1. Trang chủ
  2. » Luận Văn - Báo Cáo

tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân đà lạt

33 697 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 33
Dung lượng 1,53 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO BỘ KHOA HỌC VÀ CÔNG NGHỆ VIỆN NĂNG LƯỢNG NGUYÊN TỬ VIỆT NAM ___________________ TRẦN TUẤN ANH TÍNH TOÁN THIẾT KẾ CẤU HÌNH CHE CHẮN PHÓNG XẠ CHO KÊNH NƠTRON PHỤC

Trang 1

BỘ GIÁO DỤC VÀ ĐÀO TẠO BỘ KHOA HỌC VÀ CÔNG NGHỆ

VIỆN NĂNG LƯỢNG NGUYÊN TỬ VIỆT NAM

_

TRẦN TUẤN ANH

TÍNH TOÁN THIẾT KẾ CẤU HÌNH CHE CHẮN PHÓNG XẠ CHO KÊNH NƠTRON PHỤC VỤ NGHIÊN CỨU CƠ BẢN VÀ ỨNG DỤNG TẠI LÒ PHẢN ỨNG HẠT NHÂN ĐÀ LẠT

CHUYÊN ĐỀ NGHIÊN CỨU SINH

NGƯỜI HƯỚNG DẪN KHOA HỌC:

1 PGS TS VƯƠNG HỮU TẤN

2 TS PHẠM ĐÌNH KHANG

ĐÀ LẠT – 2012

Trang 2

MỤC LỤC

MỞ ĐẦU 3

CHƯƠNG 1: HIỆN TRẠNG KÊNH NƠTRON SỐ 3 4

1.1 Tổng quan kênh nơtron số 3 4

1.1.1 Phần cấu trúc bên trong tường bảo vệ sinh học lò phản ứng 4

1.1.2 Phần cấu trúc bên ngoài tường bảo vệ sinh học lò phản ứng 5

1.2 Các đặc trưng cơ bản của KS3 6

1.3 Một số vấn đề tồn tại và biện pháp khắc phục 9

CHƯƠNG 2: TÍNH TOÁN MÔ PHỎNG MONTE CARLO 11

2.1 Tính toán suất liều nơtron và gamma cho cấu hình che chắn phóng xạ hiện tại 11

2.1.1 Mô hình tính toán: 11

2.1.2 Kết quả tính toán 12

2.2 Tính toán suất liều nơtron và gamma cho cấu hình che chắn phóng xạ mới 14

2.2.1 Mô hình tính toán 14

2.2.2 Kết quả tính toán 16

CHƯƠNG 3: THIẾT KẾ VÀ LẮP ĐẶT HỆ CHE CHẮN PHÓNG XẠ MỚI 19

3.1 Thiết kế cấu hình che chắn phóng xạ mới 19

3.1.1 Lắp khối cản xạ tại cửa KS3 19

3.1.2 Thiết kế cấu hình che chắn kín nước 19

3.1.3 Thiết kế hệ che chắn phóng xạ bổ sung 21

3.1.4 Thiết kế cấu hình che chắn phóng xạ và bố trí hệ đo đa mục đích 22

3.1.5 Thiết kế chuẩn trực và chắn dòng nơtron 23

3.1.6 Thiết kế ray dẫn hướng cho toàn hệ 24

3.2 Lắp đặt cấu hình che chắn phóng xạ mới 26

3.2.1 Lắp đặt hệ che chắn kín nước 26

3.2.2 Lắp đặt thiết bị đóng mở dòng nơtron 27

3.2.3 Lắp đặt cấu hình che chắn phóng xạ và bố trí hệ đo đa mục đích 28

3.3 Đánh giá an toàn bức xạ cho cấu hình che chắn phóng xạ mới 29

KẾT LUẬN 32

TÀI LIỆU THAM KHẢO 33

Trang 3

MỞ ĐẦU

Lò phản ứng hạt nhân Đà Lạt là cơ sở duy nhất tại Việt Nam có nguồn nơtron mạnh, có thông lượng lớn và ổn định để có thể tiến hành các nghiên cơ bản và ứng dụng Bên cạnh các lĩnh vực như điều chế đồng vị, nghiên cứu vật lý

kỹ thuật lò, phân tích kích hoạt thì khai thác một cách có hiệu quả dòng nơtron từ các kênh ngang của lò phản ứng phục vụ các nghiên cứu vật lý cơ bản và đào tạo cán bộ là một định hướng khai thác lò không thể thiếu Những kết quả nghiên cứu khoa học và đào tạo thu được trong thời gian qua được thể hiện qua số lượng các đề tài nghiên cứu khoa học đã được triển khai, số lượng học viên cao học và nghiên cứu sinh đã được đào tạo và số lượng các công trình nghiên cứu đã công

bố Các kết quả trên góp phần khẳng định lĩnh vực nghiên cứu khai thác các dòng nơtron từ các kênh ngang của Lò phản ứng hạt nhân Đà Lạt là một lĩnh vực nghiên cứu hiệu quả, không thể thiếu và cần được đầu tư chiều sâu

