1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Phần 2 KHÓA ĐÀO TẠO TÍNH TOÁN ỔN ĐỊNH VÀ ỨNG DỤNG TRÊN PHẦN MỀM PSSE CHO KỸ SƯ HỆ THỐNG ĐIỆN (Nghiên cứu và ứng dụng trên Phần mềm PSSE của Siemens PTI)

60 1K 10
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Power System Stability Calculation Training
Tác giả Mohamed El Chehaly
Trường học Global Power
Chuyên ngành Power System Stability
Thể loại eBook
Năm xuất bản 2013
Thành phố Unknown
Định dạng
Số trang 60
Dung lượng 4,58 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Phần 2 KHÓA ĐÀO TẠO TÍNH TOÁN ỔN ĐỊNH VÀ ỨNG DỤNG TRÊN PHẦN MỀM PSSE CHO KỸ SƯ HỆ THỐNG ĐIỆN (Nghiên cứu và ứng dụng trên Phần mềm PSSE của Siemens PTI): • PSS®E Basic Operation. • Load Flow Analysis. • Contingency Analysis. • ShortCircuit Analysis.

Trang 1

A Division of Global Power

POWER SYSTEM STABILITY CALCULATION TRAINING

D 1 I t d ti t PSS®E Day 1 - Introduction to PSS®E

July 4, 2013 Prepared by: Mohamed El Chehaly

Trang 2

OUTLINE OUTLINE

• PSS®E 33: Basic Operation

• Load Flow Analysis

Trang 3

PSS®E 33: BASIC OPERATION eBook for You

Trang 4

PSS®E Functional Description

PSS®E Functional Description

 Power flow and related network analysis

functions

 Balanced and unbalanced fault analysis

 Dynamic simulation

Trang 5

Input Data Files

Input Data Files

 Power Flow Raw Data Files (.raw)

 Dynamics Data Files (.dyr) y ( y )

 Saved Case (.sav) and Snapshot (.snp):

binary files

 Subsystem Description Data (.sub)

 Contingency Description Data (.con)

 Sequence Data Files (.seq)

Trang 6

Output Files

Output Files

 Distribution Factor Data (.dfx)

 AC Contingency Solution Output (.acc) g y p ( )

 PV Solution Output (.pv)

 QV Solution Output (.qv) Q So ut o Output ( q )

 Channel Output (.out)

 Slider Diagram (.sld)

Trang 7

Automation Files

Automation Files

 Response File or IDEV File (.idv)

 IPLAN Source Program (.ipl)

 IPLAN Executable Program (.irf)

 Python Program (.py)

Trang 8

Key Elements of the Interface

Key Elements of the Interface

Toolbars Tree View

Trang 9

Key Elements of the Interface

Key Elements of the Interface

 Tree View

in a hierarchical list

displayed in expandable/collapsible folders

 Spreadsheet View

Importing a sav file or a raw file populates the

spreadsheet with network data

Tabs allow specification of the various data

categories

Trang 10

Key Elements of the Interface

Key Elements of the Interface

 Output View

Alerts and warning also appear in red text in the

 Command Line Interface (CLI)

Trang 12

Branch Tab

Branch Tab

Branch Data (pu) ID

Trang 13

Load Tab

Load Tab

ID Bus Number

Load Data

Trang 14

Plant Tab

Plant Tab

Bus Number

Remote Bus Scheduled Voltage

Trang 15

Machine Tab

Machine Tab

ID Bus Number

Trang 16

Two Winding Tab

Two Winding Tab

Trang 17

Two Winding Tab

Two Winding Tab

Base Type

Transformer Data

Thermal Rating

Magnetizing  Admittance

Transformer Data

g

Trang 18

Fixed Shunt Tab

Fixed Shunt Tab

ID Bus Number

Fixed Shunt Data

Trang 19

Switched Shunt Tab

Switched Shunt Tab

Bus Number

Control Mode

Voltage Limits Reactive Power Limits

Trang 20

Switched Shunt Tab

Switched Shunt Tab

Number of Step for Block i

Initial Value

Number of Step for Block i Admittance Increment for Each Step in Block i

Trang 21

Exercises

1 Go to the “Bus” tab Find bus 3008:

a) What is the name of this bus and its rated

voltage?

