey, J., Imam, S H., Glenn, G M., Guttman, M E., & Revol, J F (2005) Appli-cation of cellulose microfibrils in polymer nanocomposites Journal of Polymers and the Environment, 13, 301–306.
Picker, K M., & Hoag, S W (2002) Characterization of the thermal properties
of microcrystalline cellulose by modulated temperature differential scanning calorimetry Journal of Pharmaceutical Sciences, 91, 342–349.
Rosa, S M L., Nachtigall, S M B., & Ferreira, C A (2009) Thermal and dynamic-mechanical characterization of rice-husk filled polypropylene composites Macromolecular Research, 17(1), 8–13.
Rosa, M F., Medeiros, E F., Malmonge, J A., Gregorsky, K S., Wood, D F., Mat-toso, L H C., et al (2010) Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior Carbohydrate Polymers, 81(1), 83–92.
Siqueira, G., Bras, J., & Dufresne, A (2009) Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites Biomacromolecules,
10, 425–432.
Siró, I., & Plackett, D (2010) Microfibrillated cellulose and new nanocomposite materials: A review Cellulose, 17, 459–494.
Sujiroti, K., & Leangsuwan, P (2003) Silicon carbide formation from pretreated rice husks Journal of Materials Science, 38, 4739–4744.
Sun, X F., Sun, R C., Su, Y., & Sun, J X (2004) Comparative study of crude and purified cellulose from wheat straw Journal of Agricultural Food Chemistry, 52, 839–847.
Sun, J X., Sun, X F., Zhao, H., & Sun, R C (2004) Isolation and characteriza-tion of cellulose from sugarcane bagasse Polymer Degradation & Stability, 84, 331–339.
Sun, J X., Xu, F., Sun, X.-F., Xiao, B., & Sun, R C (2005) Physico-chemical and thermal characterization of cellulose from barley straw Polymer Degradation & Stability,
88, 521–531.
Trang 8Szczesniak, L., Rachocki, A., & Tritt-Goc, J (2008) Glass transition temperature and
thermal decomposition of cellulose powder Cellulose, 15, 445–451.
Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A B., & Stahl, K (2005) On the
determination of crystallinity and cellulose content in plant fibres Cellulose, 12,
563–576.
Uesu, C N Y., Pineda, E A G., & Hechenleitner, A A W (2000) Microcrystalline
cellulose from soybean husk: Effects of solvent treatments on its properties as
acetylsalicylic acid carrier International Journal of Pharmaceutics, 206, 85–96.
Viera, R G P., Rodrigues, G., Assunc¸ ão, R M N., Meireles, C S., Vieira, J., & Oliveira,
G S (2007) Synthesis and characterization of methylcellulose from sugarcane
bagasse cellulose Carbohydrate Polymers, 67, 182–189.
Vila, C., Barneto, A G., Fillat, A., Vidal, T., & Ariza, J (2011) Use of thermogravi-metric analysis to monitor the effect of natural laccase mediators on flax pulp Bioresource Technology, 102, 6554–6561.
Yang, H., Yan, R., Chen, H., Lee, D H., & Zheng, C (2007) Characteristics of hemicel-lulose, cellulose and lignin pyrolysis Fuel, 86, 1781–1788.
Zhao, Q., Zhang, B., Quan, H., Yamb, R C M., Yuen, R K K., & Li, R K Y (2009) Flame retardancy of rice husk-filled high-density polyethylene ecocomposites Composites Science and Technology, 69, 2675–2681.
Zuluaga, R., Putaux, J.-L., Restrepo, A., Mondragon, I., & Ga ˜ nán, P (2007) Cellu-lose microfibrils from banana farming residues: Isolation and characterization Cellulose, 14, 585–592.