Các hoạt động nghiên cứu trên KS3 chủ yếu là nghiên cứu số liệu và cấu trúc hạt nhân sử dụng hệ phổ kế cộng biên độ các xung trùng phùng và thực tập vật lý nơtron cho sinh viên các trường đại học [4, 6] Tuy nhiên không gian bố trí thí nghiệm tại KS3 chật hẹp nên rất khó khăn trong việc bố trí thí nghiệm do đó cần phải tiến hành quy hoạch lại KS3 theo hướng hiệu quả, an toàn thuận tiện nhằm khai thác tối đa các trang thiết bị hiện có, tiến hành đồng thời nhiều thí nghiệm khi lò hoạt động để nâng cao khả năng nghiên cứu Để thực hiện việc này cần phải có các tính toán đưa ra một cấu hình che chắn phóng xạ cho hệ thiết

bị nghiên cứu mới trong trường hợp tháo dỡ toàn bộ tường bao che chắn phóng

xạ bằng bê tông và gỗ hiện tại nhằm mở rộng không gian thí nghiệm đảm bảo về mặt an toàn bức xạ và an toàn hạt nhân, tính thẩm mỹ phục vụ nghiên cứu cơ bản, ứng dụng và đào tạo

Trang 4

CHƯƠNG 1 HIỆN TRẠNG KÊNH NƠTRON SỐ 3 1.1 Tổng quan kênh nơtron số 3

Kênh nơtron số 3 (KS3) của Lò phản ứng hạt nhân Đà Lạt được mở và

đưa vào sử dụng từ những năm 90 của thế kỷ truớc Thời gian đầu kênh được sử

dụng cho mục đích chụp ảnh nơtron và phân tích kích hoạt nơtron gamma tức thời (PGNAA) Để đảm bảo an toàn bức xạ cho người sử dụng, khu vực bên ngoài kênh được che chắn bằng vách tường bê tông, chỉ còn lại một lối đi hẹp cho người làm thí nghiệm Trong thời gian này, các hoạt động khai thác kênh đã mang lại những kết quả khoa học có ý nghĩa được công bố tại các hội nghị khoa học trong và ngoài nước [[1]] Sau giai đoạn này, hệ PGNAA được chuyển sang kênh nơtron số 4 để khai thác dòng nơtron có thông lượng cao hơn, KS3 đã tạm dừng hoạt động và khu vực phía trong kênh đã trở thành chỗ lưu giữ các nguồn phóng xạ và chất thải phóng xạ tạm thời Theo thời gian, các hệ thống đóng mở dòng nơtron cũng đã bị hư hỏng và không sử dụng được

Năm 2003 KS3 đã được khôi phục lại để bố trí hệ đo phân rã gamma nối tầng Các thiết bị chuẩn trực, dẫn dòng, đóng mở dòng được thiết kế, chế tạo lại cho phù hợp với việc bố trí thí nghiệm mới [[2]] Các thiết bị che chắn phóng xạ

và dẫn dòng nơtron mới về cơ bản đã đáp ứng được việc bố trí hai detector và các khối điện tử cho hệ phổ kế (n, 2γ) Từ đó đến nay KS3 được sử dụng cho mục đích chuyên nghiên cứu số liệu và cấu trúc hạt nhân sử dụng phổ kế cộng biên độ các xung trùng phùng Cấu trúc hiện tại của KS3 gồm hai phần:

1.1.1 Phần cấu trúc bên trong tường bảo vệ sinh học lò phản ứng gồm:

- Hệ dẫn dòng nơtron là một ống thép với hai phần đường kính 203mm dài 1650mm và đường kính 152mm dài 1500mm được nối với nhau Phần nhỏ của ống thép được đặt tại hốc trụ rỗng trong vành phản xạ, phần còn lại kết thúc tại mặt ngoài tường bêtông bảo vệ sinh học của lò phản ứng Kênh này cho dòng nơtron với phông gamma từ vùng hoạt thấp nhất

- Hệ đóng mở dòng nơtron là một thùng nhôm hình trụ đường kính 80mm dài 1500mm chứa đầy nước cất Nước được dẫn vào thùng qua hai ống dẫn vào

và ra thông qua hệ thống bơm điện Trong trường hợp mở dòng nơtron, toàn bộ nước trong thùng được tháo ra ngoài thùng chứa bên ngoài và ngược lại

- Phin lọc Silic được bố trí sau hệ đóng mở dòng nơtron Silic có tác dụng nhiệt hóa nơtron nhanh thành nơtron nhiệt Chiều dài phin lọc 50cm là kích thước tối ưu để thông lượng nơtron nhiệt và tỉ số Cadmi là lớn nhất

- Hệ chuẩn trực dòng nơtron được làm bằng parafin pha Boron, Li, Cd là các vật liệu có tiết diện hấp thụ nơtron lớn có tác dụng tạo dòng nơtron đường kính 1,2cm và 2,5cm (tùy thuộc từng cấu hình thực nghiệm), ngoài ra còn có các khối chuẩn trực bằng chì để giảm các phông gamma từ vùng hoạt và gamma phát

ra từ các vật liệu che chắn

- Khối cản xạ là một hộp vuông bằng thép được đặt chìm vào mặt ngoài của tường bê tông bảo vệ của Lò phản ứng Khối này có kích thước 23 x 23cm

và dày 11,4cm được làm từ các lá thép dày 6,3mm và chứa đầy chì có thể chuyển

động theo thanh hướng ngang về một bên mở ra lối thao tác đến kênh ngang

Khối cản xạ có tác dụng làm giảm áp lực nước trong trường hợp rò rỉ nước từ

Trang 5

thùng lò ra kênh và che chắn phóng xạ khi đóng kênh Tuy nhiên trong quá trình

xây dựng kênh từ giai đoạn trước, khối cản xạ đã được tháo ra và thay thế bởi

một khối parafin pha Boron và chì để che chắn phóng xạ từ dòng nơtron Việc

đưa lại khối cản xạ theo đúng cấu trúc cũ cũng sẽ được thực hiện trong tính toán

này

Sơ đồ cấu trúc bên trong KS3 được chỉ ra ở Hình 1.1

Hình 1.1: Cấu trúc bên trong KS3

1.1.2 Phần cấu trúc bên ngoài tường bảo vệ sinh học lò phản ứng gồm:

- Cửa kênh là một tấm sắt được chế tạo từ thép dày 9,5mm và được dát

chì dày 3,2cm để tăng cường che chắn bức xạ Cửa được gắn trên bản lề, ở phía

trên cửa có vành đệm bằng cao su và bảy cái ép gien cho phép ép kín cửa để

tránh mất nước lò trong trường hợp hở kênh ngang Nếu trên kênh ngang không

tiến hành công việc thì cửa sắt phải được đóng chắc chắn

- Hệ che chắn phóng xạ cho hệ phổ kế (n, 2γ) bao gồm hai buồng chì kích

thước 30cm × 25cm × 20cm bao quanh hai detector HPGe Phần tinh thể detector

được bao bọc một lớp parafin pha LiF để chắn nơtron tán xạ từ mẫu và các vật

liệu che chắn vào detector Một hệ chuẩn trực dòng nơtron phụ cũng được thiết

kế để tạo dòng nơtron với đường kính phù hợp với yêu cầu thực nghiệm Toàn

bộ hệ thiết bị trên được bố trí trên một bàn di chuyển dọc đường ray song song

với dòng nơtron Kết cấu này cho phép hai detector và hệ che chắn bức xạ có thể

di chuyển vào gần hoặc ra xa cửa kênh Với thiết kế như vậy yêu cầu đóng kín

kênh khi không tiến hành thí nghiệm được tiến hành một cách dễ dàng

- Hệ chắn dòng nơtron là một khối parafin pha Boron hình trụ đường kính

30cm, cao 40cm được bố trí trong tường bao che chắn phóng xạ KS3 Hệ này có

tác dụng bắt toàn bộ nơtron khi đi ra khỏi dòng Hình 1.2 là sơ đồ mặt cắt ngang

của KS3 và sơ đồ bố trí các thiết bị nghiên cứu trên kênh

- Tường bao che chắn phóng xạ có kích thước rộng 3,6m, dài 3,2m, dày

0,9m và cao 2,3m Tường bao gồm hai lớp: Lớp thứ nhất gồm parafin pha boron

dày 10cm và gỗ dày 20cm có tác dụng bắt nơtron tán xạ từ các vật liệu che chắn,

lớp thứ 2 là các khối bê tông kích thước 40 x 20 x 10cm được xếp xen kẽ để che

chắn gamma Lối vào kênh rộng 0,5m dành cho nhân viên vào kênh bố trí thí

nghiệm, lắp đặt các thiết bị điện tử và đổ nitơ cho các detector bán dẫn

Sơ đồ cấu trúc bên ngoài tường bảo vệ sinh học tại KS3 được chỉ ra ở

3150 mm 152mm

H 2 O

Bê tông

Si

Bơm điện Thùng nước cất Phin lọc Silic Chuẩn trực 12mm

Ống thép

Trang 6

Hình 1.2: Cấu trúc bên ngoài tường bảo vệ sinh học tại KS3

1.2 Các đặc trưng cơ bản của KS3

KS3 sử dụng phin lọc Silic để nhiệt hóa nơtron, phin lọc có đường kính 5cm, dài 50cm Thông lượng nơtron nhiệt tại vị trí đặt mẫu là Φth = 1,02x106n.cm-2.s-1, tỉ số cadmi đối với vàng RCd (Au) ~ 800 (sử dụng hộp Cd dày 1mm)

Suất liều nơtron và gamma tại các vị trí trên sơ đồ ở Hình 1.3 trong trường hợp lò hoạt động ở mức công suất 500kW trong hai trường hợp kênh mở

và kênh đóng Kết quả phân bố suất liều nơtron và gamma trong hai trường hợp

Hình 1.3: Sơ đồ vị trí đo liều tại KS3

Chì

Trang 7

Bảng 1.1: Suất liều nơtron (D n ) và gamma (D g ) trong trường hợp kênh mở và kênh

0 0.5 1 1.5 2 2.5

Trang 8

0 5 10 15 20 25

đến giá trị giới hạn liều cho phép Tuy nhiên tại vị trí 11 là vị trí tiếp giáp với cột

nhiệt, suất liều gamma là khá lớn và không thay đổi trong cả hai trường hợp mở

và đóng kênh, có thể giải thích là do nguyên nhân sau đây: phần cửa thép của cột nhiệt có khe hở khoảng 2cm, tại đó liều gamma là khá lớn, chính phông phóng

xạ tại vị trí này ảnh hưởng trực tiếp đến suất liều gamma ở vị trí 11 Để giảm liều tại vị trí 11 cần thiết phải có che chắn bổ sung tại khe hở này Hình 1.6 và 1.7 chỉ

ra vị trí khe hở tại cột nhiệt khi có và không che chắn chì (lớp chì dày 5cm) Suất liều gamma tại khe hở cột nhiệt, vị trí 11 và vị trí 12 trước và sau che chắn chì

được chỉ ra ở Bảng 1.2

Hình 1.6: Vị trí khe hở tại cột nhiệt

Khe hở 2cm

Vị trí 11 1m

Trang 9

Hình 1.7: Vị trí khe hở tại cột nhiệt được che chắn 5cm chì Bảng 1.2: Suất liều gamma (D g ) trong trường hợp có và không che chắn chì

2 Do giới hạn của tường che chắn xung quanh kênh nên không gian để tiến hành thí nghiệm rất chật chội, không thuận tiện cho việc bố trí hai hoặc ba detector đồng thời, đặc biệt khi đổ nitơ hoặc cần di chuyển các detector

3 Khó khăn khi bố trí đồng thời hai thí nghiệm cùng lúc để tiết kiệm thời gian đo đạc như nghiên cứu phân rã gamma nối tầng, đo truyền qua, đo phổ nơtron,…

4 Cửa kênh phải mở thường xuyên khi tiến hành thí nghiệm nên không đảm bảo đuợc yêu cầu an toàn hạt nhân khi lò có sự cố rò rỉ nước qua các kênh ngang

5 Không đảm bảo được mỹ quan cho kênh theo yêu cầu sạch đẹp, an toàn hạt nhân và an toàn phóng xạ,

Chì dày 5cm

Trang 10

6 Không thể hướng dẫn đồng thời nhiều sinh viên khi có các đoàn tham quan, thực tập

Nhằm mở rộng hướng nghiên cứu cơ bản, ứng dụng và đào tạo đồng thời

đảm bảo an toàn bức xạ và thuận tiện trong bố trí thí nghiệm, trên cơ sở số liệu

phân bố suất liều nơtron và gamma đã khảo sát xung quanh khu vực KS3 đối chiếu với giới hạn liều đối với nhân viên bức xạ là 20mSv/năm tức 10µSv/giờ [[3]] cho thấy hoàn toàn có thể tháo dỡ được tường bao che chắn bức xạ hiện nay nếu thay đổi lại các thiết bị dẫn dòng, hệ che chắn phóng xạ trước cửa kênh và một số che chắn bổ sung tại khu vực cột nhiệt Mục tiêu được đặt ra như sau:

1 Dựa trên không gian của kênh hiện có, tính toán thiết kế lại hệ thống che chắn, dẫn dòng, bố trí thí nghiệm theo hướng bố trí các hệ đo nhiều detector, tiến hành đồng thời nhiều thí nghiệm, thuận tiện trong khai thác

sử dụng thiết bị, hướng dẫn thực tập, đảm bảo mỹ quan cho lò phản ứng cho việc mở rộng không gian bố trí hệ đo nhằm đảm bảo an toàn bức xạ cho người làm thí nghiệm và an toàn cho thiết bị bằng kỹ thuật Monte Carlo

2 Đưa ra bản thiết kế và phương án thi công tối ưu khi tháo dỡ và xây dựng

lại không gian của kênh

3 Khôi phục lại khối cản xạ, đảm bảo việc kín nước cho kênh trong trường hợp sự cố mất nước lò theo các kênh ngang

4 Tháo dỡ tường bao và bố trí một hệ đo đa mục đích phục vụ nghiên cứu

cơ bản, nghiên cứu ứng dụng và đào tạo

Trang 11

CHƯƠNG 2 TÍNH TOÁN MÔ PHỎNG MONTE CARLO

Mô phỏng cấu hình che chắn phóng xạ được thực hiện bằng chương trình MCNP nhằm xác định suất liều nơtron và gamma tại 51 vị trí như nêu trên Các kết quả tính toán là cơ sở để người làm thực nghiệm đưa ra được cấu hình che chắn phóng xạ tối ưu cho hệ thiết bị điện tử và khu vực làm việc đảm bảo tiêu chuẩn an toàn bức xạ Mô hình tính toán gồm 02 mô hình: Mô hình tính toán cho cấu hình che chắn phóng xạ hiện tại (validation chương trình tính toán) và mô hình tính toán cho cấu hình che chắn phóng xạ mới trong trường hợp tháo dỡ tường bao che chắn tại KS3

2.1 Tính toán suất liều nơtron và gamma cho cấu hình che chắn phóng xạ hiện tại

2.1.1 Mô hình tính toán:

- Hệ dẫn dòng nơtron: là một ống thép với hai phần đường kính 203mm

dài 1650mm và đường kính 152mm dài 1500mm được nối với nhau Phần nhỏ của ống thép được đặt tại hốc trụ rỗng trong vành phản xạ, phần còn lại kết thúc tại mặt ngoài tường bêtông bảo vệ sinh học của lò phản ứng Kênh này cho dòng nơtron với phông gamma từ vùng hoạt thấp nhất

- Phin lọc Silic 50cm: được bố trí sau hệ đóng mở dòng nơtron Silic có

tác dụng nhiệt hóa nơtron nhanh thành nơtron nhiệt Chiều dài phin lọc 50cm là kích thước tối ưu để thông lượng nơtron nhiệt và tỉ số Cadmi là lớn nhất

- Hệ chuẩn trực dòng nơtron: kính ngoài 203mm dài 300mm được làm

bằng parafin pha Boron, Li, Cd [5] là các vật liệu có tiết diện hấp thụ nơtron lớn

có tác dụng tạo dòng nơtron đường kính 1,2cm và 2,5cm (tùy thuộc từng cấu hình thực nghiệm), ngoài ra còn có các khối chuẩn trực bằng chì để giảm các phông gamma từ vùng hoạt và gamma phát ra từ các vật liệu che chắn

thước 35 x 25 x 20cm bao quanh hai tinh thể của detector HPGe

- Hệ chắn dòng nơtron: Hệ chắn dòng nơtron là một khối parafin pha

Boron hình trụ đường kính 30cm, cao 40cm được bố trí trong tường bao che chắn phóng xạ KS3 Hệ này có tác dụng bắt toàn bộ nơtron khi đi ra khỏi dòng

- Tường bao che chắn phóng xạ: có kích thước rộng 3,6m, dài 3,2m, dày

0,9m và cao 2,3m Tường bao gồm hai lớp: Lớp thứ nhất gồm parafin pha boron dày 10cm và gỗ dày 20cm có tác dụng bắt nơtron tán xạ từ các vật liệu che chắn, lớp thứ 2 là các khối bê tông kích thước 40 x 20 x 10cm được xếp xen kẽ để che chắn gamma Lối vào kênh rộng 0,5m dành cho nhân viên vào kênh bố trí thí nghiệm, lắp đặt các thiết bị điện tử và đổ nitơ cho các detector bán dẫn

Cấu trúc kênh dẫn nơtron và cấu hình bố trí thí nghiệm trên KS3 được chỉ

ra trên Hình 2.1

Trang 12

Hình 2.1: Sơ đồ hệ che chắn phóng xạ hiện tại trên KS3

2.1.2 Kết quả tính toán

Kết quả tính toán và đo đạc thực nghiệm suất liều nơtron và gamma tại 17

vị trí theo 3 độ cao của tường bao 0,5m, 1m và 1,5m được chỉ ra ở Bảng 2.1, 2.2

và Hình 2.2, 2.3

Bảng 2.1: Suất liều nơtron tính toán và đo thực nghiệm

Vị trí Độ cao 0.5 m Độ cao 1 m Độ cao 1.5 m

Hệ chắn dòng nơtron

Buồng chì che chắn detector

Vị trí bàn làm việc

Trang 13

Hình 2.2: So sánh phân bố suất liều nơtron ở độ cao 1m Bảng 2.2: Suất liều gamma tính toán và đo thực nghiệm