Name: CATDOGRated Voltage: 230 kV

b) Based on the code number, what type of bus is

this?

Rated Voltage: 230 kV

Code number: 1 Load Bus

Trang 22

Exercises

2 Go to the “Branch” tab Find the branch

that connects bus 201 to bus 207:

a) What are the name of the buses and the rated

voltage of the branch?

Bus Names: HYDRO and DUPONT

b) What is the rated resistance and reactance of

Bus Names: HYDRO and DUPONT Rated Voltage: 500 kV

b) What is the rated resistance and reactance of

this branch (p.u.)?

Trang 23

b) What is the power factor of this load?

Trang 24

Exercises

4 Go to the “Machine” tab Find generator

connected to bus 402:

a) What are the maximum and minimum reactive

power ratings of this generator?

Qmax = 610 MVAr

b) What is the power loading of the machine in %?

Qmax = 610 MVArQmin = -110 MVAr

b) What is the power loading of the machine in %?

Loading in MVA = √(3212 + 142.32492) = 351.14 MVA

Loading in % = 351.14 / 610 = 58%

Trang 25

Exercises

5 Go to the “Switched Shunt” tab Find

switched shunt connected to bus 154:

a) What is the number of shunt elements

connected?

Sum of all blocks = 13

b) What is the maximum reactive power produced?

Sum of all blocks = 13

b) What is the maximum reactive power produced?

Qmax = 124 MVAr

Trang 26

LOAD FLOW ANALYSIS eBook for You

Trang 27

Power Flow Solution Calculations

Power Flow Solution Calculations

 Basic inputs:

admittance

machine

Trang 28

Power Flow Solution Calculations

Power Flow Solution Calculations

 Quantities determined:

produced/absorbed by each generator at each PV

bus

the generators at the swing bus

transmission line and transformer

Trang 29

Power Flow Solution Methods

Power Flow Solution Methods

 Gauss-Seidel

 Modified Gauss-Seidel

 Full Newton-Raphson

 Decoupled Newton-Raphson

 Fixed-Slope Decoupled Newton-Raphson

Trang 30

Power Flow Solution Calculations

Power Flow Solution Calculations

 Gauss-Seidel (SOLV)

‐ Tolerant of data 

errors

‐ Indicates areas of

‐ Cannot handle  negative series  reactance

‐ Initial voltage estimates are poor

‐ Network has

‐ Series capacitors

‐ Very low  impedance

‐ Number of 

Network has  reactive power  problem

‐ NR failed to 

impedance  branches

iterations increase  with system size

converge

‐ Data is suspect

Trang 31

Power Flow Solution Calculations

Power Flow Solution Calculations

 Modified Gauss-Seidel (MSLV)

‐ Same as SOLV

‐ Series capacitors 

between Type 1

‐ Convergence is  very sensitive to  tuning of

‐ Initial voltage estimates are poor

‐ Network has

‐ Very low  impedance  branches

between Type 1 

buses

tuning of  acceleration factor

‐ Slight deviation  from optimum value 

l d

Network has  reactive power  problem

‐ NR failed to 

branches

‐ Series  compensation more  than 80%

leads to poor  convergence

converge

‐ Data is suspect

‐ Series capacitors  connected to 

generator buses

Trang 32

Power Flow Solution Calculations

Power Flow Solution Calculations

 Full Newton Raphson (FNSL)

‐ Rapid convergence  ‐ Intolerant of data  p g ‐ Network is  ‐ Overloading has 

estimates

conventional and  well‐behaved

‐ Network with  series capacitors

g produced reactive  power problems

mismatches can be 

achieved

estimates

‐ No indication of  cause of problem  when failing to 

series capacitors

converge

‐ Problems when  reactive limits are  restrictive

Trang 33

Power Flow Solution Calculations

Power Flow Solution Calculations

 Decoupled Newton-Raphson (NSOL)

‐ Same as FNSL ‐ Same as FNSL

‐ Cannot handle network with low

‐ Poor voltage  estimate

‐ Network with

‐ Overloading has  produced reactive  power problems

network with low  X/R ratio branches

Network with  series capacitors

power problems

‐ Network contains  branches with low  X/R

Trang 34

Power Flow Solution Calculations

Power Flow Solution Calculations

 Fixed-Slope Decoupled Newton-Raphson

be allowed if  mismatches are 

estimate

‐ Network with  series capacitors

produced reactive  power problems

increased

Trang 35

Power Flow Solution Calculations

Power Flow Solution Calculations

 Approach in solving a new case

Flat start: all voltages to unity amplitude and

phase angles to zero

number of iterations to achieve convergence

Trang 36

Power Flow Solution Calculations

Power Flow Solution Calculations

 Approach in solving a new case

Trang 37

 Line and transformer loading under N 0

Trang 38

Data Check

Data Check

 Bus voltage check

Trang 39

Data Check

Data Check

 Line loading check

Trang 40

Exercises

1 Load Flow Calculation:

a) What is the first step in the approach to solve a

new case?

Set as flat start and run FDNS

b) What are the two biggest disadvantages with

Gauss-Seidel?

- Cannot handle series capacitors

- Acceleration factor must be tuned

Trang 41

Exercises

2 Bus voltage check :

a) Are there any voltage violation at the 500 kV

Trang 42

Exercises

3 Line loading check:

a) Are there any non-transformer branches

overloaded at 230 kV and higher?

No

b) What is the load level of the transformer between

L = 141.2% = 1905.7 MVA

Trang 43

CONTINGENCY ANALYSIS eBook for You

Trang 44

Approach to Contingency Analysis

Approach to Contingency Analysis

 Establish base case scenario

 Identify the contingencies for both

steady-state and dynamic analysis

 Perform the tests and flag all violations g

Trang 45

Deterministic Reliability Tests

Deterministic Reliability Tests

Trang 46

Basic Process

Basic Process

Trang 47

Creation of the Distribution Factor File

Creation of the Distribution Factor File

Trang 48

Creation of the ACCC File

Creation of the ACCC File

Trang 49

Report Non Converged Cases

Report Non-Converged Cases

Trang 50

Report Violations

Report Violations

Trang 51

SHORT-CIRCUIT ANALYSIS eBook for You

Trang 52

Assumptions Made by PSS®E

Assumptions Made by PSS®E

 When the negative and zero-sequence

 When the negative and zero sequence

data is not available:

Negative sequence impedance of transmission g q p

lines and transformers equal to positive sequence

impedance

negative-sequence equal and opposite to the

Trang 53

Assumptions Made by PSS®E

Assumptions Made by PSS®E

 When the negative and zero-sequence

 When the negative and zero sequence

data is not available:

positive-sequence are converted to constant

admittance in the positive-sequence

in the negative-sequence as in the

positive-sequence

Trang 54

 System planner can make assumptions:

positive-sequence impedance for all equipment

to ¼ of positive-sequence impedance

to positive-sequence impedance

Zero-sequence impedance of lines is equal to q p q

three times the positive-sequence impedance

Trang 55

Setting Up Short Circuit Analysis

Setting-Up Short-Circuit Analysis

Change to Physical and Polar

Trang 56

Flat Conditions

Flat Conditions

 Flat conditions usually selected:

zero phase angle

Trang 57

Flat Conditions

Flat Conditions

 Flat conditions usually selected:

shunt elements neglected

angle

neglected

Zero sequence ground ties created by grounded q g y g

transformer windings represented

Trang 58

Automatic Sequencing Fault (ASCC)

Automatic Sequencing Fault (ASCC)

Trang 59

QUESTIONS?

Trang 60

partners WE CARE is integral to the way we perform on a daily

b i It i b th ibilit d f ti f ti d basis It is both a responsibility and a source of satisfaction and pride by providing such important standards to all we do.

WE CARE about the health and safety of our employees, of those who work under our care, and

of the people our projects serve.

WE CAREabout our employees, their personal growth, career development and general

well-WE CARE about our employees, their personal growth, career development and general well

being.

WE CARE about the communities where we live and work and their sustainable development, and we commit to

fulfilling our responsibilities as a global citizen.

fulfilling our responsibilities as a global citizen.

WE CARE about the environment and about conducting our business in an environmentally responsible manner.

WE CARE about the quality of our work.

Ngày đăng: 23/08/2014, 16:29

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm