Cae nghi~n cll'u, khllosat va do d~c cac d~c tntng hili dudng hQc ngay ding nhi~u hdntr~n wng bien yen 1XJ.Tuy nhi~n, cac bai loan mo blah cho vungbie'nnay van con tltdngd6i it.. ye'u tr
Trang 1TRU<JNGDl).IHOC KHOA HOC TV NmEN
V() THANH TAN
'fINI-I TOAN DONG CI-IAY
VUNG UIEN VEN nO - NUDC NONG
Chuyen nganh : H<liDLtdngHl)c
TOM TAT LU~N AN TIEN si V~T LY
TP H6 Chi Minh -2004
Trang 2Vl)t Ly, trdi1ng D~i HQc Khoa HQc TV Nhit}n, D~i HQc Qu6c
Gia TP.HCM
NgtfC1ihtf(1ng d~n khoa hQc: PGS TS IJt}Quang To~i
PMn bit;n 1: PGS TS Dinh VAnu'u
PMn bit;n 2: TS Nguyen HOO NhAn
PMn bit;n 3: TSKH Phon VAn Hoijc
I
j
Lu~n an dtf<JcbaG vt? tnidc HQi B6ng chii'm lu~n an cii'p
Nha Ntfdc, hQp t~i: tnt<'fngB<;tiHQc Khoa HQc Tt! Nhien TP.HCM
VaG hie: 14 gi<'f30 ngay 24 thang 9 Dam 2004
C6 the am hieu lu~n an ~i thtfvit;n:
~ Khoa HQcT5ng H<JpTP.HCM
- Tnt<'fng B<;tiHQc Kltoa HQc Tt! Nltien TP.HCM
Trang 3M(1 DAU
Khu v1!c bie'n yen 1XJDam Vi~t Nam c6 mQt vai tro ra-tquaD trQng trong nhi~u lanh v1!ckhac nhau Cae nghi~n cll'u, khllosat va do d~c cac d~c tntng hili dudng hQc ngay ding nhi~u hdntr~n wng bien yen 1XJ.Tuy nhi~n, cac bai loan mo blah cho vungbie'nnay van con tltdngd6i it Cae qua trlnh tltdngtae bie'n -1XJ 1£1nhfi'ng trd ng~i Idn eho cac bai loan mo blah Ngoai fa, ding c6the' ke' th~m blah d~ng du<'1ng1XJva s1!sii'd1}ngcac di~u ki~n bi~nd6i vdi mi~n tinh c6 bi~n rQng hudng v~ phia bie'n cling 1£1nhfi'ngkh6 khan kIDthi€t l~p mo blah
Phudng phap pMn tii'hfi'uh~n vdi tinh ~m deo trong vi~cthi€t k€ m~ng ludi to ra thich h~p d6i vdi khu v1!c c6 du<'1ng1XJbie'n phrtc ~p, c6 nhi~u dao nM M(ic du v&n tdn ~i nhfi'ngh~nch€dang ke ciia n6 d6i vdi cae bai loan mo blah thiiy dQng 11!c
Ngay nay, phudng phap pMn tii' hfi'u h~n dang du~c apd1}ngngay cRag nhi~u hdn vao cac bai loan thiiy dQng 11!chQc
bie'n, tU'nhfi'ngmo blah kich thudc nho, yen b<'1(lscandarani, 1993
- Le Provost, 1994- Kapolnai, 1996) cho d€n cae bai toaD hoao
hm d~i dttdng ba chi~u Dch thudc Idn (Greenberg, 1997).
L~n lu~t cac bai toaD mQt, hai va ba chi~u thllYdQng 11!chQc bien sii' d1}ngphudng phap phitn tii' hfi'u h~n du~c trlnh baytrong nQidung ciia lu~n an
Cung vdi vi~c ap d1}ngphudng phap so' tri ph~n tii'hfi'uh~nde' tinh toaD M th6ng hoan lttu gi6 mila ~i dai yen 1XJva th~m 11}cdia Dam Vi~t Nam, lu4n an nay con sii' d1}ngphudng phap tachmi~n khong giait cho bai toaD hoRn hm ba ehi~u
Trang 4CHUdNG 1: TONG QUAN
1.1 GiO'ithi~u chung v~ khu vqc ven 1XIDam Vi~t Nam
Vung biin ven 1X7Dam Vi~t Nam du'<;1egidi h~n tit NhaTrang d6n dao Phd Qu6e du'QechQn lam khu vf{.enghi~n eU'uM
th6ng dong ehiy trong cae thang gi6 mua (tMng 1 va thang 7) vacae thang gi6 chuyin mUa (thang 4 va thang 10) Khu vf{.enghi~neU'uohm trong vUng kinh tuy6n tit 1O3~ d6n 111°E va vi tuy6n tit7,5~ d6n 13~ Df{.avao cae d~e diim v~ khi tu'Qngva hii van,ngu'Cfita ehia khu vf{.enay thanh ba vUng Vung 1 tit Nha Trangd6n Viing Tau; vung 2 tit Viing Tau d6n Ca Mau va vung 3 litvUngyen 1X7biin uty DambQ
1.2 Cac nghi~n CUDh~ th6ng dong chsy ven I.XI
Mc}t86 dQt khao sat va do d~e dong ehiy yen 1X7tit caetr~m do li~n t1;1edii du'Qeti6n hilnh Trong d6 e6 thi ki d6n cae
dQt "Dilu Ira khao sat tdng hf/p cae dilu ki~n tT!nhien t{li vung biin Kien Giang- Ca Mau" vitomua kho va mua mu'aDam1998
va ehuy6n khao sat vung biin Phan Thi6t vao thang 10/1999.1.3 MOt viti m6 hJnh tinh toaD ng~n CUDBi~n D6ng
Cae bili toaD mo hlnh eho vUng biin yen bCfkhong nhi~u
Do d6, cae k6t qua tinh loan eua roOhlnh Biin Bong va vjnh ThaiLan eung ea'p nhii'ngthong tin eiin thi6t eho bili loan yen 1X7
Mc}ts6 k6t qua tu'dng tf{.nhau tit cae lac gia khae nhau.Ching h~n mc}th~ th6ng dong eMy ~nh yen 1X7Dam Vi~t Namtit Phan Thi6t d6n Ca Mau (vUng 1 va vUng 2) hu'dng v~ Dam trong
tru'Cfnggi6 mUa dong - Me va hu'dng l~n bifc trong tntCfnggi6 muauty - nam; dong ehiy yen bCfvjnh Thai Lan (vUng 3) pMt triin
Trang 5ye'u trong tru'(Jnggi6 mila dong - Me nhu'ngpMt trieD ~nh trong
tru'(Jng gi6 mila tay -Dam;
1.4 NQidung lu{in an va phddng phap nghi@ncoo
1.4.1 Cae n6i dung thu'c bien
M11etieu chinh: tlnh toaD h<%th6ng dong chciy gi6 trungblnh hai chi~u va ba ehi~u khu v1f.eyen b(J Dam Vi<%tNam tll' NhaTrang de'n vnng bien tay Dam va dao Phti Qu6c trong cae tru'(Jnggi6 mila d~c tru'ng bhng phu'dng pMp phin tit htru hc,tnvdi mc,tnglu'di du'~c xay d1f.ngg6m cae pMn to' tam ghic bit ky
Ngoai fa, phu'dng pMp phin tit htru hc,tncon du'~e ap d11ngvao bai toaD dong chay troi mQt chi~u vdi roOhlnh Ekman
