Oikawa, Relation between high-temperature creep and diffusion in nickel base solid solutions, 3: Diffusion nickel-63 and tungsten-185 in nickel-tungsten alloys, J.. Pishchak, The substru
Trang 11 F Garofalo, Fundamentals of Creep and Creep-Rupture in Metals, McMillan
Series in Materials Science, McMillan, New York, 1965
2 D McLean, The physics of high temperature creep in metals Rep Progr Phys 1966, 29, 1.
3 A.J Kennedy, Processes of Creep and Fatigue in Metals, Oliver & Boyd,
Edinburgh, 1967
4 R.W.K Honeykomb, The Plastic Deformation of Metals, Edward Arnold
(Publishers), Cambridge, 1968
5 H.E Evans, Mechanisms of Creep Fracture, Elsevier Applied Science
Pub-lishing, Amsterdam 1984
6 J ˇCadek, Creep in Metallic Materials, Materials Science Monographs,
vol 48 Elsevier, Amsterdam 1988
7 M.E Kassner, M.T Pèrez-Prado, Five-power-law creep in single phase
metals and alloys, Progr Mater Sci 2000, 45, 1–102.
8 W Blum, Creep of crystalline materials: basis, mechanisms and models,
Mater Sci Eng A 2001, 319–321, 8–15.
9 N.F Mott, A theory of work-hardening of metal crystals, Philos Mag.
1952, 43 (346), 1151–1177.
10 J Weertman, Theory of steady-state creep based on dislocation climb, J Appl Phys 1955, 26 (10), 1213–1217.
11 C.R Barrett, W.D Nix, A model for steady-state creep based on the motion
of jogged screw dislocations, Acta Metall 1965, 13 (12), 1247–1258.
12 R Lagneborg, Development and refinement of the recovery-creep theory,
Met Sc J 1969, 63, 161–168.
13 V.V Levitin, V.I Babenko, Installation for X-ray investigations of metal
specimens; the author’s certificate no 251894, J Inventions 1989 28, 12.
14 M.A Darvin, The reflexion of X-rays from imperfect crystals, Philos Mag.
1922, 46 (257), 800–809.
15 P Gay, P.B Hirsh et al., The estimation of dislocation densities in metals
from X-ray data, Acta Metall 1953, 1 (3), 315–328.
16 P.B Hirsch, A Howie et al., Electron Microscopy of the Thin Crystals,
But-terworths, London, 1965
17 V Levitin, Atom Vibrations in Solids: Amplitudes and Frequencies,
Cam-bridge Scientific Publishers, CamCam-bridge, 2004
18 J.P Hirth, J Lothe, Theory of Dislocations, McGraw-Hill, New York, 1968.
19 A.L Roytburd, L.A Zilberman, The motion of rectilinear dislocations
with jogs, Phys Met Metall 1966, 21 (5), 647–656.
20 A.H Cottrell, Dislocations and Plastic Flow in Crystals, University Press,
London, 1953
21 J Friedel, Dislocations, Pergamon Press, Oxford, 1964.
High Temperature Strain of Metals and Alloys, Valim Levitin (Author)
Copyright c 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim
ISBN: 3-527-313389-9
Trang 2References 165
22 S Mrowec, Defects and Diffusion in Solids, Elsevier, Amsterdam, 1980.
23 K Momma, H Suto, H Oikawa, Relation between high-temperature creep and diffusion in nickel base solid solutions, 3: Diffusion nickel-63
and tungsten-185 in nickel-tungsten alloys, J Jpn Inst Met 1964, 28 (4),
177–200
24 V.K Pishchak, The substructure evolutions and the high-temperature creep mechanisms of metals with face- and body-centered crystal lattices, PhD thesis,
Institute for Metal Physics, NASU, Kiev, 1994
25 A.V Granato, K Lücke, J Schlipf, L.J Teutonico, Entropy factors for
thermally activated unpinning of dislocations, J Appl Phys 1964, 35(9),
2732–2745
26 H.J Frost, M.F Ashby, Deformation-mechanism maps, the plasticity and
creep of metals and ceramic, Dartmouth College, USA and Cambridge Uni-versity, UK, Ch 5, 2003 Web version.
27 I Kelareva, personal communication
28 V Levitin, The evolution of parameters in creep, Phys Met Metall.1974,
37(3), 511–516.
29 S.A Teukolsky, W.T Vetterling, W.H Press, B.P Flannery, Numerical Recipes in Fortran, Cambridge University Press, Cambridge, 1999.
30 F Tancret, H.K D.H Bhadeshia, D.J C.MacKay, Design of a creep re-sistant nickel base superalloy for power plant applications, part 1 –
me-chanical properties modelling, Mater Sci Technol 2003, 19, 283–290.
31 A Royer, P Bastie, M Veron, In situ determination of gamma prime phase volume fraction and of relations between lattice parameters and
precipitate morphology in nickel-based single crystal superalloy, Acta Mater 1998, 46, 5357–5368.
32 F Tancret, T Sourmal, M.A Yescas, R.W Ewanc et al., Design of a creep resistant nickel base superalloy for power plant applications, part 3 –
experimental results, Mater Sci Technol 2003, 19, 296–302.
33 H De Cicco, M.I Luppo, L.M Gribaudo, J Ovejero-Garcia,
Microstruc-tural development and creep behavior in A286 superalloy, Mater Charact.
2004, 52 (2), 85–92.
34 F Diologent, P Caron, On the creep behavior at 1033 K of new generation
single-crystal superalloys, Mater Sci Eng A 2004, 385 (1–2), 245–257.
35 B Bergman, R Lagneborg, Creep deformation of gamma-primed
hard-ened nickel-based alloys, Jernkontor Ann 1971, 8 (3), 125–133.
36 G.A Webster, B.J Piercey, An interpretation of the effects of stress and
temperature on the creep properties of a nickel based superalloy, Met Sci.
J 1967, 1 (July), 97–104.
37 A Manonukul, F.P E.Dunne, D Knowles, Physically-based model for creep in nickel-base superalloyC263 both above and below the gamma solvus, Acta Mater 2002, 50 (11), 2917–2931.
Trang 338 C.M.F.Rae, N Matan, R.C Reed, The role of stacking fault shear in the primary creep of [001]-oriented single crystal superalloys at750◦C and
750 MPa, Mater Sci Eng A 2001, 300 (1–2), 125–134.
39 A.C Picasso, A.J Marzocca, On apparent activation energies of creep in
nickel-base superalloys, Scr Mater 1999, 41 (8), 797–802.
40 O.V Rubel, Regulation of selection of a crystallographic orientation of the turbine blades manufactured by the directional solidification method, PhD thesis, Zaporozhye State Technical University, Ukraine, 2001
41 R.C Reed, N.Matan, D.C Cox, M.R Rist, C.M F.Rae, Creep of
CMSX-4 superalloy single crystals: effect of rafting at high temperature, Acta Mater 1999, 47 (12), 3367–3381.
42 N Matan, D.C Cox, P.Carter, M.A Rist, C.M F.Rae, R.C Reed, Creep
of CMSX-4 superalloy single crystals: effects of misorientation and
tem-perature, Acta Mater 1999, 47 (5), 1549–1563.
43 T.M Pollock, A.S Argon, Creep resistance of CMSX-3 nickel base
super-alloy single crystals, Acta Metall Mater 1992, 40 (1), 1–30.
44 C Mayr, G Eggler, A Dlouhy, Analysis of dislocation structures after double shear creep deformatin of CMSX6-superalloy single crystals at temperature above1000◦ C, Mater Sci Eng A 1996, 207 (1), 51–63.
45 D.M Knowles, S Gunturi, The role< 112 > {111} slip in the asymmetric nature of creep of single crystal superalloy CMSX-4, Mater Sci Eng A
2002, 328 (1–2), 223–237.
46 R Srinivasan, G.F Eggeler, M.J Mills,γ -cutting as rate-controlling
re-covery process during high-temperature and low-stress creep of
superal-loy single crystals, Acta Mater 2000, 48 (20), 4867–4878.
47 F.R N.Nabarro, Rafting in superalloys, Metall Mater Trans A 1996, 27,
513–530
48 S Ma, D Brown, M.A.M.Bourke, M.R Daymond, B.S Majumdar, Mi-crostrain evolution during creep of a high volume fraction superalloy,
Mater Sc Eng A, 2005, 399(1–2), 141–153.
49 J.X Zhang, T Murakumo, H Harada, Y Koizumi, Dependence of creep strength on the interfacial dislocations in a fourth generation SC
super-alloy TMS-138, Scripta Mater 2003, 48 (3), 287–293.
50 J.X Zhang, T Murakumo, Y Koizumi, T Kobayashi, H Harada, Slip geometry of dislocations related to cutting of theγ phase in a new
gen-eration single-crystal superalloy, Acta Mater 2003, 51 (17), 5073–5081.
51 G.B Gibbs, Thermodynamic analysis of dislocation glide controlled by
dispersed local obstacles, Mater Sci Eng 1969, 4, 313–328.
52 I.V Moiseeva, V.K Pishchak, Substructural changes and mechanisms of
strain and fracture of molybdenum during creep, Met Phys Adv Technol.
1995, 15 (1), 46–54.
Trang 4References 167
53 R.W Buckman Jr, The creep behavior of refractory metal alloys, Int J Refract Met Hard Mater 2000, 18 (4–5), 253–257.
54 J.J Park, Creep behavior of tungsten-rhenium-0.32hafnium-carbon and
its coMParison with some creep models, Int J Refract Met Hard Mater.
1999, 17 (5), 331–337.
55 S.M Allamen, R.W Hayes, E.A Loria, W.O Soboyejo, Interfaces and dislocation substructures in niobium-titanium base alloy: influence of
creep deformation, J Mater Sci 2002, 37, 2857–2864.
56 Y Zamabe-Mitarai, Y.F Gu, H Harada, Two-phase iridium based
refrac-tory superalloys, Platinum Met Rev 2002, 46 (2), 74–81.
57 G.L Erikson, Superalloys 1996, TMS – AIME, 1997.
58 Y.H Zhang, Q.Z Chen, D.M Knowles, Mechanism of dislocation
shear-ing of gamma-prime in fine precipitate strengthened superalloy, Mater Sci Technol 2001, 17 (12), 1551–1555.
59 P.M Firm, Chemical composition of some nickel-base superalloys
pro-duced by powder metallurgy, Adv Mater Process December 1999.
Trang 5My sincere gratitude to my wife Lydia for her support and patience
I would like to express my deep gratitude to Dr Vik V Levitin for valuable assistance with discussions Special thanks to Dr O.V Rubel for help concern-ing the computer simulation I gratefully acknowledge Dr L.K Orzhitskaya for many years of her participation in numerous experiments I am grateful
to Dr V.I Babenko for his participation in the development of equipment for
in situ X-ray studies.
High Temperature Strain of Metals and Alloys, Valim Levitin (Author)
Copyright c 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim
ISBN: 3-527-313389-9
Trang 6Index
a
activated dislocation segments
– length 95, 96
activation energy of creep
– apparent 101
– in pure metals 6, 7
– in refractory metals 146, 147,
150
– in superalloys 101
activation volume
– equation 7
alloys
– Ir–Nb, Ir–Zr 155
– Ni–Cr, Ni–Al, Ni–W 55
– of refractory metals 143, 149,
151, 152, 153
– W–Re, W–Hf 153
amplitudes of atomic vibrations
– inγ phases of superalloys 102,
103
– in nickel base solid solutions
54, 55
– measurements 21–23, 102
c
creep
– curve 5, 6
– dislocation theories 8, 9
– in refractory alloys 151, 152
– in refractory metals 143–145,
147–150, 152
– in solid solutions 54 – in superalloys 86, 87, 95, 96, 116–120, 124, 125
– at higher temperatures 124 – at lower temperatures 116 – dislocation splitting 112, 120–122, 129
– equations 99, 100 – influence of orientation, temperature and stress 111–120
– primary stage 118, 119 – tertiary stage 118 – physical mechanism 43–45, 67, 68
– steady-state stage 51, 77 – calculation for pure metals 51–53
– equations 49, 51–53, 95, 96,
100, 137–140 – structural peculiarities 40
d
deformation map – iron 64
– molybdenum 150 – nickel 63
– niobium 145 density of dislocations – differential equation 49–51, 77, 78
High Temperature Strain of Metals and Alloys, Valim Levitin (Author)
Copyright c 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim
ISBN: 3-527-313389-9
Trang 7– in metals 38
– in superalloys 100, 101
diffraction electron microscopy
20
dislocation networks 30–33, 89,
132–135
dislocations
– annihilation 49–51
– coefficients of multiplication
50, 73, 75
– inγ phase 90, 92, 94, 97
– in crept metals 35–38
– interactions with particles 89–94
– jogged 35, 36
– mobile 35, 36
– partial 112, 160
– ribbons 120–122
– screw components 36, 161
– splitting 121, 129
– subgrains 35
– theory 157
e
evolution of structural parameters
– in matrix of superalloys 88, 89
– in metals 25–33
g
γ/γ misfit
– influence of temperature 136
γ phase
– amplitude of atomic vibrations
102, 103
– coarsening 104, 105
– composition 83, 103
– crystal lattice 84
– lattice parameter 136
– rafting 130, 131
– solubility 85
h
high-temperature strain rate
– physical model
– for metals 43–45, 67, 68 – for superalloys 95–97 – shear deformation 124, 125
i
interaction of dislocations with particles 89–94
j
jogs in dislocations – formation 55, 56 – in crept metals 36–38
m
metals – copper 27, 28, 30 – iron 31–35 – molybdenum 146–151 – nickel 26, 30, 32, 34–37 – niobium 144–147 – vanadium 29, 31 misfit 136
r
rafting 130, 131 refractory metals – molybdenum 146–151 – niobium 144–147 – refractory alloys 149, 151, 152 rupture life 86, 87, 114, 115
s
Schmid factor 112 simulation – by the system of differential equations 67–71
– data for metals 71–77 – of structural parameters evolu-tion 67
single crystal superalloys – blades 113
– creep curves 117–120, 123–125 – influence of orientation on 114–119
Trang 8Index 171
– influence of stress on 120
– influence of temperature on
116–118, 120
– dislocation mechanisms of
strain 119–127, 129
– properties 115
– shear strain 125, 126
solid solutions
– Ni-based 55
stacking faults
– energy 57
structural parameters
– average values 30
– evolution 25–30
– measurements 17–20
structural peculiarities
– of crept metals 40
– of superalloys 83, 88
sub-boundaries
– as sources and obstacles for
mobile dislocations 34, 35
– crystallography 55, 56
– distances between dislocations
31–35, 37, 38
– stability 58–62
superalloys – composition 129, 163 – equations of strain rate 95–100, 137–140
– physical mechanism of strain 96–98
– prediction of properties 106–108 – trends of development 129
v
vacancies – energies of formation 46, 52 – energy of diffusion 46, 47, 52 – loops and helicoids 39 velocity of dislocations – with vacancy-absorbing jogs
46, 47 – with vacancy-producing jogs 46–49, 72, 75
x
X-ray in situ studies
– data 26–31 – equipment 13, 14 – technique 15 – measurement of structure parameters 17–20