1. Trang chủ
  2. » Luận Văn - Báo Cáo

thuật toán mới và chương trình matlab xác định sai lệch độ tròn từ dữ liệu đo trên máy cmm c544

96 575 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Thuật toán mới và chương trình matlab xác định sai lệch độ tròn từ dữ liệu đo trên máy cmm 544
Tác giả Vũ Thị Tâm
Người hướng dẫn PGS.TS Nguyễn Đăng Hòe
Trường học Đại học Thái Nguyên
Chuyên ngành Công nghệ chế tạo máy
Thể loại Luận văn thạc sĩ kỹ thuật
Năm xuất bản 2010
Thành phố Thái Nguyên
Định dạng
Số trang 96
Dung lượng 1,47 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Phương pháp đo gián tiếp là phương pháp đo trong đó đại lượng được đo không phải là đại lượng cần đo nó có q

Trang 1

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP

LUẬN VĂN THẠC SĨ KỸ THUẬT

Trang 2

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP

THUYẾT MINH LUẬN VĂN THẠC SĨ KỸ THUẬT

PGS.TS Nguyễn Đăng Hòe Vũ Thị Tâm

THÁI NGUYÊN - 2010

Trang 3

1.1.8.8 Lỗi trong các thông số mô hình hóa hệ cơ điện tử 20

1.1.8.9 Ảnh hưởng của các sai số thành phần đến sai số tổng 20

Trang 4

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

1.2.2 Phương pháp đo các thông số chỉ tiêu chất lượng chính của chi tiết 30

Chương 2 Cơ sở toán học của phép đo đường tròn 46

2.2.1 Thuật toán xác định đường tròn qua tọa độ 3 điểm đo 52 2.2.2 Thuật toán xác định đường tròn qua tọa độ nhiều điểm đo 53

Trang 5

DANH MỤC CÁC CHỮ VIẾT TẮT

Trang 6

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

DANH MỤC CÁC BẢNG BIỂU

1-1 Thông số quy định sai số hình dáng bề mặt trong TCVN

11-77

31

1-2 Các tham số đặc trưng của hệ 3 tiếp điểm đối xứng 37

Trang 7

DANH MỤC CÁC HÌNH VẼ

Hình 1-18 Đo độ tròn theo phương pháp 3 tiếp điểm dạng đối xứng 35

Trang 8

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Hình 4.12 Giao diện chương trình sau khi hiệu chỉnh đầu đo 79

Trang 9

Trong chế tạo máy hiện đại, kỹ thuật đo ứng dụng máy CMM để kiểm tra độ chính xác hình dáng chi tiết ngày càng phổ biến Các máy CMM tích hợp máy tính

và phần mềm phù hợp để phân tích và xử lý kết quả đo Vấn đề đặt ra là cùng một chi tiết với các phương thức đo khác nhau máy CMM đưa ra kết quả đo khác nhau

và cùng một bộ dữ liệu về tọa độ nhưng các máy CMM lại cho các kết quả khác nhau, điều này được giải thích là do thuật toán xử lý dữ liệu khác nhau

Đã có nhiều nghiên cứu để xác định độ tròn, độ song song, độ côn nhưng để

có một thuật toán đơn giản và phần mềm hỗ trợ cho việc xác định độ không tròn lại chưa được đề cập đến Trên cơ sở nghiên cứu P.D.Dhanish [6], Tác giả tiếp tục nghiên cứu phát triển ứng dụng thuật toán để xác định sai lệch về độ tròn từ dữ liệu tọa độ các điểm đo trên máy CMM 544 Mitutoyo Hi vọng thành công của đề tài sẽ

là đóng góp mới cho việc phát triển mô hình đo lường và kiểm tra trong chế tạo máy hiện đại

+ Cơ sở thực tiễn

Hiện nay ở Việt Nam, nhiều cơ sở sản xuất có khả năng đã và đang trang bị máy CMM thay thế cho các thiết bị đo đã cũ và không đáp ứng được yêu cầu sản xuất hiện đại Việc khai thác có hiệu quả và tin cậy máy CMM là cần thiết Hi vọng chương trình xây dựng dựa trên các thuật toán xác định sai lệch về độ tròn từ dữ

Trang 10

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

liệu đo trên máy CMM sẽ hữu ích cho việc sử dụng máy đo để tự động hóa xác định sai lệch độ tròn trong nghiên cứu và sản xuất thực tiễn

Từ những cơ sở phân tích trên việc nghiên cứu “Thuật toán mới và chương trình MATLAB xác định sai lệch độ tròn từ dữ liệu đo trên máy CMM C544” là

cấp thiết và có ý nghĩa khoa học và thực tiễn

II Mục đích của đề tài

 Xây dựng thuật toán ứng dụng xác định sai lệch độ tròn từ dữ liệu đo trên máy CMM

 Thiết lập chương trình xử lý dữ liệu

 Ứng dụng kết quả nghiên cứu trong đo lường kiểm tra chi tiết họ trục/lỗ

III Nội dung của đề tài

 Đánh giá tổng quan về các phương pháp đo trên các máy CMM

 Cơ sở toán học và các công cụ toán về phép đo và xử lý dữ liệu

 Thuật toán mới xác định sai lệch độ tròn

 Viết chương trình ứng dụng trên máy CMM 544 Mitutoyo

 Đánh giá kết quả nghiên cứu

IV Phương pháp nghiên cứu

- Ứng dụng toán

- Ứng dụng kỹ thuật lập trình

- Kiểm nghiệm chương trình xử lý dữ liệu

V Công cụ nghiên cứu

- Công cụ toán

- Phần mềm tin học matlab

- Công cụ phần mềm MCOSMOS

- Máy CMM 544 Mitutoyo

Trang 11

Chương 1: TỔNG QUAN VỀ KỸ THUẬT ĐO

1.1 Các khái niệm cơ bản trong kỹ thuật đo

Đảm bảo chất lượng sản phẩm là đảm bảo hiệu quả kinh tế cho nền sản xuất Việc đảm bảo chất lượng sản phẩm không đơn thuần là việc kiểm tra sản phẩm sau khi chế tạo mà cái chính là phải vạch ra các nguyên nhân gây sai hỏng ngay trong khi gia công để có được quy trình công nghệ hợp lý có thể điều chỉnh quá trình gia công nhằm tạo ra sản phẩm đạt chất lượng Mức độ đưa thiết bị và kỹ thuật đo vào công nghệ gia công chế tạo thể hiện mức độ tiên tiến của nền sản xuất

1.1.1 Đo lường

Đo lường là việc định lượng thông số của đối tượng đo Đó là việc thiết lập quan hệ giữa đại lượng cần đo và một đại lượng có cùng tính chất vật lý được quy định dùng làm đơn vị đo

Thực chất đó là việc so sánh đại lượng cần đo với đơn vị chuẩn để tìm ra tỷ lệ giữa chúng Độ lớn của đối tượng cần đo được biểu diễn bằng trị số của tỷ lệ nhận được kèm theo đơn vị đo dùng khi so sánh

Ví dụ: Đại lượng cần đo là Q, đơn vị đo dùng so sánh là u Khi so sánh ta có tỷ

vị đo hợp pháp

1.1.2 Đơn vị đo - Hệ thống đơn vị đo

Đơn vị đo là yếu tố chuẩn mực dùng để so sánh, vì thế độ chính xác của đơn vị

đo sẽ ảnh hưởng đến độ chính xác khi đo

Trang 12

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Độ lớn của đơn vị đo cần được quy định thống nhất mới đảm bảo được việc thống nhất trong giao dịch, mua bán, chế tạo sản phẩm thay thế, lắp lẫn

Các đơn vị đo cơ bản và đơn vị đo dẫn suất hợp thành hệ thống đơn vị được quy định trong bảng đơn vị đo hợp pháp của nhà nước dựa trên quy định của hệ thống đo lường quốc tế ISO

1.1.3 Phương pháp đo

Phương pháp đo là cách thức, thủ thuật để xác định thông số cần đo Đó là tập hợp mọi cơ sở khoa học và có thể thực hiện phép đo, trong đó nói rõ nguyên tắc để xác định thông số đo Các nguyên tắc này có thể dựa trên cơ sở mối quan hệ toán học hay mối quan hệ vật lý có liên quan tới đại lượng đo

Ví dụ: Để đo bán kính cung tròn, có thể dựa vào mối quan hệ giữa các yếu tố trong cung:

h

s h R

82

2

Trong đó h là chiều cao cung, s là độ dài dây cung

Ví dụ: Khi đo tỷ trọng vật liệu, dựa trên quan hệ vật lý:

D =

V G

Trong đó D là tỷ trọng, G là trọng lượng mẫu, V là thể tích mẫu

Nếu ta chọn mẫu dạng trụ thì:

V = d h

4 2

với d là đường kính mẫu, h là chiều dài mẫu, khi đó ta có:

D =

h d

G

Cơ sở để phân loại phương pháp đo:

Trang 13

a) Dựa vào quan hệ giữa đầu đo và chi tiết đo chia ra: Phương pháp đo tiếp xúc

và phương pháp đo không tiếp xúc

Phương pháp đo tiếp xúc là phương pháp đo giữa đầu đo và bề mặt chi tiết đo tồn tại một áp lực gọi là áp lực đo Ví dụ như khi đo bằng dụng cụ đo cơ khí, điện tiếp xúc áp lực này làm cho vị trí đo ổn định vì thế kết quả đo tiếp xúc rất ổn định Tuy nhiên, do có áp lực đo mà khi đo tiếp xúc không tránh khỏi sai số do các biến dạng có liên quan đến áp lực đo gây ra, đặc biệt đo các chi tiết bằng vật liệu mềm,

dễ biến dạng hoặc các hệ đo kém cứng vững

Phương pháp đo không tiếp xúc là phương pháp đo không có áp lực đo giữa đầu đo và bề mặt chi tiết Vì không có áp lực đo nên khi đo bề mặt chi tiết không bị biến dạng hoặc bị cào xước Phương pháp này thích hợp với các chi tiết nhỏ, mềm, mỏng, dễ biến dạng, các sản phẩm không cho phép có vết xước

b) Dựa vào quan hệ giữa giá trị chỉ thị trên dụng cụ đo và giá trị của đại lượng

đo chia ra phương pháp đo tuyệt đối và phương pháp đo tương đối

Trong phương pháp đo tuyệt đối, giá trị chỉ thị trên dụng cụ đo là giá trị đo được Phương pháp đo này đơn giản, ít nhầm lẫn, nhưng độ chính xác đo kém Trong phương pháp đo tương đối, giá trị chỉ thị trên dụng cụ đo cho ta sai lệch giữa giá trị đo và giá trị của chuẩn dùng khi chỉnh “0” cho dụng cụ đo Kết quả đo phải là tổng của giá trị chuẩn và giá trị chỉ thị:

Phương pháp đo trực tiếp có độ chính xác cao nhưng kém hiệu quả

Trang 14

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Phương pháp đo gián tiếp là phương pháp đo trong đó đại lượng được đo không phải là đại lượng cần đo nó có quan hệ hàm số với đại lượng cần đo, ví dụ như khi ta đo đường kính chi tiết thông qua việc đo các yếu tố trong cung hay qua chu vi

Phương pháp đo gián tiếp thông qua các mối quan hệ toán học hoặc vật lý học giữa đại lượng đo và đại lượng cần đo là phương pháp đo phong phú, đa dạng và rất hiệu quả Tuy nhiên, nếu hàm quan hệ phức tạp thì độ chính xác đo thấp

Việc tính toán xử lý kết quả đo và độ chính xác đo rất phụ thuộc vào việc chọn mối quan hệ này

1.1.4 Kiểm tra - phương pháp kiểm tra

Kiểm tra là việc xem xét chất lượng thực của đối tượng có nằm trong giới hạn cho phép đã được quy định hay không Giới hạn cho phép là sai lệch cho phép trong dung sai sản phẩm mà người thiết kế yêu cầu phụ thuộc vào độ chính xác cần thiết của sản phẩm Nếu giá trị thực nằm trong khoảng sai lệch cho phép, sản phẩm được xem là đạt, ngược lại sản phẩm bị xem là không đạt

Việc kiểm tra phải thông qua kết quả đo thực của sản phẩm hoặc qua kích thước giới hạn của calip Vì thế, người ta thường gắn hai quá trình đo - kiểm làm một quá trình đảm bảo chất lượng sản phẩm

- Căn cứ vào mục đích sử dụng của yếu tố cần kiểm tra người ta phân ra kiểm tra thu nhận và kiểm tra trong khi gia công

Kiểm tra thu nhận là phương pháp kiểm tra nhằm phân loại sản phẩm thành các sản phẩm đạt và sản phẩm không đạt

Kiểm tra trong khi gia công là phương pháp kiểm tra thông qua việc theo dõi

sự thay đổi của thông số đo để có tác dụng ngược vào hệ thống công nghệ nhằm điều chỉnh hệ thống sao cho sản phẩm được tạo ra đạt chất lượng yêu cầu

Trong các quá trình công nghệ hiện đại, đặc biệt là khi chế tạo các chi tiết phức tạp, kiểm tra trong gia công không những hạn chế sản phẩm hỏng mà còn thực hiện được các thao tác kiểm tra mà sau khi chế tạo sẽ khó mà kiểm tra được

Căn cứ vào mức độ phức tạp của thông số chia ra kiểm tra theo thành phần và kiểm tra tổng hợp

Trang 15

Kiểm tra theo thành phần: Thực hiện riêng với một thống số, thông thường đó

là các thông số quan trọng, ảnh hưởng chính tới chất lượng sản phẩm Ngoài ra, trong nghiên cứu độ chính xác trong khi gia công, để hợp lý hoá quy trình công nghệ, tìm nguyên nhân gây sai hỏng người ta cần phải kiểm tra yếu tố mà thông

số kiểm tra chính là yếu tố đang thực hiện tại nguyên công

Kiểm tra tổng hợp là phương pháp kiểm tra đồng thời sự ảnh hưởng của các yếu tố tới chất lượng chung của sản phẩm, phương pháp này thường dùng để kiểm tra thu nhận sản phẩm

Ví dụ: với chi tiết ren khi đang gia công có thế kiểm tra đường kính trung bình,

đó là kiểm tra yếu tố Khi chi tiết đã gia công có thể kiểm tra ăn khớp bằng cách cho

ăn khớp bu lông - đai ốc Đó là việc kiểm tra tổng hợp

1.1.5 Phương tiện đo - Phân loại phương tiện đo

Phương tiện đo là tập hợp các dụng cụ đo, máy đo, gá đo và các phương tiện phụ trợ cho quá trình đo

Phương tiện đo được phân loại chủ yếu theo bản chất vật lý của quá trình đo: quang học, cơ khí, thủy lực, điện, điện tử

Phương tiện đo còn được phân loại theo đặc tính sử dụng: vạn năng và chuyên dùng

Phương tiện đo được phân loại theo số toạ độ có thể có một, hai, ba hay nhiều toạ độ

Việc chọn phương tiện đo nào cho quá trình đo phụ thuộc vào:

- Các đặc điểm riêng của sản phẩm Ví dụ: độ cứng, độ lớn, trọng lượng, độ chính xác và cả số lượng sản phẩm cần đo kiểm

- Phương pháp đo

- Khả năng có thể của thiết bị

1.1.6 Các chỉ tiêu đo lường cơ bản

* Giá trị chia độ c hay là độ phân giải: Đó là chuyển vị thực ứng với kim chỉ dịch đi một khoảng chia a Giá trị c càng nhỏ thì độ chính xác đo càng cao

* Khoảng chia độ a là khoảng cách giữa tâm hai vạch trên bảng chia độ

Trang 16

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

* Tỷ số truyền và độ nhậy K là tỷ số giữa sự thay đổi ở đầu ra tương ứng với

sự thay đổi ở đầu vào của dụng cụ đo Khi K càng lớn, độ chính xác đo càng cao Khi sự thay đổi ở đầu vào ra cùng tính chất vật lý thì K là đại lượng không thứ nguyên, gọi là tỷ số truyền Khi các sự thay đổi này không cùng tính chất vật lý thì

K là sẽ có thứ nguyên của đại lượng ra trên đại lượng vào và K gọi là độ nhậy

* Độ nhậy giới hạn  là chuyển vị nhỏ nhất ở đầu vào còn gây ra được chuyển

vị ở đầu ra ổn định và quan sát được Khi  càng bé thì độ chính xác đo càng cao

* Độ biến động chỉ thị là phạm vi dao động của chỉ thị khi ta đo lập lại cùng một giá trị đo trong cùng một điều kiện đo

Với khe hở , chiều dài khâu dẫn là L, theo hình 1 -1 góc nghiêng lệch lớn nhất là:

L arcrg

Khi đo không theo nguyên tắc Abbe, sai số đo sẽ là:

1 = S.tg S.

Trang 17

Khi đo theo Abbe, sai số sẽ là: 2 = l(1-cos)  l

2

2

Với l là chiều dài đo Có thể thấy sai số của dụng cụ đo không theo nguyên tắc

Abbe là rất lớn so với các dụng cụ đo theo nguyên tắc Abbe

Hình 1.1: Phân tích kết quả đo theo nguyên tắc Abbe

1.1.7.2 Nguyên tắc chuỗi kính thước ngắn nhất

Chuỗi kích thước trong khi đo hình thành bởi một số các khâu của trang bị đo

và kích thước đo, trong đó kích thước đo là khâu khép kín Khi trang thiết bị đo càng đơn giản, ít khâu khớp thì độ chính xác đo càng cao

Khi thiết kế phương án đo, Chuỗi kích thước hình thành bởi sơ đồ đo, trong đó kích thước đo là đại lượng đo gián tiếp có quan hệ hàm số với các đại lượng đo trực tiếp Khi số đại lượng đo trực tiếp càng ít thì độ chính xác đo của đại lượng đo gián

Trang 18

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

tiếp càng cao Như vậy, sơ đồ đo càng đơn giản, càng ít thông số, mối quan hệ không phức tạp đo thì kết quả đo càng chính xác

Hình 1.2: Đo khoảng cách giữa hai tâm

Ví dụ: Khi ta đo khoảng cách giữa hai tâm, có thể có 3 phương án:

Trang 19

1.1.7.4 Nguyên tắc kinh tế

Nguyên tắc này nhằm đảm bảo độ chính xác đo trong điều kiện giá thành khâu

đo thấp nhất, điều này có liên quan đến:

- Giá thành của thiết bị đo, tuổi bền của thiết bị đo

- Số lượng sản phẩm

- Năng suất đo

- Yêu cầu trình độ người sử dụng và sửa chữa

- Khả năng chuyên môn hoá, tự động hoá khâu đo kiểm

- Khả năng lợi dụng các thiết bị đo phổ thông, thiết bị đo sẵn có hoặc các thiết

bị gá lắp đo lường tự trang bị được

1.1.8 Các thông số chất lƣợng của hệ thống đo

Trong một hệ thống đo kiểm, các sensor và các bộ chuyển đổi thường được dùng trong các điều kiện, môi trường khác nhau Cũng giống như con người, chúng rất nhạy cảm với các thông số đầu vào như áp suất, dịch chuyển, nhiệt độ, sóng âm

và từ trường Các đặc tính của sensor được thảo luận theo các tính chất sau:

Độ nhạy là khả năng thiết bị đo phản ứng lại với các thay đổi của đại lượng

đo Nói cách khác, đó là tỉ lệ giữa khoảng thay đổi của tín hiệu đầu ra và đầu vào, như minh họa trên hình 1.3 và 1.4

Trang 20

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

S I



Trong đó, S là độ nhạy, O là khoảng thay đổi của tín hiệu đầu ra, I là khoảng thay đổi tín hiệu đầu vào

Ví dụ: một thiết bị đo cho đầu ra là tín hiệu điện, nếu một thay đổi dịch chuyển 0.001mm gây nên sự thay đổi hiệu điện thế là 0.02V thì độ nhạy của thiết bị

1.1.8.3 Độ chính xác đo

Độ chính xác đo (accuracy) được đánh giá bằng sự sai khác giữa giá trị đo và giá trị thực tế Độ chính xác đo (accuracy) phụ thuộc vào các giới hạn của thiết bị Một thí nghiệm được coi là chính xác nếu nó không bị ảnh hưởng bởi các lỗi của thí nghiệm đó Một độ chính xác ±0.001 có nghĩa là giá trị đo sai khác so với giá trị thực trong phạm vi 0.001 đơn vị Trong thực tế, độ chính xác được định nghĩa bằng phần trăm của giá trị thực:

Phần trăm giá trị thực = (Giá trị đo – giá trị thực) / giá trị thực

Một cái cân có thể cân 1g với lỗi là 0.001g, vậy độ chính xác của thiết bị đo này là 0.1% Sự sai khác giữa giá trị đo và giá trị thực tế được gọi là độ lệch (bias)

Transducer

∆O Hình 1.3 Mô hình đặc trưng

của một bộ chuyển đổi

Nguồn năng lượng

Hình 1.4 Mối quan hệ đầu vào/đầu ra

Trang 21

1.1.8.4 Độ chính xác lặp lại

Độ chính xác lặp lại (precision) là khả năng của thiết bị có thể tạo được một tập các giá trị đo trong một phạm vi cho trước Độ chính xác lặp lại (precision) phụ thuộc vào độ ổn định của thiết bị

Ví dụ: Hình 1.5 minh họa các mức độ khác nhau của Precision và Accuracy trong thí nghiệm bắn bia

Trường hợp precision cao, accuracy thấp xảy ra khi các vết đạn nằm ở vòng tròn ngoài cùng Trong trường hợp thứ 2, accuracy và precision cao, các vết đạn nằm trong vòng tâm và khoảng cách rất gần nhau (rất chụm) Trường hợp thứ 3, accuracy trung bình, precision thấp các vết đạn nằm ở các vòng giữa nhưng rời rạc, không gần nhau Trường hợp cuối, precision và accuracy thấp, các vết đạn nằm ở các vị trí ngẫu nhiên

1.1.8.5 Khoảng chết

Khoảng chết được định nghĩa là khoảng cách lớn nhất hoặc góc lớn nhất mà một bộ phận cơ khí nào của hệ thống có thể dịch chuyển theo một phương nhưng không gây ra một dịch chuyển của một bộ phận nào khác đính kèm với nó

1.1.8.6 Khả năng lặp

Khả năng lặp là khả năng tạo ra một loạt tín hiệu đầu ra hoàn toàn giống nhau khi lặp lại phép đo trong môi trường giống nhau (Khi phép đo được lặp lại thì kết quả đo không bị sai khác, mà hoàn toàn giống nhau – độ ổn định)

1.1.8.7 Khả năng tuyến tính hóa

Accuracy thấp

Precision cao

Accuracy cao Precision cao

Accuracy trung bình, Precision thấp

Accuracy thấp Precision thấp

Hình 1.5 Ví dụ mục tiêu bắn

Trang 22

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Đặc tính của các thiết bị đo chính xác là khi tín hiệu đầu ra là một hàm tuyến tính của tín hiệu đầu vào Tuy nhiên, sự tuyến tính này không bao giờ là tuyệt đối,

và sai khác này được gọi là dung sai tuyến tính Tính tuyến tính được hiểu là sai lệch lớn nhất của đường cong tín hiệu đầu ra với đường thẳng trong vòng lặp hiệu chỉnh Sự phi tuyến tính thường gây ra bởi các thành phần phi tuyến như độ trễ của các thành phần cơ khí, độ nhớt của dung dịch và sự khuếch đại của tín hiệu điện

1.1.8.8 Lỗi trong các thông số mô hình hóa hệ cơ điện tử

Các hệ cơ điện tử hiện đại phụ thuộc nhiều vào việc sử dụng các sensor và các kỹ thuật đo Việc điều khiển các quá trình công nghiệp và các hệ thống tự động

sẽ rất khó khăn nếu như không có các sensor và các hệ đo đếm chính xác Hiệu quả của các thiết bị cơ điện tử yêu cầu có các sự lựa chọn hợp lý các loại sensor, vật liệu, phần cứng và phần mềm Nói một cách rộng hơn, sự lựa chọn một thiết bị cho một ứng dụng cụ thể sẽ phụ thuộc vào độ chính xác yêu cầu Nếu chỉ cần độ chính xác thấp thì không cần thiết phải sử dụng các sensor đắt tiền và các thành phần cảm biến chính xác Ngược lại, nếu thiết bị được dùng trong các ứng dụng yêu cầu độ chính xác cao thì sai số của thiết bị cảm biến và đo đạc phải nhỏ tới mức cho phép Mỗi hệ thống phụ thuộc vào hệ đo đạc sẽ liên quan đến một lượng không ổn định nào đó Sự không ổn định này có thể do sự thiếu chính xác của một sensor riêng lẻ nào đó, hoặc do sai số ngẫu nhiên của phép đo, hoặc do các điều kiện về môi trường Độ chính xác tổng thể của hệ thống sẽ phụ thuộc vào sự tương tác giữa các thành phần trong hệ thống, đồng thời phụ thuộc vào độ chính xác của từng thành phần riêng lẻ Điều này đúng với các thiết bị đo, cũng như các hệ thống sản xuất có nhiều thành phần và hệ thống con Một thiết bị đo thông thường có thể bao gồm nhiều thành phần, có quan hệ phức tạp, và mỗi thành phần có thể ảnh hưởng đến sai

số tổng thể của hệ thống

1.1.8.9 Ảnh hưởng của các sai số thành phần đến sai số tổng

Độ chính xác của một hệ cơ khí phức tạp trong môi trường sản xuất phụ thuộc vào thiết kế và sai số thiết kế của các thành phần trong hệ thống đó Một cách đơn giản, nếu một thí nghiệm có một số nguồn thành phần, mỗi nguồn được đo riêng biệt sử dụng các thiết bị đo độc lập, sẽ cần phải có một thuật toán để xử lý,

Trang 23

tính toán sai số tổng thể của hệ thống Nói chung, thuật toán này cũng cần phải tính toán được sai số riêng lẻ của từng thành phần hệ thống Phương pháp phân tích lỗi giúp ta xác định được mức độ ảnh hưởng của các sai số thành phần đến sai số chung của hệ Thuật toán này cũng giúp ta xác định được sai số thiết kế nếu như biết được sai số thiết kế tổng của hệ thống Một ví dụ minh họa sẽ được trình bày sau đây:

Xét vấn đề tính toán số N là một hàm của n biến độc lập x1, x2, … xn, là các

số lượng đã đo của một thiết bị đo (hay là các thành phần đầu ra của các thiết bị đo khác nhau trong một hệ thống)

2 2

Tất cả các đạo hàm riêng trong dãy đều được tính toán tại các giá trị đã biết

x1, x2, … xn Vì các phép đo đã được tiến hành nên các giá trị xi là các giá trị đã biết

và có thể thay vào biểu thức để tính các đạo hàm riêng

Trong thực tế, các giá trị x rất nhỏ nên x2 có thể bỏ qua Biểu thức 1.3 có thể viết lại thành

Trang 24

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Giá trị tuyệt đối sẽ được sử dụng vì một vài giá trị đạo hàm riêng có thể có giá trị âm Biểu thức 1.5 thể hiện biến nào có ảnh hưởng lớn nhất đến độ chính xác tổng thể của phép đo

Ví dụ nếu

3

f x

f n x

 

 Với i = 1,2,3…,n (1.7a)

Trang 25

Phương pháp các ảnh hưởng tương đương tóm lược trong biểu thức 1.5, xét các giá trị tuyệt đối của tất cả các biến và ước lượng khoảng không chắc chắn lớn nhất của biến đo đạc theo thông số N

Một phương pháp khác là Square root of sum of square (RSS) cũng dựa trên giả thiết là tất cả các đại lượng không ổn định đều được tính toán với cùng một mức

hệ số tin cậy (Ganji 1996) Điều đó được chỉ ra trên biểu thức 1.7b Khi nào áp dụng phương pháp RSS thì hệ số tin cậy của lượng không ổn định trong kết quả tổng thể

N sẽ có giá trị bằng với hệ số tin cậy của các biến xi

1 2 2 1

i n i

1.2.1.1 Phương pháp đo hai tiếp điểm

Phương pháp đo hai tiếp điểm là phương pháp mà khi đo các yếu tố đo của thiết bị đo tiếp xúc với bề mặt chi tiết đo ít nhất là trên 2 điểm, trong đó nhất thiết phải có hai tiếp điểm nằm trên phương biến thiên của kích thước đo 1-1 (hình 1-6)

Hình 1.6 Phương pháp đo hai tiếp điểm

Trong hai tiếp điểm, một gắn với yếu tố định chuẩn MC và một gắn với yếu tố

đo MD Yêu cầu MD // MC và cùng vuông góc với phương 1-1 Áp lực đo có phương tác dụng trùng với 1-1 Để chi tiết đo được ổn định nâng độ cao chính xác khi đo người ta cần chọn mặt chuẩn và mặt đo phù hợp với hình dạng bề mặt đo sao

Trang 26

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

cho chi tiết đo ổn định dưới tác dụng của lực đo Ngoài ra, để giảm ảnh hưởng của sai số chế tạo mặt chuẩn và mặt đo cần có thêm các tiếp điểm phụ để làm ổn định thông số đo

1.2.1.2 Phương pháp đo ba tiếp điểm

Phương pháp đo ba tiếp điểm là phương pháp đo mà khi đo các yếu tố đo của

thiết bị đo tiếp xúc với bề mặt chi tiết đo ít nhất là trên 3 điểm, trong đó không tồn tại một cặp tiếp điểm nào nằm trên phương biến thiên của kích thước đo

Cơ sở của phương pháp đo

a) Từ một điểm I ngoài vòng tròn, quan sát vòng tròn dưới hai tiếp tuyến IA và

IB hợp với nhau một góc  Khi R thay đổi, tâm O của vòng tròn sẽ di chuyển trên phân giác Ix

Để nhận biết sự thay đổi này, ta có thể đặt điểm quan sát tại M hoặc N Chuyển vị trí ở M hoặc N sẽ cho ta sự thay đổi của h

Với

R =

1 2 sin

1 

h

Hình 1.7 Phương pháp đo 3 tiếp điểm

Trang 27

Trong kỹ thuật ta bắt buộc phải tiến hành phép đo so sánh vì kích thước h không xác định được Do đó ta có: R =

1 2 sin

với R0 là bán kính chi tiết mẫu dùng khi đo so sánh

Ứng với điều kiện (1.8) ta có sơ đồ đo (a) hình 1-7 và ứng với điều kiện (1.9)

Khi đo đường kính mặt trụ gián đoạn như đường kính đỉnh răng bánh răng hay then hoa, các mặt méo đặc biệt là với số cạnh lẻ cần xác định góc  thích hợp của khối V

Trang 28

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Ta có:

 = 0 + 2

K h

0 - kích thước mẫu dùng khi chỉnh “0”

h - sai lệch chỉ thị khi đo

K - tỷ số truyền phụ của sơ đồ

Với chi tiết méo 3 cạnh như hình 1-9, có đường kính mọi phía bằng nhau, phương pháp đo 2 tiếp điểm không thể đo được đường kính của chi tiết này Dùng

phương pháp 3 tiếp điểm với  = 1800 -

duy nhất Như thế, nếu một trong 3

tiếp điểm thay đổi toạ độ thì sẽ có một

vòng tròn mới có bán kính khác

Ta cố định hai trong ba điểm và

theo dõi chuyển vị trí của điểm thứ ba

Để đơn giản ta đặt điểm quan sát nằm

Hình 1.10 Dựng đường tròn đi qua 3 điểm

Trang 29

trên trục đối xứng của A, B (hình 1-10)

82

2

R2 =

) (

8 2

)

h h

s h

Nếu h > 0 thì R2 < R1 và ngược lại

Trên nguyên tắc này người ta thiết kế ra phương pháp đo cung 3 tiếp điểm (hình 1-11) Trong hình, cặp con lăn 1 và 2 có khoảng cách tâm s = 2L, được lắp đối xứng qua phương chuyển vị trí của tiếp điểm 3 của đồng hồ có thể xác định được quan hệ:

Với cung lồi ta có: D = 2R =

H

L Hd

H2  2

Với cung lõm ta có: D = 2R =

H

L Hd

D = D0 + D

Với D0 yêu cầu ta có thể tìm được trị số H0

cho dụng cụ có L và d cho trước

Khi đo cung lồi

2 0 0

2

d D d

2

d D d

Trang 30

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Dùng H0 để chỉnh “0” cho dụng cụ như hình 1-12 mô tả

Với phương pháp đo này ta có thể đo bán kính R của cung bất kỳ mà không cần có vòng tròn mẫu D0

Với các cung nhỏ, có thể suy biến cặp con lăn thành hai lưỡi dao, khi đó d = 0 Khi đo chỏm cầu hoặc các lòng cầu, cặp con lăn suy biến thành một vòng chặn

h

Hơn nữa K còn phụ thuộc H = H0 + h cho nên khi đo các vòng tròn kích thước khác nhau cần tính lại K

1.2.1.3 Phương pháp đo một tiếp điểm

Phương pháp đo một tiếp điểm là phương pháp đo mà khi đo yếu tố của thiết

bị đo tiếp xúc với bề mặt chi tiết đo trên một tiếp điểm Kích thước đo được xác định từ toạ độ các điểm tiếp xúc khi đo Vì vậy, phương pháp đo một tiếp điểm còn gọi là phương pháp đo toạ độ Tuỳ theo yêu cầu đo mà có các phương pháp đo một, hai, ba hay nhiều toạ độ như hình 1-13 mô tả Trong đó ở sơ đồ a, đoạn AB được đo trên thiết bị đo một toạ độ, ở sơ đồ b đoạn AB được đo trên thiết bị đo hai toạ độ với phương trình kết quả đo được tính theo sơ đồ đo

Hình 1.12 Chỉnh “0” cho dụng cụ dùng H 0

Trang 31

Trong sơ đồ c, chi tiết được đo trên thiết bị đo 3 toạ độ Mặt của chi tiết đặt trên mặt chuẩn MC của bàn đo, đặt trong hệ toạ độ 3 chiều x, y, z Điều chỉnh cho đầu đo tiếp xúc với bàn đo ít nhất là 3 điểm 1,2,3 có toạ độ x,y,z tương ứng với 3 điểm, xác định mặt phẳng MC, z sẽ là phương pháp tuyến với MC

- Đo 1, 2, L0: cho đầu đo tiếp xúc với 1 tại 4, 5, 6 và với 2 tại 7, 8, 9 trên cùng vị trí z1 Từ trị số toạ độ x,y tương ứng xác định được 1, 2 toạ độ tâm O1,

Độ chính xác đo và công thức tính kết quả đo phụ thuộc vào số điểm đo và cách thức lấy điểm đo

Hình 1.13 Phương pháp đo tọa độ

Trang 32

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Ưu điểm của phương pháp đo tọa độ là có thể đo các kích thước chi tiết phức tạp, khó đo, không yêu cầu rà chỉnh chi tiết đo trước khi đo, giảm một cách đáng kể các động tác chuẩn bị khi đo

Tuỳ theo số tọa độ có thể của thiết bị đo mà thao tác đo và cách tính toán kết quả đo khác nhau Số toạ độ của thiết bị càng nhiều thì thao tác đo càng đơn giản

Số tọa độ càng nhiều, số điểm đo càng nhiều việc tính toán kết quả đo càng khó khăn Vì thế, để nâng cao độ chính xác khi đo người ta cần đo nhiều điểm đo và cần

có sự giúp đỡ của thiết bị tính toán để giảm nhẹ lao động và đỡ nhầm lẫn trong tính toán

Phần lớn các thiết bị đo tọa độ có trang bị sẵn các chương trình tính cho các yêu cầu đo thường gặp để giúp cho quá trình đo được nhanh chóng Độ chính xác của phương pháp đo phụ thuộc vào số điểm đo và cách phân bố các điểm đo trên chi tiết đo

1.2.2 Phương pháp đo các thông số chỉ tiêu chất lượng chính của chi tiết

Chỉ tiêu chất lượng của chi tiết bao gồm:

Nhóm các thông số quy định số sai số hình dáng bề mặt được nêu trong tiêu chuẩn TCVN - 11 - 74 gồm các thông số ghi trong bảng 1.1

Trang 33

Bảng 1.1

Trong đó độ trụ là chỉ tiêu tổng hợp của các chỉ tiêu về độ tròn và sai lệch Profin dọc trục Độ tròn, độ côn, độ cong đường sinh, độ cong trục là các chỉ tiêu riêng lẻ được quy định trên tiết diện ngang hoặc tiết diện dọc trục Khi trình bày các phương pháp đo chúng ta cần tách chỉ tiêu tổng hợp thành các chỉ tiêu riêng và lấy

đó làm đối tượng đo Việc tách các chỉ tiêu tổng hợp thành các chỉ tiêu riêng lẻ sẽ gặp khó khăn về phân phối trị số dung sai tổng thành các dung sai thành phần Thường thường để đơn giản cho bài toán người ta áp dụng phương pháp cân bằng tác dụng cho các thành phần Tuy nhiên trong chỉ đạo cụ thể có thể căn cứ trên khả năng công nghệ mà có thể phân phối dung sai, không áp dụng phương pháp cân bằng tác dụng Ngoài ra mỗi khi đo thông số này không tránh khỏi ảnh hưởng của các thông số khác có liên quan Vì thế dung sai của thông số mà trong khi đo luôn luôn ảnh hưởng đến kết quả đo của các thông số khác được quy định khắt khe nhất tức là có trị số bé nhất Chẳng hạn độ tròn là thành phần có ảnh hưởng đến kết quả của các thông số đo tiếp sau như độ côn, độ cong, độ đảo,…Vì thế khi phân phối dung sai bao giờ trị số độ tròn cũng cần nhỏ hơn, đến mức ảnh hưởng đến kết quả

đo các thông số còn lại có thể bỏ qua được Khi kiểm tra có thể một trong các chỉ tiêu đo được vượt trị số dung sai thành phần, song nếu khi tính sai lệch tổng hợp không vượt quá dung sai cho chỉ tiêu tổng hợp thì sản phẩm vẫn được xem là đạt yêu cầu

Trang 34

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

1.2.2.1 Đo độ tròn

Độ tròn được định nghĩa là sai lệch lớn nhất giữa bề mặt thực đến đường tròn

áp Đường tròn áp là đường tròn lý thuyết bao lấy đường giới hạn bề mặt thực Nếu gọi Ra là bán kính đường tròn áp và Rt là bán kính của bề mặt thực lấy cùng tâm với vòng tròn áp thì sai lệch lớn nhất giữa 2 vòng tròn trên được viết là:

Trong cả 2 trường hợp đều có thể viết:

EFK = R max – R min (1-10) Hình 1.14 là một ví dụ mô tả hiện tượng không tròn trên tiết diện trục, trong

đó a) là méo 2 cạnh, b) là méo 3 cạnh, c) là méo bất kỳ

Hình 1.14 Độ không tròn

Trang 35

Với chi tiết méo có số cạnh chẵn có thể suy ra:

tế, để tránh tồn hai dụng cụ đo và đo nhanh người ta chấp nhận việc hạn chế các phép đo như hình 1.15

Nếu hiệu dmax - dmin/ 1 vòng quay là  và hiệu dmax - dmin/ một số điểm là V, gọi hệ số phản ánh đúng kết quả đo là K = V/ Việc kiểm tra theo các điểm ngẫu nhiên theo sơ đồ 1.15 a) chọn K = 1  0, xác xuất nhận được K = 0,75 là 86%,

do đó sơ đồ 1.15 a cho kết qủa nhanh chóng nhưng kém tin cậy Hơn nữa, nếu số cạnh n = 4, 8, 12, …với mọi phương pháp đo đều cho K = 0

Hình 1.15 Kiểm tra theo các điểm ngẫu nhiên

Trang 36

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Khi đo theo sơ đồ 1.15 b), hệ số K = 0,850,75 với mọi phương đo Sơ đồ này có thể dùng đo độ tròn với các sản phẩm có số cạnh n = 4, 8, 10, 14, 16,… trừ các số chẵn bội 3 như n = 6, 12, 18,…

