1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Hệ thống vô tuyến - Chương 2 doc

13 275 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 248,07 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

GIỚI THIỆU CÁC PHƯƠNG PHÁP ĐIỀU CHẾ SỐ Điều chế là quá trình mà trong đó một đặc tính nào đó của sóng mang được thay đổi théo tín hiệu điều chế.. Trong trường hợp điều chế số tín hiệu t

Trang 1

CHƯƠNG 2 CÁC KỸ THUẬT ĐIỀU CHẾ SỐ 2.1 GIỚI THIỆU CÁC PHƯƠNG PHÁP ĐIỀU CHẾ SỐ

Điều chế là quá trình mà trong đó một đặc tính nào đó của sóng mang được thay đổi théo tín hiệu điều chế Thường sóng mang là hàm sin biểu thị theo công thức 2.1 Các thông số của sóng mang có thể thay đổi là biên độ , tần số, và pha

S(t)=Acos(ωct+θ) (2.1) Trong đó: ωc =2πfc là tần số góc của sóng mang, fc là tần số sóng mang, còn θ là pha

Nếu sử dụng tín hiệu thông tin để thay đổi biên độ A, tần số sóng mạng fc và pha θ(t) ta được các kiểu điều chế biên độ , điều chế tần số và điều chế pha tương ứng

Nếu tín hiệu thông tin là tín hiệu liên tục thì ta được các kiểu điều chế tương tự, nếu tín hiệu thông tin là tín hiệu số ta có các kiểu điều chế số tương ứng

Ở dạng điều chế số, tín hiệu thông tin thường ở dạng 2 mức hoặc nhiều mức Trong trường hợp điều chế số tín hiệu thông tin làm thay đổi biên độ, tần số , hay pha của sóng mang các các tên gọi tương ứng là điều chế khoá chuyển biên (ASK), điều chế khoá chuyển tần (FSK), và điều chế khoá chuyển pha (PSK) Hình 1 mô

ta dạng sóng các kiểu điều chế số

Hình 2.1: Các dạng sóng điều chế a)ASK; b)PSK; c)FSK

a)

b)

c)

Như ở hình 2.1 ta thấy các dạng sóng PSK và FSK có đường bao biên độ không đổi Đặc điểm này cho phép chúng không bị ảnh hưởng của tính phi tuyến

Trang 2

thường gặp ở đường truyền vi ba số và vệ tinh Vì vậy FSK và PSK hay được sử dụng hơn ASK Tuy nhiên để có thể tăng dụng lượng đường truyền dấn số khi băng thông của kênh truyền có hạn, người ta sử dụng điều chế PSK và ASK kết hợp, phương pháp điều chế này được gọi là điều chế biên độ vuông góc (QAM Quandrature Amplitude Modulation)

Trong trường hợp điều chế M trạng thái tổng quát , bộ điều chế tạo ra một tập hợp M=2m tuỳ theo tổ hợp m bit của luồng số liệu vào Điều chế 2 trạng thái là trường hợp đặc biệt với M=2

Trong thông tin số, thuật ngữ tách sóng và giải điều chế thường được sử dụng hoán đổi cho nhau, mặc dù thuật ngữ giải điều chế nhấn mạng việc tách tín hiệu điều chế ra khỏi sóng mang còn tách sóng bao hàm cả quá trình quyết định chọn ký hiệu thu

Giải điều chế ở máy thu có thể thực hiện theo 2 dạng: giải điều chế kết hợp hoặc không kết hợp Ở dạng giải điều chế kết hợp, máy thu phải biết chính xác pha của sóng mang, hay máy thu phải khoá được pha của tín hiệu phát Tách sóng kết hợp được thực hiện bằng cách thực hiện tương quan chéo tín hiệu thu được với sóng mang Ở phương pháp giải điều chế không kết hợp máy thu không cần biết pha của sóng mang, vì vậy độ phức tạp của máy thu được giảm bớt nhưng khả năng chống lỗi lại thấp hơn so với giải điều chế kết hợp

Có rất nhiều phương pháp điều chế và giải điều chế khác nhau có thể được dụng trong hệ thống thông tin Mỗi phương pháp cocs các ưu nhược điểm riêng của mình Việc lựa chọn phụ thuộc vào tỷ lệ lỗi, công suất phát và độ rộng kênh truyền

2.2 ĐIỀU CHẾ PSK 2 TRẠNG THÁI (2-PSK, BPSK)

2.2.1 XÁC SUẤT LỖI

Ở hệ thống BPSK tương quan, các ký hiệu 0 và 1 có tín hiệu điều chế là s1(t),

s2(t) Nếu sóng mang điều hoà có biên độ Ac do đó năng lượng của một bit là

b

c

2

1

= , theo phương pháp điều chế BPSK 2 tín hiệu lệch pha nhau 1800 nên

ta có thể biểu diễn:

( )= 2 cos[2 f t+ ( )t + ], ( ) ( )t = i− 1 , 0 ≤tT , i= 1 , 2

T

E t

b

b

hay:

b

T

E t

s1 = 2 cos 2π +θ , 0 ≤ ≤ (2.11)

b

T

E t

s2 = − 2 cos 2π +θ , 0 ≤ ≤ (2.12) Từ các phương trình (2.11), (2.12) ta thấy rằng chỉ có một hàm cơ sở là:

Trang 3

( ) ( c c) b

b

T t t

f T

t = 2 cos 2 + , 0 ≤ ≤

Khi đó ta có thể biểu diễn s1(t), s2(t) theo φ1( )t như sau:

s1 = φ1, 0≤ ≤

s2 =− φ1, 0≤ ≤

Vùng Z1 Vùng Z2

E

Hình 2.3: Không gian tín hiệu BPSK Vậy điều chế BPSK được đặc trưng bởi không gian tín hiệu một(N=1) chiều với 2 điểm bản tin(M=2) như ở hình 2.3 và toạ độ được tính:

( ) ( )

= b

T

b

E dt t t s s

0 1 1

( ) ( )

= b

T

b

E dt

t t s s

0 1 2

Để quyết định tín hiệu thu được là 0 hay 1 ta chia không gian tín hiệu thành 2 vùng:

• Vùng Z1: các điểm gần bản tin + E b nhất (ứng với 0)

• Vùng Z2: các điểm gần bản tin − E b nhất (ứng với 1)

Quy tắc quyết định là dự đoán tính hiệu là s1(t) jau “0” được phát nếu tín hiệu thu rơi vào vùng Z1 và là s2(t) hay “1” nếu rơi vào Z2 Tuy nhiên có thể xảy ra hai quyết định sai Tín hiệu s2(t) được phát, tuy nhiên do tác dụng của nhiễu, tín hiệu thu rơi vào vùng Z1 và ngược lại

Trang 4

Đơn cực/

lưỡng cực

Sóng mang

( )t

1 φ

b

T

dt

0

So sánh T/h BPSK

Sóng mang

( )t

1 φ Hình 2.4: Sơ đồ khối máy phát và máy thu BPSK

T/h ra

Để tính toán xác suất gây ra lỗi nếu phát điểm 1, giá trị quan sát nếu phát điểm “1” là:

( ) ( )t t dt y

y

b

T

1 0

1 = ∫ φ với y(t) là tín hiệu thu được Ta có thể rút ra hàm phân bố xác suất khi ký hiệu 1 hay tín hiệu s2(t) được phát:

⎢⎣

⎡−

0 1

1

1 exp

1

N N

y f

π

Xác suất lỗi mà khi phát ký hiệu 1 mà máy thu quyết định là 0 bằng:

0

2 1

0 0

1 1 1

1 exp

1 )

1 ( 1

N N

dy y f

P e =∫∞ Y = ∫∞ ⎢⎣⎡− + b ⎥⎦⎤

π Từ đó ta tính được:

=

=

0 0

2 2

1 1 0

N

E Q N

E erfc

e

Do tính đối xứng nên P e( )0 1 =P e( )1 0 do đó xác suất lỗi trung bình đối với điều chế BPSK là:

=

0

2

N

E Q

Ta có sơ đồ bộ điều chế và giải điều chế BPSK tương quan như hình 2.4

Trang 5

2.3 ĐIỀU CHẾ PSK VI SAI (DPSK)

Logic Circuit ModulatorBPSK

Delay

Tb

DPSK signal

Input

data

{mk}

{dk}

{dk-1}

cos(2πfc)

Bandpass

filter CircuitLogic

Delay

Tb

Intergrate and Dump Threshold device

output

DPSK

signal

Hình 2.6 Sơ đồ khối của máy phát và máy thu DPSK

Điều chế DPSK là dạng điều chế mà phương pháp giải điều chế không cần phải là dạng kết hợp với mục đích để giảm độ phức tạp của máy thu Máy thu không kết hợp rẻ hơn và dễ chế tạo hơn do đó được sử dụng rộng rãi trong các hệ thống thông tin vô tuyến Trong hệ thống DPSK, chuỗi tín hiệu nhị phân đầu vào trước hết được mã hoá vi sai sau đó đó được điều chế BPSK Chuỗi tín hiệu mã hoá

vi sai {dk} được tạo ra từ chuỗi nhị phân đầu vào {mk} bằng cách cọng mk và dk-1 Mục đích là để ký hiệu dk không đổi so với ký hiệu trước nếu ký hiệu đầu vào mk là 1, và dk sẽ đổi nếu mk là 0 Bảng 1 minh hoạ cách tạo tín hiệu DPSK từ chuỗi mk theo công thức

1

d

Bảng 2.1 Minh hoạ quá trình mã hoá vi sai

Hình 2.6(a) là sơ đồ khối của máy phát DPSK Trong hình này có phần tử trễ với thời gian là 1 bit Tb và mạch logic để tạo chuỗi mã hoá vi sai từ tín hiệu nhị phân đầu vào Tín hiệu đầu ra được đưa vào bộ điều chế BPSK để thu được tín hiệu

Trang 6

DPSK Ở máy thu, chuỗi tín hiệu gốc được khôi phục từ tín hiệu DPSK bởi các mạch bổ sung như ở hình 2.6(b)

2.4 ĐIỀU CHẾ PHA VUÔNG GÓC (QPSK)

2.4.1 XÁC SUẤT LỖI

Cũng như ở BPSK điều chế pha kiểu này được đặc trưng bởi viêc thông tin của luồng số được truyền đi bằng pha của sóng mang Ta có thể viết công thức cho sóng mang được điều chế 4-PSK như sau:

⎪⎩

<

<

≤ +

+

=

T t t

T t t

f T

E t

i

; 0 ,

0

0 , ) ( 2

cos

2 )

Trong đó:

I = 1,2,3,4 tương ứng với phát đi các ký hiệu hai bit: 00, 10, 11 và 10

E là năng lượng tín hiệu phát trên moat ký hiệu

T = 2Tb là thời gian của môt ký hiệu

fc là tần số sóng mang

)

(t

θ là góc pha được điều chế

θ là góc pha ban đầu

Mỗi giá trị của pha tương ứng với hai bit duy nhất của tín hiệu được gọi là cặp bit, chẳng hạn ta có thể lập các giá trị pha để biểu diễn tập các cặp bit được mã hoá Grey như sau: 10, 00, 01 và 11 Góc pha ban đầu θ là một hằng số nhận giá trị bất kỳ trong khoảng 0 đến 2π, vì góc pha này không ảnh hưởng đến quá trình phân tích nên ta sẽ đặt bằng không

Sử dụng biến đổi lượng giác, ta có thể viết lại phương trình trên lại dạng tương đượng như sau:

T t T

t t

t f i

T

E t

f i

T

E t

⎪⎩

>

<

⎥⎦

⎢⎣

+

⎥⎦

⎢⎣

, 0 ,

0

) 2 cos(

4 ) 1 2 ( cos

2 ) 2 sin(

4 ) 1 2 ( sin

2 )

Trong đó: i = 1,2,3,4

Dựa trên công thức trên ta có thể đưa ra các nhận xét sau:

• Chỉ có hai hàm cơ sở trực giao chuẩn, φ1(t) và φ2(t)trong biểu thức si(t) Dạng tương ứng của các, φ1(t) và φ2(t)được định nghĩa như sau:

T

t) = 1sin 2 c , 0 ≤ ≤ (

φ

T

t) = 1 cos 2 c , 0 ≤ ≤ (

φ

• Tồn tại bốn điểm bản tin bới các vectơ tương ứng được xác định như sau:

Trang 7

4 , 3 , 2 , 1 4

) 1 2 ( cos

4 ) 1 2 ( sin

=

⎥⎦

⎢⎣

⎡ − ⎥⎦⎤

⎢⎣

i E

i E

π

Các phần tử của các vectơ tín hiệu: si1 và si2 có các giá trị đươc tổng kết ở bảng Hai cột đầu của bảng cho ta các cặp bit và pha tương ứng của tín hiệu QPSK, trong đó bit 0 tương ứng với điện áp

2

E

+ , còn bit 1 tương ứng với điện áp

2

E

Toạ độ của các điểm bản

tin

Cặp bit vào 0≤t≤T tín hiệu Pha của

QPSK(radian) Si1 Si2

00

01

11

10

π/4

3π/4 5π /4

7π/4

+ E 2

+ E 2

- E 2

- E 2

+ E 2

- E 2

- E 2

+ E 2

Bảng 2.2 Các vectơ ở không gian tín hiệu của QPSK

Từ khảo sát ở trên ta thấy một tín hiệu QPSK được đặc trưng bởi một không gian chiều (N=2) và bốn điểu bản tin (M=4) như ở hình vẽ:

00

10

01

11

Vùng Z1

Vùng Z2

Hình 2.8 : Không gian tín hiệu điều chế QPSK

Thí dụ: Hình 2.9 cho thấy một luồng số đưa lên điều chế QPSK Chuỗi cơ số hai đầu vào 11000001 được cho ở hình 2.9a Chuỗi này lại được chia thành hai chuỗi bao gồm các bit lẻ và các bit chẳn Hai chuỗi này được biểu thị ở các dòng trên cùng của các hình 2.9b và 2.9c Các dạng sóng thể hiện các thành phần đồng pha và lệch pha vuông góc của QPSK cũng được cho ở các hình 2.9b và 2.9c Có thể nhận xét riêng hai dạng sóng này như các dạng tín hiệu 2-PSK Cộng chúng ta được dạng sóng QPSK ở hình 2.9d

Trang 8

1 0 0 0

Đầu vào

Nhánh lẻ

Nhánh chẳn

QPSK

Hình 2.9: Quá trình hình thành sóng QPSK

Để hiểu được nguyên tắc quyết định khi tách sóng chuỗi số liệu phát, ta phân chia không gian tín hiệu thành 4 phần như sau:

• Tập hợp của các điểm gần nhất điểm bản tin liên quan với vectơ tín hiệu s1

• Tập hợp của các điểm gần nhất điểm bản tin liên quan với vectơ tín hiệu s2

• Tập hợp của các điểm gần nhất điểm bản tin liên quan với vectơ tín hiệu s3

• Tập hợp của các điểm gần nhất điểm bản tin liên quan với vectơ tín hiệu s4 Để thực hiện việc phân chia nói trên ta kẻ hai đường vuông góc chia đều hình vuông nối các điểm bản tin sau đó đánh dấu các vùng tương ứng Ta được vùng quyết định là các góc phần tư có đỉnh trùng với gốc toạ độ Ở hình 2.10 các vùng này được đánh số là Z1, Z2, Z3, và Z4

Ta có thể biểu diễn tín hiệu thu được như sau:

T t t

x t s t

y( )= i( )+ ( ) 0≤ ≤

Trong đó:

i =1,2,3,4

x(t) là hàm mẫu của quá trình ngẫu nhiên nhiễu Gauss có giá trị trung bình 0 và mật độ phổ công suất N0/2

Vectơ quan trắc y của một máy thu QPSK nhất quán có hai thành phần y1 và

y2 được xác định như sau:

Trang 9

0 2 2

1

0 1 1

4 ) 1 2 ( cos

) ( ) (

4 ) 1 2 ( sin

) ( ) (

x i

E

dt t t y y

x i

E

dt t t y y

T T

+

⎥⎦

⎢⎣

=

=

+

⎥⎦

⎢⎣

=

=

π φ

π φ

Trong đó i=1,2,3,4

Vậy y1 và y2 là các giá trị mẫu của các biến ngẫy nhiên Gauss độc lập có các giá trị trung bình bằng cos⎢⎣⎡(2 −1)4⎥⎦⎤

π

i

E và cos⎢⎣⎡(2 −1)4⎥⎦⎤

π

i

E tương ứng và có phương sai bằng nhau và bằng N0/2

Bây giờ quy tắc quyết định chung chỉ đơn giản là đoán si(t) được phát nếu điểm tín hiệu thu liên quan đến vectơ y quan trắc rơi vào vùng Zi Sẽ xảy ra một quyết định sai khi chẳng hạn tín hiệu s1(t) được phát nhưng tạp âm x(t) lớn đến mức mà điểm tín hiệu thu rơi ra ngoài vùng Z1

Ta nhận thấy rằng nhờ tính đối xứng của các vùng quyết định, xác xuất diễn giải điểm tín hiệu thu đúng không phụ thuộc vào tín hiệu nào được phát Giả sử ta biết rằng tín hiệu s1(t) được phát Máy thu sẽ đưa ra một quyết định đúng nếu điểm tín hiệu thu được trình bày bởi vectơ quan trắc y nằm trong vùng Z1 của biểu đồ không gian tín hiệu ở hình 2.8 Vậy đối với một quyết định đúng khi tín hiệu s1(t) được phát, các thành phần của vectơ quan trắc y: y1 và y2 phải cùng dương (hình 2.10)

0 y1

y2

Vùng quyết định đúng

Vùng quyết định sai

Hình 2.10: Vùng quyết định đúng và Điều này có nghĩa rằng xác suất của một quyết định đúng bằng xác suất có điều kiện của sự kiện liên hợp y1>1 và y2>0, khi s1(t) được phát Vì các biến ngẫu nhiên y1 và y2 độc lập với nhau, nên xác suất quyết định đúng Pc cũng bằng tích các xác suất có điều kiện của các sự kiện y1>0 và y2>0, khi s1(t) được phát Ngoài

Trang 10

ra cả hai y1 và y2 đều là các biến ngẫu nhiên có giá trị trung bình bằng E 2 và phương sai bằng N0/2 nên ta có thể viết như sau:

2 0

2 2

1 0

2 1

) 2 (

exp

1 ) 2 (

exp

1

dy N

E y N

dy N

E y N

P c

Trong đó tích phân thứ nhất vế phải là xác suất có điểu kiện của sự kiên y1>0 và tích phân thứ hai là xác xuất có điều kiện của y2>0, khi s1(t) được phát Đặt:

0

2

N

E y

=

Khi thay các biến y1 và y2 bằng x ta có thể viết lại:

2

2

2

0

) exp(

1

P

N E

Từ định nghĩa của hàm bù lỗi ta được :

=

0 2

2

2 2

1 1 ) exp(

1

E erfc dz

z

N E

π Vậy ta có:

⎛ +

=

=

0

2

0

2

0

2 4

1 2

1

2 2

1 1

N

E erfc

N

E erfc

N

E erfc

P c

Vây xác suất trung bình đối với lỗi ký hiệu cho trường hợp QPSK kết hợp được xác định như sau:

=

=

0

2

1 2

1

N

E erfc

N

E erfc

P

Ở vùng (E/2N0) >> 1 ta có thể bỏ qua thành phần thứ hai ở vế phải của biểu thức trên Vậy ta có công thức tính xác suất trung bình của lỗi ký hiệu đối với QPSK kết hợp:

=

=

0 0

2

E Q N

E erfc

P e

Ở hệ thống QPSK ta thấy rằng có hai bit trên một ký hiệu Điều này có nghĩa rằng năng lượng được phát trên một ký hiệu gấp hai lần năng lượng trên một bit, nghĩa là:

E = 2Eb Vậy có thể biểu diễn xácc suất trung bình của lỗi ký hiệu theo tỷ số Eb/N0:

=

=

0 0

2 2

N

E Q N

E erfc

e

Trang 11

2.4.2 PHỔ VÀ BĂNG THÔNG CỦA TÍN HIỆU QPSK

f c - 3R b f c - 2R b f c - R b f c f c - R b f c - 2R b f c - 3R b

-60 -50 -40 -30 -20 -10

0

Hình 2.11: Mật độ phổ công suất của tín hiệu QPSK

Mật độ phổ công suất của tín hiệu QPSK có thể tìm theo các giống như đối với tín hiệu BPSK với chu kỳ 1 bit Tb thay bằng chu kỳ một ký hiệu Ts Mật độ phổ công suất của tín hiệu QPSK được tính theo công thức

⎟⎟

⎜⎜

+

+ +

⎟⎟

⎜⎜

=

⎟⎟

⎜⎜

+

+ +

⎟⎟

⎜⎜

=

2 2

2 2

sin sin

sin sin

2 )

(

s c

s c s

c

s c b

s c

s c s

c

s c s

QPSK

T f f

T f f T

f f

T f f E

T f f

T f f T

f f

T f f E

t

P

π

π π

π

π

π π

π

Băng thông của tín hiệu QPSK BW=Rb/2 giảm ½ so với băng thông tín hiệu BPSK

2.4.3 MÁY THU PHÁT QPSK

Bây giờ ta đi xét quá trình điều chế và giải điều chế QPSK Hình 2.12 cho thấy sơ đồ khối của một bộ điều chế QPSK điển hình

Luồng cơ số hai đầu vào b(t) qua bộ phân luồng chia thành hai luồng độc lập chứa các bit chẳn và các bit lẻ (hai luồng I và Q) Bộ chuyển đổi mức chuyển đổi các ký hiệu 0 và 1 thành lưỡng cực tương ứng với + Evà - E Ta thấy rằng ở mọi khoảng thời gian, 2 luồng tín hiệu này được nhân với hai tín hiệu sóng mang trực giao tương ứng là φ1(t)vàφ2(t) Kết quả nhận được cặp sóng 2-PSK Sau đó 2 sóng này được cọng với nhau tạo ra tín hiệu QPSK Do tính trực giao của 2 sóng mang nên có thể tách 2 luông tín hiệu này được Lưu ý rằng độ rộng bit T của tín hiệu QPSK gấp hai lần độ rộng của dòng tín hiệu

Ngày đăng: 12/08/2014, 09:23

HÌNH ẢNH LIÊN QUAN

Hình 2.1: Các dạng sóng điều chế. a)ASK; b)PSK; c)FSK - Hệ thống vô tuyến - Chương 2 doc
Hình 2.1 Các dạng sóng điều chế. a)ASK; b)PSK; c)FSK (Trang 1)
Hỡnh 2.3: Khoõng gian tớn hieọu BPSK - Hệ thống vô tuyến - Chương 2 doc
nh 2.3: Khoõng gian tớn hieọu BPSK (Trang 3)
Hình 2.4: Sơ đồ khối máy phát và máy thu BPSK - Hệ thống vô tuyến - Chương 2 doc
Hình 2.4 Sơ đồ khối máy phát và máy thu BPSK (Trang 4)
Hình 2.6 Sơ đồ khối của máy phát và máy thu DPSK - Hệ thống vô tuyến - Chương 2 doc
Hình 2.6 Sơ đồ khối của máy phát và máy thu DPSK (Trang 5)
Là 1, và d k  sẽ đổi nếu m k  là 0. Bảng 1 minh hoạ cách tạo tín hiệu DPSK từ chuỗi m k - Hệ thống vô tuyến - Chương 2 doc
1 và d k sẽ đổi nếu m k là 0. Bảng 1 minh hoạ cách tạo tín hiệu DPSK từ chuỗi m k (Trang 5)
Hỡnh 2.8 : Khoõng gian tớn hieọu ủieàu cheỏ QPSK - Hệ thống vô tuyến - Chương 2 doc
nh 2.8 : Khoõng gian tớn hieọu ủieàu cheỏ QPSK (Trang 7)
Hình 2.9: Quá trình hình thành sóng QPSK - Hệ thống vô tuyến - Chương 2 doc
Hình 2.9 Quá trình hình thành sóng QPSK (Trang 8)
Hình 2.10: Vùng quyết định đúng và - Hệ thống vô tuyến - Chương 2 doc
Hình 2.10 Vùng quyết định đúng và (Trang 9)
Hình 2.11: Mật độ phổ công suất của tín hiệu QPSK - Hệ thống vô tuyến - Chương 2 doc
Hình 2.11 Mật độ phổ công suất của tín hiệu QPSK (Trang 11)
Hình 2.13 Máy thu QPSK - Hệ thống vô tuyến - Chương 2 doc
Hình 2.13 Máy thu QPSK (Trang 12)
Hình 2.14: Sơ đồ bộ điều chế OQPSK - Hệ thống vô tuyến - Chương 2 doc
Hình 2.14 Sơ đồ bộ điều chế OQPSK (Trang 12)

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w