Cae ke't qua tlnh toaD tru'£1ngdong chciy tu'dng !tng vdi caethang gi6 miIa d~c tru'ng va cae thang gi6 ehuyen mila du'~e th~hi<%ntren cae ban d6
1.4.2 Phu'dngpMp nghien eltu
Mi~n tlnh yen b(J e6 bien long rit rQng Phu'dng pMp tinhhai llin du'~e ap d11ng.LiD diu, vdi mi~n tlnh rQng hdn, khu vJ!.enam Bi~n Bong Ke't qua cua bai toan Dam Bi~n Bong du'~e sitd11nglam di~u ki<%nbien eho bai toaD yen b(J
Phu'dng pMp phin tit htru hc,tnd1f~eap d11ngd~ thJ!.Chi<%ndnh toaD eho cae bai toaD mQt chi~u, hai chi~u va ba chi~u Caemc,tnglu'di hai chi~u du'~e xiiy d1f.ngteen cd sd phep dJ!.ngtam giaeDelaunay, vdi thu~t toaD Delaunay Refinement
Phu'dng phap tach mi~n khong gian va phep bie'n ddi tQa
dQ khong th!t nguyen sigma du'~c ap d11ngde tinh dong ehciy bachi~u Bai toaD ba chi~u du'~e philn ra thanh cae bai toaD mQtehi~u theo phu'dng thing d!tng va cae bai toaD hai ehi~u theophu'dng ngang
Trang 6CHUONG2:Cd Sa LY THuvET
2.1 H~ th6ng cae pbddng trlnb xua't pMt
Hc$th6ng cae phu'dng trinh xu(t pMt mo ta cae hoan h.tutrong d~i du'dng bao gdm cae phu'dng trinh bio loan dQng htc;Jng,bao loan kh6i htc;Jng,khue'ch tan mu6i va ehuy€n v~n entropi B6ivdi nhung chuy~n dQng kich thu'de ldn trong d~i du'dng, hc$th6ngphu'dng trinh xu(t pMt du'c;Jevie't trong hc$tQa dQ e~u (A, (j),R) e6d~ng r(t phtte ~p
2.2 Cae phep xa'p xi
Sa d~ng phep ehie'u leD ~t phing [3,cae phep g~n dungthuy tinh va phep g~n dung Boussinesq d€ du'a M cae phu'dngtrinh xu't pMt v~ d~ng ddn gian hdn
2.3 Cae m6 hlnb Hob toaD dong coy trong d{tidddng
2.3.1 Mo hlnh ba ehi~u
Phu'dng trinh bio loan dQng 1u'c;Jngd6i vdi thanh phhthing drtng rut l~i thanh phu'dng trinh thuy tinh va thanh pMn v~nt6e thing drtng du'c;Jetinh tit phu'dng trinh lien t~e Cae phu'dngtrinh chuy€n dQng e6 d~ng:
-
Trang 7Thanh ph~n thing dli'ng eua veetd v~n t6e dong eMy t~iday bien Wbva dao dQng ro1,1'enUde l,;dli<;fCtinh tit cac di~u ki~ndQng hQc ~i day bien va tren ~t bien:
2.3.3 Phlidng phap pMn fa cua rod hloh ba chi~u
C6 nhi~u phu'dng phap pMn fa rod hlob ba chi~u ohhrodlia bai toaD v~ d~og ddn giiin hdo MQt troog 86 d6 la 81,1'tach cacthanh pMn nhroogangu va v cua dong cMy thanh cac thanh ph~n
(2.3)(2.4)
(2.6)
(2.7)
(2.8)
Trang 8dong chay trung blnh U,v va cac dQ I~ch cua n6 Uf,v' quanh giatri trung blnh:
U,v duQc gQi la cac thAnhpMn chInh ap cua dong chay va uf, v'duQCgQila cac thiinh ph~n ta ap
Thanh ph~n chInh ap cua dong chay U,v va dao dQng mlfc
nudc ,duQc tioo tU'mo hlnh hai chi~u Cac thAnbpMn ta ap uf, v'duQc Hnh vdi budc th<'Jigian Idn bdn, c6 the ga'p mu<'JiI~n, so vdibudc th<'Jigian tinh cac thanh pMn chinh ap
2.4 Trao d6i rffi thing dUng
Thong thu<'Jng,ngu<'Jita danb gia M86 trao d6i r6i th~ngdd'ng Az tU'phudng trlnh dQng Dang r6i:
(A OE
) -!D oP-e
(2.10)
Trong sd dd Mellor- Yamadab~c 2, cac M s6 trao d6i r6i
va khutch tan r6i duQc tlnh to' pbudng trlOOditng cua dQng mlngr6i:
A{(:r +(:)'] - :D, : -e =0
(2.11)
Trong 8d dd Mellor - Yamada b4c 2V2, 1cichthudc r6i duQc
tinh tU'phudng trlnb chuyen dQng:
Trang 9CHt1<1NG3: AP DVNG PHt1<1NG PHAP
TiNH TOAN DONG CHAY
3.1 BMtoan m()tchi~u
3.1.1 Thi€t lap bAiloan
Hc$th6ng cae ph\tdng trlnh xutt pMt eua bai toan m(>tehi~u Ozmidov e6 dl;\ng:
- Tl;\i m~t biin eho tr\tde tr\t{Jng\fng Stitt tie'p tuye'n gi6tr~n ~t biin:
u va v la cae thanh phdn ohm ngangeua v~nt&-edong ehay.
Sir d~ng ph\tdngpMp phdn ttl hii'uhl;\n,gia tri gdn dung eua cae thanh pMn v4n t6e dong ehay u va Y d\t<;1e xtp xi quanh
cae nut eua phdn tii':
V(n) -- VN""'1n,.(n) +vN+1 2<I>(n)
Trang 10V.di c1>lk)va c1>r)la cae ham d~ng dng vdi ph~n ur (k):
)
San khi lien ke't ta't ea cae pUn tU'd~ ~o thanh m<}tma
tr~n loan eve cho ml,tng ltidi ta dti<;Jchai M phtidng trlnh dnh caethAnh ph~n v~
3.1.2 Cae ke't qua cua bai loan mot chi€u
1 TrtiClngdng sua't tie'p tuye'n gi6 kMng d5i: ke't qua tinhtoaD nMn dti<;JedtiClngxoAn 6e Ekman dng v"i cae vi de] khaenhau
2 TrtiClngh<;JptrtiClngdng sua't tie'p tuye'n gi6 thong d5iphtidng va de]!dn bie'n thien di€u bOa: cae kh6i nti"e l~i loon xoayhtidng eung chu ky eua trtiClnggi6 eung chi€u kim d6ng h6 d BAcBan C~u va ngti<;Jcl~i ~i Nam Ban C~u
Trang 11B~u mut cac vecto dong chay cac t~ng ve Den mQt du'<Jng
eHip Khi T = To (chu ky dao dQng rieng cac kh6i nu'dc) du'<Jng
eHip trd thanh mQt du'<Jngiron co ban kinh r!t Mn.
3 Tru'{jng gio xoay hu'dng vdi chu ky T: cac kh6i nu'dctrong d~i du'ong ding xoay hu'dng cling chu ky vdi tru'<Jnggio Cac
d~u mut cua vecto dong chay t~o thanh mQt du'<JngtrOll.Ne'u gio
xoay hu'dng cung chi~u kim d6ng h6 thi dong chcly m~nh honnhi~u Tru'<Jngh<,1pT = To,vdi 811cQnghu'dngcua tru'<Jnggio vacac kh6i nu'dc trong d~i du'ong, dong chay cac t~ng co dao dQngcung pha vcsibien dQra't Mn
3.2 Phudng phap xay d\ffig m~ng Idm trong cae bai toaD haichi~u stt d\1ng phddng phap phdn ttt hii'u h~n
DlIa ireD ph§n m€m Triangle vcsi thu;%ttoaD DelaunayRefinement di xay dllng ~ng lu'oi dnh roan cho bai toaD DamBiin Bong va khu vllc yen b(J Dam Vi~t Nam voi goc d dinh tam
giac khong nM hon 27°.
M~ng lu'oi Dam Biin Bong g6m 1.602 diim nut, 3.031ph~n t11'va 4.633 c~nh M~ng lu'oi yen b<JDam Vi~t Nam g6m 947diim nut, 1.769 ph~n tti'va 2.716 c~nh
3.3 BM toaD roo hinh hai chi~u
3.3.1 He phu'ong trinh xu!t pMt cac di€u kien bien va di€u kienban dh
H~ th6ng cac phu'dng trinh xu!t pMt cho bai roan hai chi€u
Trang 12ou(H+l;;) + ov(H+l;;) + ol;;=0
Bi~u ki~n ban d~u:
u(x,y,t = 0) = 0 v(x,y,t = 0) = 0 i; (x,y,t = 0) = 0
Bi~u ki~n bien:
Tren bien do, di~u ki~n bien tru'<;ftdu'<;feap d\lng eho eahai ~ng Iu'~iDamBien Bong va yen bCl:Y.nI Gl =0 (3.12)
Tren bien long, d6i v~i bai loan dong ebily nam BienBong, di~u ki~n bien pMt x~ Orlanski d6i v~i thiinh phh v~n t6epMp tuye'n du'<;feap d\lng eho ea du'Cfngbien phia bAe va phia Damcua ~ng Iu'~i:
-Cho tru'~e thanh ph~n v~n t6e pMp tuye'n v~i bien:
U =Ui <Pi+ Uj<Pj+Um<Pm V =Vi<Pi+ Vj<Pj+Vm<Pm
~=i;i <Pi + i;j q>j + i;m <Pm
trong d6 q>Iii ham d~ng:
(3.13)
Trang 13<I>j=aj +bjx+cjY2L\ (3.16)
vdi aj= XmYi -XiYm ; bj= Ym - Yi;Cj=Xi - Xmva L\la di~n tich
cua m3i ph~n tit
Ap d',lUgph1.fdngpMp Galerkin cho cae ph1.fdngtrinh (3.8)
- (3.10) va san khi lien ktt cac ma tr~n c\tc bQd~ ~o ma tr~n toaD
c\te cho ~ng lu'di, eu6i ding, Mphu'dng trlnh trd thiloh:
(3.17)Cae phu'dog moh (3.17) d1.f<.1egilii bhog sai pMo lito theothCfigiao
Trang 14vdi f=f~(I-Rf) la kich thudc r6i va fo =K(H+Z{I-~{I+ ~)]
la kich thudc r6i phan !lng trung dnh vdi K= 0,4 la hAng s6Karman
Thanh pMn th!ng dd'ng cua dong chay w du'<;1cdnh to'phudng trinh li~n D:tc:
au + av + aw = 0
ax ay az
Phudng trlnh d6i vdi dao dQng mtfc nu'dc:
at:" at:" at:" .
(3.20)
(3.21)Bi~u ki~n bi~n:
3.4.2 Su' tach mMn kMn!: !:ian troD!: m<>blnh ba chi~u
Thanh ph~n DAmngang cua dong chay trong d<;lidu'dng c6thl du<;1cxem 18 t6ng cua hai thanh ph~n:
{
U=Uh +uzV=Vh +vz
Do d6, phu'dng trlnh chuylo dQng ding du<;1ctach ra thanhcac phu'dog moh bai chi~u va mQtchi~u tUdngd'ng:
(3.24)
Trang 15auh = -u au -Vau +fv-g at;_JL~ f1;p/dz+At Au
3.4.3 Phltdng phap bie'n d6i loa do sigma
Ph\fdng phap bie'n d6i tQa dQ sigma chI th~t s1f.pM h(jpcho khu V1f.cc6 dQ d6c day bi~n nM Tuy nhi~n, n6 cho mQtphltdng phap tinh ddn gian khi th1f.Chi<%nbAi loan ba chi€u S1f.apd~ng ph\fdng phap bie'n d6i tQa dQ sigma vito cac bAi toaD nlt~cDong vAkhu v1f.cven b() IAmQtphltdng phap tinh hi<%uqua cho cac
Y =y
I z-t;
0" H+t;
Trang 163.4.4 Ap dung phtfdng phap pMn tU'hU'uban vao hili toaD ba chi~u
Bili toaD ba chi~u Ia tc5ngh<jpcua cae bili toaD mt')tchi~u(g6m 6 clog sigma theo phtfdng thing d11'ng)vil cae bili toaD haichien 1£~ncae clog ding sigma ttfdng tl1nhtf hili toaD hai chi~u
So sanh giua cae bili toaD mQt va hai chi~u dtf<jctach ra tithili toaD ba chi~u va cae m6 hlob mQt chi~u 1£ong3.1 va m6 blobhai chi~u trong 3.2 c6 nhung khac bi~t:
Bai toaD mQt chien dtf<jctach ra kh6ng c6 thanh phin
l11c Coriolis.
Trang 17Bid toaD hai chi~u du<Jctach ra khong c6 thanh ph~ntrao d6i r6i thing d\tng.
Slf tach mi~n trong bai toaD ba chi~u cho th!y hic$u\togcua bai toaD ba chi~u g6m t6ng cae hic$u«ng cua cae bili to<1nmQtchi~u va hai chi~u Trong d6, hic$u\tng mQt chi~u la sf! xoayhutJng dong chcly xu6ng cae t~ng san va hic$u«ng hai chi~u la slftrtt<Jtdong chcly ~i cae bCJr4n va sf! t<Jothanh cae xoay trong d<Ji
San khi ap dl,mg phudng pMp Galerkin d6i vtJi m6i phh
tir va lien ke't cae pMn tir cua tOaDbQ ffi<JnglutJi de ~o cae M
phudng mnh d(ic tntng, cae bai tOaDmQt va hai chi~u e6 dl.lngnhusan:
[A]~ a/(n) } {a~n-I) ~e + [A]~ a/(n-I) } [A ]{va/(n) } {a~n-I)}le + [A ]{va/(n-I) } (3.35)
va
[p ~ h/(n)} ~~n-I) }It + [p]~ h/(n-I) }
[pHvh/(n)}= ~~n-I) }It + [p ]{vh/(n-I) } (3.36)Trong d6,
[A] la ma tr4n vuong 6x6, cae ma tr4n cQt {Bu} va {Bv}
g6m 6 pMn tir.
[P] la ma tr~n vuong 16O2x1602va cae ma tr~n cQt {Qn}
va {Qv}g6m 1602 ph~n tir cho bai toan Dam Bien Bong so' phh
ttr tu'dog \tog cua chUng cho bai toan ven bCJl~n lu<Jtg6m 947x947
va 947
Thanh pMn v~n t6c thing d«ng ~i clog day du<JCHnh ttt
di~u kic$ndQnghQc:
Trang 18aH aH
va ding du'<Jcap d1}ngphu'dng phap ph~n hi'hU'uh~n
Thanh ph~n v~n t6c thing d11'ng~i cac clog tren du'<Jcunhtft'phu'dng trlnh lien t1}c(3.20) va du'<Jcap d1}ngphu'dng phap saipMn hU'uh~n
Bi~u kic$nbien dQng hQc tren M ~t bi~n (3.21) du'<Jcapd1}ngd~ unh dao dQng m1!cnu't1cl;;va cling du'<Jcunh theo phu'dngphap ph~n tli'hU'uh~n
Bu't1cthiJi gian trong bai toaD mQt chi~u L\e Rho hdn bu'dc thiJi gian L\t trong bai toaD hai chi~u MQt vong l~p cua bai toaD
hai chi~u c6 nhi~u vong l~p bai toaD mQt chi~u Do d6, s1!tachmi~n khong gian d~ lam ro hic$u11'ngbai toaD ba chi~u ma contang t6c dQunh toaD
3.5 St1li~n k~t giila m6 binh Dam Bi~n D6ng va m6 binb ven 1XIDam Vi~t Nam
Bai toaD yen b(J Dam Vic$tNam du'<Jcth1!chic$nvdi di~u
kic$nbien long la ktt qua nMn du'<JCti'tbai toaD Dam Bi~n Bong
Chu'dng tdnh cho bai toaD Dam Bi~n Bong du'<Jcyilt vt1i
thu t1}cghi l~i ktt qua unh toaD ti'tng gi<'Jlen mQt ~p tin Gia tri
dao dQng m1!cnu'dc l;;ho~c thanh pMn v~n Wc phap tuytn Vntrenbien long cua bai toaD yen b(J Dam Vic$tNam c6 du'<Jcbhg cach
sd' d1}ngt~p tin ktt qua d~ dQCcac gia trj san ti'tng gi<'Jdnh cung
vdi cac ham nQiguy theo khong gian va thiJi gian
Cac bai toaD mQt chi~u va hai chi~u du'<Jcth1!chic$nmQtcach dQcl~p, cac thanh ph~n Ubva ~ tren cac clog cling du'<Jcth1!chic$ndQc l~p Den kha Dang l~p trlnh song song tren cac ~ng maytfnh la hic$nth1!cnhhm tang nhanh qua trlnh dnh toaD
(3.37)
Trang 19CHUdNG 4:
Trong m6 hlnh hai chi~u, bu'<1cth<1igian dnh :1t= 6O0schobai roan Dam Bien E>6ngva :1t= 240scho bai loan ven b<1.Trongm6 hlnh ba chi~u, bai loan thing dti'ngmQt chi~u va bai tmin DAm
ngang hai chi~u c6 bu'<1cdnh I~n 1u'<;1tla :1r= 25s va :1t=6OOscho
bili loan Dam Bi~n E>6ng.E>6ivdi bai loan ba chi~u ven b(1 cae
bu'<1c dnh I~n 1u'<Jtla :1r = 30s va :1t= 240s.
4.1 Cae ke't qua cua b8i toaD hai ehi~u
T~i miii Cll Mau lu6n c6 mQt h~ th6ng dong char m~nhtrong cae thang gi6 mua Gifi'a Bi~n E>6ngva vinh Thai Lan lu6nc6 h~ th6ng dong chay xoay Stf xu!t hi~n cae xmly d~u lien quaD
d6n stf tu'dng lac eua tru'<1nggi6 va y6u 16 dia hlnh cua khu vf!.cva
e6 th~ giai thich sf!.xu!t hi~n cae xoay ireD cd sObao roan th6ng1u'<Jngnu'de trong d~i du'dng
H~ th6ng dong chay ~nh ven b(1 Dam Vi~t Nam tU NhaTrang d6n miii Cll Mau, hu'<1ngv~ Dam trong tru'<1nggi6 mua d6ng
- Me va hu'dng leu Me trong tru'<1nggi6 mua Hiy- Dam.
T~i khu vtfe Hiy- Dam fir miii Ca Mau dtn dao Phli Qu6e
c6 ffiQth~ th6ng dong chay m~nh vito thang 7 Tuy nhien, v<1itru'<1nggi6 nn)a d6ng- Me (thang I), dong ehiiy ndi d:iy l~i c6 giatri nM hdn rtt nhi~u
MQt xoay Rho hlnh thilnh ch~y dQe su6t b(1bien fir Nha
Trang d€n C~n Gi<1trong tru'<1nggi6 mua Hiy -Dam va sri tdn ~i
mQt dong chay nghich v~ hu'dng Dam ~i d:iy trong tru'<1nggi6 muaHiy- Dam