Khi đo theo sơ đồ 1.15 c) hệ số K = 1  0, 71 Sơ đồ này có thể dùng đo các chi tiết méo cạnh n = 6

 ta thấy việc tăng số điểm đo sẽ làm

tăng độ tin cậy, song việc tăng lên quá 3 điểm đo cũng không làm độ tin cậy tăng lên đáng kể mà làm phức tạp hóa quá trình đo hoặc kết cấu các điểm theo dõi số liệu

Trong kiểm tra tự động, để khỏi xoay chi tiết và

tránh phải ghi nhận trị số chỉ thị người ta tổ chức

các điểm theo dõi kích thước theo sơ đồ hình

1.16 rồi đưa các tín hiệu đo vào thiết bị trừ, kết

quả chỉ cho ta ngay biên độ xmax - xmin Ví dụ, có

thể tổ chức sơ đồ như hình 1.17 Đây là sơ đồ đo

kiểu khí nén Hai nhánh đo theo dõi hai kích

Hình 1.16 Đo độ tròn theo phương pháp 2 tiếp điểm

Hình 1.17 Sơ đồ đo kiểu khí nén

Trang 37

thước trên hai phương vuông góc như sơ đồ 1.16 a Áp đo trên hai nhánh h1và h2được đưa vào áp kế vi sai Trị số chỉ thị trên áp kế cho ta trị số độ ôvan hay hai lần

độ tròn của chi tiết

b) Khi số cạnh n lẻ

Các sản phẩm sau khi mài vô tâm, sau nghiền đĩa hay do các biến dạng đàn hồi khi kẹp để gia công… thường cho sản phẩm bị méo với số cạnh lẻ Để đo độ tròn khi chi tiết méo với số cạnh lẻ cần phải dùng sơ đồ đo 3 tiếp điểm Chi tiết đo được định tâm theo vòng tròn ngoại tiếp với mặt trụ ngoài và vòng tròn nội tiếp với mặt trụ trong Tùy theo yêu cầu về độ chính xác và số cạnh người ta có thể dùng các

sơ đồ đo có chuẩn định vị khác nhau và bố trí vị trí của chuyển đổi khác nhau sao cho có được hệ số phản ánh tương đối đơn giản Thông thường người ta dùng sơ đồ

đo 3 tiếp điểm dạng đối xứng như hình 1.18 Trong đó  là góc V được chọn theo

Trang 38

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

11sin2

Lấy dấu + khi sơ đồ đo có ba tiếp điểm không cùng phía, lấy dấu – khi sơ đồ

có ba tiếp điểm cùng phía

Trị số K phụ thuộc  ứng với số cạnh méo được ghi trong bảng 1-2

1.2.2.2 Đo độ trụ

Độ trụ được định nghĩa là sai lệch lớn nhất giữa bề mặt thực đến bề mặt trụ

áp, đó là mặt trụ lý thuyết bao lấy mặt trụ thực

Hình 1.19 mô tả hiện tượng sai lệch về độ trụ Đó là tổng hợp các sai lệch cả trên tiết diện ngang như độ tròn và trên tiết diện dọc như độ côn, độ phình thắt, độ cong trục,…

Từ định nghĩa có thể rút ra công thức tổng quát tính độ trụ:

Hình 1.19 Sai lệch về độ trụ

Trang 39

trong đó: Dmax - đường kính mặt trụ ngoại tiếp;

Dmin - đường kính mặt trụ nội tiếp với bề mặt thực, đồng tâm với mặt trụ

a) Đo độ côn: Xác định đường kính tại hai tiết diện I-I và II-II cách nhau

chiều dài chuẩn kiểm tra L ( hình 1.20) Độ côn tuyệt đối bằng hiệu hai đường kính

Trang 40

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

đo được Độ côn tương đối bằng tỷ số giữa sai lệch hai đường kính đo và chiều dài chuẩn kiểm tra Trị số L lấy theo điều kiện kỹ thuật của sản phẩm Sau khi quy định chiều dài chuẩn kiểm tra, trị số độ côn được cho thành độ côn tuyệt đối Như thế việc kiểm tra, ghi nhận kết quả đo và phân tích chất lượng sản phẩm sẽ đơn giản dễ dàng hơn Do bản chất của việc đo côn là việc đo đường kính nên ta có thể áp dụng các biện pháp và sơ đồ đo đối với việc đo đường kính để đo độ côn

Sơ đồ đo cơ bản để đo độ côn được thể hiện trên hình 1.20 Để loại trừ các ảnh hưởng của sai số chuẩn nên đo d1 ở đầu A rồi đảo đầu chi tiết cho B vào vị trí đo để

đo d2 Sai lệch chỉ thị giữa hai lần đo cho ta là S Độ côn đo được phụ thuộc S và hệ

số ảnh hưởng của chuẩn đo như ví dụ ở hình 1.20

Đo độ côn theo hình 1.20 năng suất thấp, chỉ thích hợp khi kiểm tra khối lượng sản phẩm không lớn lắm Từ sơ đồ cơ bản trên có thể tổ chức sơ đồ đo vi sai (hình 1.21) hoặc dùng dụng cụ đo dạng tự chọn chuẩn (hình 1.22) Khi đó có thể đọc trực tiếp trị số độ côn trên dụng cụ đo

Khi dùng sơ đồ đo vi sai, việc gá đặt chi tiết rất thuận tiện vì không có sai số chuẩn như hình 1.20 Sơ đồ này được áp dụng để kiểm tra tự động độ côn trong khi gia công hoặc kiểm tra chất lượng sản phẩm loạt lớn

Hình 1.20 Đo độ côn theo sơ đồ cơ bản

Ngày đăng: 04/10/2014, 03:28

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1]. Nguyễn Tiến Thọ, Nguyến Thị Xuân Bẩy, Nguyễn Thị Cẩm Tú (2001), Kỹ thuật đo lường và kiểm tra trong cơ khí, NXB Khoa học &amp; kỹ thuật, Hà Nội Sách, tạp chí
Tiêu đề: Kỹ thuật đo lường và kiểm tra trong cơ khí
Tác giả: Nguyễn Tiến Thọ, Nguyến Thị Xuân Bẩy, Nguyễn Thị Cẩm Tú
Nhà XB: NXB Khoa học & kỹ thuật
Năm: 2001
[2]. Bùi Quý Lục, Phương pháp xây dựng bề mặt cho CAD/CAM, NXB Khoa học &amp; kỹ thuật Sách, tạp chí
Tiêu đề: Phương pháp xây dựng bề mặt cho CAD/CAM
Nhà XB: NXB Khoa học & kỹ thuật
[3]. Nguyễn Ngọc Tân - Kỹ thuật đo - NXB Khoa học &amp; kỹ thuật [4]. Ninh Đức Tốn (2000), Dung sai lắp ghép, NXB Giáo dục Hà nội [5] Catalog máy CMM 544 của hãng Mitutoyo Nhật bản Sách, tạp chí
Tiêu đề: Kỹ thuật đo" - NXB Khoa học & kỹ thuật [4]. Ninh Đức Tốn (2000), "Dung sai lắp ghép
Tác giả: Nguyễn Ngọc Tân - Kỹ thuật đo - NXB Khoa học &amp; kỹ thuật [4]. Ninh Đức Tốn
Nhà XB: NXB Khoa học & kỹ thuật [4]. Ninh Đức Tốn (2000)
Năm: 2000
[6] P.B. Dhanish (2002), “A simple algorithm for evaluation of minimum zone circularity error from coordinate data”, International journal of Machine Tool &amp; Manufacture 42 (2002) 1589-1594 Sách, tạp chí
Tiêu đề: A simple algorithm for evaluation of minimum zone circularity error from coordinate data”", International journal of Machine Tool & Manufacture 42 (2002)
Tác giả: P.B. Dhanish
Năm: 2002
[8] M.S. Shunmugam, On assessment of geometric errors, international Journal of Production Research 24 (1986) 413-425 Sách, tạp chí
Tiêu đề: international Journal of Production Research
[9] T.S.R. Murthy, A comparison of diffenrent algorithms for circularity evaluation, Precision Engineering 8-1 (1986) 19-32 Sách, tạp chí
Tiêu đề: Precision Engineering
[12] Jyunping Huang, An exact solution for the roundness evaluation problems, Precision Engineering 23 (1999) 2-8 Sách, tạp chí
Tiêu đề: Precision Engineering
[13] Jyunping Huang, A new strategy for circularity problems, Precision Engineering 25 (2001) 301-308 Sách, tạp chí
Tiêu đề: Precision Engineering
[14] P.B. Dhanish, M.S. Shunmugam, An algorithm for form error evaluation – using the theory of discrete and linear Chebyshev approximation, Computer Methods in Applied Mechanics and Engineering 92 (1991) 309-324 Sách, tạp chí
Tiêu đề: Computer Methods in Applied Mechanics and Engineering
[15] E.L. Stiefel, Uber Diskrete and Lineare Tschebycheff-Approximationen, Numerische Mathemetik 1 (1959) 1-29 Sách, tạp chí
Tiêu đề: Numerische Mathemetik
[16] E.L. Stiefel, Numerical methods of Tchebycheff Approximation, in: R.E. langer (Ed.), on Numerical Approximation, Univ. of Wisconsin Press, Madison, WI, 1959, pp. 217-232 Sách, tạp chí
Tiêu đề: Univ. of Wisconsin Press, Madison
[7] International Organnization for Standardization, Geneva, ISO 1101-1983, Technical drawings: Tolerancing of form, orientation, location, and runout – Generalities, definitions, symbols, indications on drawing Khác

HÌNH ẢNH LIÊN QUAN

Hình 1.1: Phân tích kết quả đo theo nguyên tắc Abbe  1.1.7.2. Nguyên tắc chuỗi kính thước ngắn nhất - thuật toán mới và chương trình matlab xác định sai lệch độ tròn từ dữ liệu đo trên máy cmm c544
Hình 1.1 Phân tích kết quả đo theo nguyên tắc Abbe 1.1.7.2. Nguyên tắc chuỗi kính thước ngắn nhất (Trang 17)
Hình 1.2: Đo khoảng cách giữa hai tâm - thuật toán mới và chương trình matlab xác định sai lệch độ tròn từ dữ liệu đo trên máy cmm c544
Hình 1.2 Đo khoảng cách giữa hai tâm (Trang 18)
Hình 1.7  Phương pháp đo 3 tiếp điểm - thuật toán mới và chương trình matlab xác định sai lệch độ tròn từ dữ liệu đo trên máy cmm c544
Hình 1.7 Phương pháp đo 3 tiếp điểm (Trang 26)
Hình 1.10. Dựng đường tròn đi qua 3 điểm - thuật toán mới và chương trình matlab xác định sai lệch độ tròn từ dữ liệu đo trên máy cmm c544
Hình 1.10. Dựng đường tròn đi qua 3 điểm (Trang 28)
Hình 1.12  Chỉnh “0” cho dụng cụ dùng H 0 - thuật toán mới và chương trình matlab xác định sai lệch độ tròn từ dữ liệu đo trên máy cmm c544
Hình 1.12 Chỉnh “0” cho dụng cụ dùng H 0 (Trang 30)
Hình 1.13  Phương pháp đo tọa độ - thuật toán mới và chương trình matlab xác định sai lệch độ tròn từ dữ liệu đo trên máy cmm c544
Hình 1.13 Phương pháp đo tọa độ (Trang 31)
Hình 1.15  Kiểm tra theo các điểm ngẫu nhiên - thuật toán mới và chương trình matlab xác định sai lệch độ tròn từ dữ liệu đo trên máy cmm c544
Hình 1.15 Kiểm tra theo các điểm ngẫu nhiên (Trang 35)
Hình 1.18 Đo độ  tròn theo phương  pháp 3 tiếp điểm dạng đối xứng - thuật toán mới và chương trình matlab xác định sai lệch độ tròn từ dữ liệu đo trên máy cmm c544
Hình 1.18 Đo độ tròn theo phương pháp 3 tiếp điểm dạng đối xứng (Trang 37)
Hình 1.20  Đo độ côn  theo sơ đồ cơ bản - thuật toán mới và chương trình matlab xác định sai lệch độ tròn từ dữ liệu đo trên máy cmm c544
Hình 1.20 Đo độ côn theo sơ đồ cơ bản (Trang 40)
Hình 1.21 Đo độ côn  theo sơ đồ  đo vi sai - thuật toán mới và chương trình matlab xác định sai lệch độ tròn từ dữ liệu đo trên máy cmm c544
Hình 1.21 Đo độ côn theo sơ đồ đo vi sai (Trang 41)
Hình 1.23  Đo độ phình thắt - thuật toán mới và chương trình matlab xác định sai lệch độ tròn từ dữ liệu đo trên máy cmm c544
Hình 1.23 Đo độ phình thắt (Trang 42)
Hình 1.25 Độ thẳng - thuật toán mới và chương trình matlab xác định sai lệch độ tròn từ dữ liệu đo trên máy cmm c544
Hình 1.25 Độ thẳng (Trang 43)
Hình 1.26 Đo độ thẳng - thuật toán mới và chương trình matlab xác định sai lệch độ tròn từ dữ liệu đo trên máy cmm c544
Hình 1.26 Đo độ thẳng (Trang 44)
Hình 1.27  nguyên tắc đo độ phẳng - thuật toán mới và chương trình matlab xác định sai lệch độ tròn từ dữ liệu đo trên máy cmm c544
Hình 1.27 nguyên tắc đo độ phẳng (Trang 45)
Hình 1.28.  Đo độ phẳng  bằng ống nhòm tự chuẩn - thuật toán mới và chương trình matlab xác định sai lệch độ tròn từ dữ liệu đo trên máy cmm c544
Hình 1.28. Đo độ phẳng bằng ống nhòm tự chuẩn (Trang 46)

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w