Vị trí Độ cao 0.5 m Độ cao 1 m Độ cao 1.5 m

Trang 14

Hình 2.3: So sánh phân bố suất liều gamma ở độ cao 1m

Từ bảng kết quả tính toán và sơ đồ phân bố suất liều nơtron và gamma tại

17 vị trí quan tâm có thể đưa ra một số kết luận sau:

- Kết quả tính suất liều nơtron tại vị trí quan tâm khá phù hợp với kết quả

đo đạc thực nghiệm Giá trị liều tại các vị trí thường xuyên làm việc là 1 và 2 (vị

trí đặt bàn làm việc), 3 (vị trí đặt các khối điện tử chức năng) và 4 (vị trí thay đổi mẫu) đều nhỏ hơn giá trị giới hạn liều cho phép theo tiêu chuẩn an toàn bức xạ (10µSv/h)

- Suất liều gamma tại các vị trí 8, 9, 10, 11 là tương đối lớn (>10µSv/h) Nguyên nhân chính có thể được giải thích là do:

+ Vị trí 8, 9, 10 (trong tường bao): do tâm dòng nơtron nằm lệch về bên phải so với cửa kênh và cửa thép của kênh cũng mở ra bên phải, vì vậy không thể bố trí che chắn phóng xạ ở khoảng không gian này

+ Vị trí 11 (ngoài tường bao): do ảnh hưởng của phông phóng xạ

từ khe hở 2cm ở cột nhiệt (xem Bảng 1.2)

Kết quả tính toán phù hợp với kết quả thực nghiệm khẳng định rằng trên

cơ sở cấu hình che chắn phóng xạ hiện tại có thể xây dựng mô hình tính toán cho cấu hình che chắn thí nghiệm mới trong trường hợp tháo dỡ tường bao tại KS3 Tuy nhiên trong cấu hình mới cần phải tính toán che chắn bổ sung các vị trí ảnh hưởng nhằm đảm bảo an toàn bức xạ

2.2 Tính toán suất liều nơtron và gamma cho cấu hình che chắn phóng xạ mới

2.2.1 Mô hình tính toán

- Hệ dẫn dòng nơtron: tương tự cấu hình cũ

- Phin lọc Silic 50cm: tương tự cấu hình cũ

- Hệ chuẩn trực dòng nơtron: gồm ba khối parafin pha B4C có kích thước tương tự nhau với khối trụ đường kính ngoài 203mm dài 300mm, trên thân khối trụ này gia công hai lỗ để đặt ống dẫn nước từ hệ đóng mở dòng nơtron Một

Trang 15

khối trụ nhỏ hơn với đường kính ngoài 100mm, đường kính trong 30mm, dài 300mm được đúc bằng parafin pha B4C mật độ cao có tác dụng dẫn dòng nơtron

ra ngoài kênh Các khối chuẩn trực này còn có tác dụng làm giảm liều phóng xạ

từ vùng hoạt ra cửa kênh

- Khối cản xạ: là một hộp vuông bằng thép được đặt chìm vào mặt ngoài

của tường bê tông bảo vệ của Lò phản ứng Khối này có kích thước 23 x 23cm

và dày 11,4cm được làm từ các lá thép dày 6,3mm và chứa đầy chì có thể chuyển

động theo thanh hướng ngang về một bên mở ra lối thao tác đến kênh ngang

Khối cản xạ có tác dụng làm giảm áp lực nước trong trường hợp rò rỉ nước từ thùng lò ra kênh và che chắn phóng xạ khi đóng kênh

- Hệ che chắn kín nước: Cửa kênh KS3 hiện tại được thay bằng một tấm

thép có kích thước 61,3 x 40,4cm, dày 10mm được vít chặt vào cửa kênh Giữa cửa kênh và tấm thép có một đệm cao su có tác dụng làm kín nước Tại vị trí tâm dòng trên tấm thép gia công một lỗ tròn đường kính 10cm và đặt một nắp nhôm

đường kính 6cm, dài 8cm, dày 2mm có đệm cao su và các đai ốc để bắt chặt vào

tấm thép cửa kênh, có tác dụng để nơtron đi qua nhưng vẫn đảm bảo kín nước trong trường hợp kênh bị rò rỉ nước từ thùng lò

- Hệ che chắn phóng xạ bổ sung trước cửa kênh: Trong trường hợp lắp lại khối cản xạ vào cửa kênh thì một phần không gian trong lòng cửa kênh không được che chắn phóng xạ, do đó cần phải tiến hành che chắn bổ sung trước cửa kênh để giảm liều phóng xạ Hệ che chắn phóng xạ bổ sung trước bao gồm hai lớp: lớp thứ nhất là khối parafin pha B4C kích thước 47 x 53 x 13cm có tác dụng che chắn nơtron từ kênh và khối chì kích thước 57 x 63 x 18cm có tác dụng che chắn gamma tán xạ trước cửa kênh Tại vị trí tâm dòng nơtron trên hệ che chắn phóng xạ đặt một chuẩn trực đường kính 3cm để tạo dòng nơtron đến mẫu chiếu

- Hệ che chắn phóng xạ cho detector: che chắn phóng xạ cho hệ phổ kế cộng biên độ các xung trùng phùng bao gồm hai buồng chì kích thước 35 x 25 x 20cm bao quanh hai tinh thể của detector HPGe Một buồng chì có cùng kích thước được đặt bên trên vuông góc hai buồng chì kia để che chắn phóng xạ cho detector nhấp nháy NaI(Tl) trong trường hợp bố trí hệ đo (n, 3γ)

- Hệ đo nơtron truyền qua: gồm giá để mẫu đo, buồng chì che chắn phóng

xạ cho ống đếm nơtron

- Hệ chắn dòng nơtron: là khối chì đường kính 36cm, dài 33cm bao

quanh khối parafin+B4C đường kính 22,6cm, dài 25cm được lắp trên một chân

đế có thể di chuyển được trên ray dẫn hướng Hệ này có tác dụng chắn toàn bộ

dòng nơtron từ kênh đi ra

Hình 2.4 là mô hình tính toán cho cấu hình che chắn phóng xạ và bố trí thí nghiệm mới tại KS3 trong trường hợp tháo dỡ tường bao

Trang 16

Hình 2.4: Sơ đồ hệ che chắn phóng xạ mới trên KS3

2.2.2 Kết quả tính toán

Phân bố suất liều nơtron và gamma được chỉ ra ở Bảng 2.3, Bảng 2.4 và Hình 2.5, Hình 2.6

Bảng 2.3: Bảng so sánh suất liều nơtron tính toán cho 2 cấu hình mới và cũ

Vị trí Độ cao 0.5 m Độ cao 1 m Độ cao 1.5 m

CH mới CH cũ CH mới CH cũ CH mới CH cũ

Hệ đo nơtron truyền qua

Ngày đăng: 30/08/2014, 01:07

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1]. Vương Hữu Tấn và cộng sự, Nghiên cứu ứng dụng các hiệu ứng tương tác của nơtron, gamma và các hạt mang điện được tạo ra trên các thiết bị đã có sẵn ở Việt Nam, Đề tài cấp nhà nước KC-09-08,1995 Sách, tạp chí
Tiêu đề: Nghiên cứu "ứng dụng các hiệu "ứng tương tác của "nơtron, gamma và các hạt mang "điện "được tạo ra trên các thiết bị "đã có sẵn "ở "Việt Nam
[2]. Nguyễn Xuân Hải, Nghiên cứu phân rã gamma nối tầng của hạt nhân Yb, Đề tài cơ sở mã số CS-2002/CB2005 Sách, tạp chí
Tiêu đề: Nghiên cứu phân rã gamma nối tầng của hạt nhân Yb
[3]. TCVN 6866:2001, An toàn bức xạ - Giới hạn liều đối với nhân viên bức xạ và dân chúng, 2001 Sách, tạp chí
Tiêu đề: An toàn bức xạ - Giới hạn liều đối với nhân viên bức xạ và dân
[4]. Hồ Hữu Thắng, Nguyễn Xuân Hải, Trần Tuấn Anh, Nguyễn Kiên Cường, Ứng dụng MCNP4C2 xác định cấu hình che chắn tối ưu cho hệ phổ kế cộng biên độ các xung trùng phùng, Hội nghị Khoa học và Công nghệ Hạt nhân toàn quốc lần thứ VII, Đà Nẵng 2007 Sách, tạp chí
Tiêu đề: Ứng "dụng MCNP4C2 xác "định cấu hình che chắn tối "ưu cho hệ phổ kế cộng biên độ "các xung trùng phùng
[5]. Nguyễn Cảnh Hải, Nguyễn Mộng Sinh, Lê Thái Dũng, Trần Tuấn Anh, Phạm Ngọc Sơn, Nguyễn Xuân Hải, Hồ Hữu Thắng, Nghiên cứu các thông số đặc trưng của vật liệu che chắn nơtron LiF tự chế tạo, Hội nghị Khoa học và Công nghệ Hạt nhân toàn quốc lần thứ VI, Đà Lạt, 2005 Sách, tạp chí
Tiêu đề: Nghiên cứu các thông số đặc trưng "của vật liệu che chắn nơtron LiF tự chế tạo
[6]. Nguyễn Cảnh Hải và cộng sự, Nâng cấp hệ che chắn và dẫn dòng nơtron phục vụ cho các nghiên cứu phản ứng (n, γ ) và (n,2 γ ) tại kênh ngang số 4, số 3 của Lò phản ứng Hạt nhân Đà Lạt, Đề tài cấp Bộ 2004-2005 Sách, tạp chí
Tiêu đề: Nâng cấp hệ che chắn và dẫn dòng nơtron phục vụ "cho các nghiên cứu phản "ứng (n,"γ") và (n,2"γ") tại kênh ngang số 4, số 3 của Lò "phản ứng Hạt nhân Đà Lạt
[7]. Nguyễn Xuân Hải, Quy hoạch không gian kênh nơtron số 3 phục vụ một số nghiên cứu cơ bản và ứng dụng, đảm bảo an toàn bức xạ và thuận tiện trong bố trí thí nghiệm, Nhiệm vụ cơ sở 2011 Sách, tạp chí
Tiêu đề: Quy hoạch không gian kênh nơtron số 3 phục vụ một số nghiên "cứu cơ bản và ứng dụng, "đảm bảo an toàn bức xạ và thuận tiện trong bố trí thí "nghiệm

HÌNH ẢNH LIÊN QUAN

Hình 1.2: Cấu trúc bên ngoài tường bảo vệ sinh học tại KS3 - tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân đà lạt
Hình 1.2 Cấu trúc bên ngoài tường bảo vệ sinh học tại KS3 (Trang 6)
Hình 1.3: Sơ đồ vị trí đo liều tại KS3 - tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân đà lạt
Hình 1.3 Sơ đồ vị trí đo liều tại KS3 (Trang 6)
Hình 1.4: Phân bố suất liều nơtron trong trường hợp kênh mở và kênh đóng ở độ cao - tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân đà lạt
Hình 1.4 Phân bố suất liều nơtron trong trường hợp kênh mở và kênh đóng ở độ cao (Trang 7)
Bảng 1.1: Suất liều nơtron (D n ) và gamma (D g ) trong trường hợp kênh mở và kênh  đóng - tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân đà lạt
Bảng 1.1 Suất liều nơtron (D n ) và gamma (D g ) trong trường hợp kênh mở và kênh đóng (Trang 7)
Hình 1.5: Phân bố suất liều gamma trong trường hợp kênh mở và kênh đóng ở độ cao  1m - tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân đà lạt
Hình 1.5 Phân bố suất liều gamma trong trường hợp kênh mở và kênh đóng ở độ cao 1m (Trang 8)
Hình 1.6: Vị trí khe hở tại cột nhiệt - tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân đà lạt
Hình 1.6 Vị trí khe hở tại cột nhiệt (Trang 8)
Hình 1.7: Vị trí khe hở tại cột nhiệt được che chắn 5cm chì - tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân đà lạt
Hình 1.7 Vị trí khe hở tại cột nhiệt được che chắn 5cm chì (Trang 9)
Hình 2.1: Sơ đồ hệ che chắn phóng xạ hiện tại trên KS3 - tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân đà lạt
Hình 2.1 Sơ đồ hệ che chắn phóng xạ hiện tại trên KS3 (Trang 12)
Bảng 2.1: Suất liều nơtron tính toán và đo thực nghiệm - tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân đà lạt
Bảng 2.1 Suất liều nơtron tính toán và đo thực nghiệm (Trang 12)
Hình 2.2: So sánh phân bố suất liều nơtron ở độ cao 1m  Bảng 2.2: Suất liều gamma tính toán và đo thực nghiệm - tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân đà lạt
Hình 2.2 So sánh phân bố suất liều nơtron ở độ cao 1m Bảng 2.2: Suất liều gamma tính toán và đo thực nghiệm (Trang 13)
Hình 2.3: So sánh phân bố suất liều gamma ở độ cao 1m - tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân đà lạt
Hình 2.3 So sánh phân bố suất liều gamma ở độ cao 1m (Trang 14)
Hình 2.4: Sơ đồ hệ che chắn phóng xạ mới trên KS3 - tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân đà lạt
Hình 2.4 Sơ đồ hệ che chắn phóng xạ mới trên KS3 (Trang 16)
Phân bố suất liều nơtron và gamma  được chỉ ra ở Bảng 2.3, Bảng 2.4 và  Hình 2.5, Hình 2.6 - tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân đà lạt
h ân bố suất liều nơtron và gamma được chỉ ra ở Bảng 2.3, Bảng 2.4 và Hình 2.5, Hình 2.6 (Trang 16)
Hình 2.5: So sánh phân bố suất liều nơtron tính toán   giữa cấu hình mới và cũ ở độ cao 1m - tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân đà lạt
Hình 2.5 So sánh phân bố suất liều nơtron tính toán giữa cấu hình mới và cũ ở độ cao 1m (Trang 17)
Hình 2.6: So sánh phân bố suất liều gamma tính toán   giữa cấu hình mới và cũ ở độ cao 1m - tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân đà lạt
Hình 2.6 So sánh phân bố suất liều gamma tính toán giữa cấu hình mới và cũ ở độ cao 1m (Trang 18)

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w