1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Phần 6 KHÓA ĐÀO TẠO TÍNH TOÁN ỔN ĐỊNH VÀ ỨNG DỤNG TRÊN PHẦN MỀM PSSE CHO KỸ SƯ HỆ THỐNG ĐIỆN (Lý thuyết về quá trình Ổn định quá độ)

40 657 10

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 7,36 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Lý thuyết về quá trình Ổn định quá độ (Transient Stability) bao gồm các nội dung cơ bản sau: • The Swing Equation. • Application to Synchronous Machines. • StepbyStep Solution Method.

Trang 1

A Division of Global Power

POWER SYSTEM STABILITY CALCULATION TRAINING

Day 2 - Transient Stability

July 5, 2013 Prepared by: Peter Anderson

Trang 2

2

OUTLINE

Trang 3

THE SWING EQUATION

THE SWING EQUATION

10 kVA

) RPM (

× ) GD (

× 48163

5

= H

Imperial: WR 2 in lb.ft 2

6

2 2

10 kVA

) RPM (

× ) WR (

× 231 0

= H

Trang 4

ANALYSIS OF THE SWING EQUATION

In terms of short-term transient stability studies

In terms of short-term transient stability studies,

Trang 5

APPLICATION TO SYNCHRONOUS

MACHINES

Increase in Mechanical Power Input

Pm increased

Rotor accelerates from 25

deg to new operating point

1.4

g Rotor overshoots to 60 deg,

where area above Pm equals

the area below Pm

Now Pe >Pm and rotor

0.8 1

Now Pe Pm and rotor

θ 40 deg.

If the overshoot reaches

θ=140 deg The rotor will not

be able to return to the new

operating point and will slip

0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

operating point and will slip

to the next pole position

Trang 6

STEP BY STEP SOLUTION METHOD

0.2 0.4 0.6 0.8

0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Trang 7

STEP BY STEP SOLUTION METHOD

STEP-BY-STEP SOLUTION METHOD

Pm Increased from 0.42 to 0.8 pu

1.00 1.20

0.60 0.80

0.20 0.40

0.00

Trang 8

STEP BY STEP SOLUTION METHOD

Trang 9

STEP BY STEP SOLUTION METHOD

STEP-BY-STEP SOLUTION METHOD

Pm Increased from 0.42 to 0.8 pu

80 0 90.0 100.0

50.0 60.0 70.0 80.0

Time (s)

Trang 10

TRANSMISSION &

DISTRIBUTION

A Division of Global Power

POWER SYSTEM STABILITY CALCULATION TRAINING

Day 3 - Transient Stability

July 8, 2013 Prepared by: Peter Anderson

Trang 11

CASE STUDY: ANALYSIS OF A FAULT CASE

CASE STUDY: ANALYSIS OF A FAULT CASE

Pre-fault Power Angle Curve = sinθ/0.8

Post-fault Power Angle Curve = sinθ/1.1

Fault duration = 0.1 s

Time Step = 0.02 s

Trang 12

CASE STUDY: ANALYSIS OF A FAULT CASE

3

CASE STUDY: ANALYSIS OF A FAULT CASE

1.40

1.00 1.20

0 40 0.60 0.80

0.00 0.20 0.40

Trang 13

CASE STUDY: ANALYSIS OF A FAULT CASE

CASE STUDY: ANALYSIS OF A FAULT CASE

Step 1: Construct Step-by-Step Table

Trang 14

CASE STUDY: ANALYSIS OF A FAULT CASE

5

CASE STUDY: ANALYSIS OF A FAULT CASE

Step 1: Plot Results

100.0 120.0

60.0 80.0

Trang 15

THREE PHASE SHORT CIRCUIT

THREE PHASE SHORT-CIRCUIT

Steady-state:

Leakage Reactance of the machine (X )

Leakage Reactance of the machine (X l )

Armature Reaction to the Fault Current (X a )

Trang 16

THREE PHASE SHORT CIRCUIT

7

THREE PHASE SHORT-CIRCUIT

At the instant of the Fault:

Trang 17

THREE PHASE SHORT CIRCUIT

THREE PHASE SHORT-CIRCUIT

Shortly after the instant of the Fault:

Trang 18

THREE PHASE SHORT CIRCUIT

Trang 19

SYNCHRONOUS MACHINE MODELS

SYNCHRONOUS MACHINE MODELS

Single Phase Equivalent of a 3-phase Generator

Trang 20

SYNCHRONOUS MACHINE MODELS

11

SYNCHRONOUS MACHINE MODELS

Three Possible Generator Models:

behind Xd”))

•Sub-transient model allows exciter effects to be explicitly

represented

For each model, the prime mover can be

represented as a fixed power model or a variable

power model under the control of governor

action

Trang 21

MODEL APPLICATION

MODEL APPLICATION

Use of Mixed Generator Models:

Complex models used for machines of interest

Simpler models used for remote machines

•Requires less data

•Significantly reduces the computing burden

With the removal of computer limitations, it

is recommended to use the sub-transient

model for all generators

Trang 22

TRANSMISSION &

DISTRIBUTION

A Division of Global Power

POWER SYSTEM STABILITY CALCULATION TRAINING

Day 4 - Transient Stability

July 9, 2013 Prepared by: Peter Anderson

Trang 23

Machine Differential Equations

Exciter Differential Equations

Governor Differential Equations

Solution of Differential Equations

Network Solution

Sample Cases

Trang 24

BASIC MODELS IN STABILITY STUDIES

' q q

' d

"

d q

"

q q

' d d

fd '

' q

"

q d

"

d

' d

' q

"

"

q

d q q q '

0 q

d d

q q q

"

0 q

d

E

‐ I X

‐ X

‐ E

1

= pE E

‐ I X

‐ X

‐ E

1

=

pE

E I X

X T

pE E

I X

X T

pE

0 d

q q

d d d q

"

0 d

q

T

p T

p

Trang 25

BASIC MODELS IN STABILITY STUDIES

BASIC MODELS IN STABILITY STUDIES

Synchronous Machines

Algebraic Model:

V

‐ E Y

= I

I

X

‐ R

Re System to

Frame ference

Re Machine from

tion Transforma

V E Y

I I

R X

Trang 26

BASIC MODELS IN STABILITY STUDIES

V V K T

pE

fb fd f

f

fb

fd fb

t s E E

fd

max D pE

; max E

V min E

; V + K

Trang 27

BASIC MODELS IN STABILITY STUDIES

BASIC MODELS IN STABILITY STUDIES

0 s

c

on

P

‐ C T

‐ ω

‐ P T

Trang 28

SOLUTION OF DIFFERENTIAL EQUATIONS

Implicit Trapezoidal Rule

( ) ( ( ) ( ) )

Variable Integrable

=

Y

pY + pY 2

h + Y

=

20 30 40 50 60

Y

Length Step

n Integratio

=

h

Variable  

t

h + t )

h + Y

= t tan Cons

=

YC

X YX + YC

.

YX

Trang 29

SOLUTION OF DIFFERENTIAL EQUATIONS

SOLUTION OF DIFFERENTIAL EQUATIONS

Solution Algorithm:

Rule

Numerically Stable

In Step 2 in practice, an extrapolated value of X (t) is used

except immediately after a discontinuity using

X (t+h) = 2X (t) – X (t-h)

Trang 30

3 Calculate Norton equivalent Nodal Injected Current

4 Solve for V using I = Y.V where Y = Nodal Admittance

4 Solve for V using I Y.V where Y Nodal Admittance

Matrix

5 Use New values for V to move to next time step

6 Network Solution carried out simultaneously with

Integration Process eBook for You

Trang 31

400km

100km 50km

GBUS‐3 HVBUS‐3

1x590MVA,21/400kV 600MVA, 0.975pf

1200MVA, 0.975pf

500MW‐ST

Trang 33

HVBus1 HVBus3 GBus1 GBus2 GBus3

Trang 35

GENERATOR EXCITATION CONTROL

GENERATOR EXCITATION CONTROL

Line Fault close to Generator HV Bus (GBUS-3_

Trang 37

GENERATOR MODEL TYPE

GENERATOR MODEL TYPE

Line Fault close to Generator HV Bus (GBUS-3_

Trang 38

FAULT CLEARING TIME

17

FAULT CLEARING TIME

Line Fault close to Generator HV Bus (GBUS-3)

Trang 40

Fault Clearing Time & Voltage Dependency of Load have

the most significant impacts on stability

Ngày đăng: 23/08/2014, 08:39

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm