1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Control of Robot Manipulators in Joint Space - R. Kelly, V. Santibanez and A. Loria Part 15 ppsx

9 271 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 149,4 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

265 generic adaptive control of robots 329 P“D” control with gravity compensa-tion.. 172 PD control with gravity compensation 158 pendulum under PD control with adaptive compensation.. 2

Trang 1

418 D Dynamics of Direct-current Motors

Example D.4 Model of the motor with load whose center of mass is located on the axis of rotation (nonlinear friction).

Consider the model of nonlinear friction (D.17) for the friction torque between the axis of the rotor and its bearings, and the corresponding load’s friction,

fL( ˙q) = fL q + c˙ 2 sign( ˙q) (D.18)

Taking into account the functions (D.17) and (D.18), the motor-with-load model (D.11) becomes

(J L + J m) ¨q +



f m+K a K b

R a + f L



˙

q + (c1+ c2) sign( ˙q) = K R a

a v

Bibliography

Derivation of the dynamic model of DC motors may be found in many texts, among which we suggest the reader to consult the following on control and robotics, respectively:

• Ogata K., 1970, “Modern control engineering”, Prentice-Hall.

• Spong M., Vidyasagar M., 1989, “Robot dynamics and control”, John

Wi-ley and Sons, Inc

Various nonlinear models of friction for DC motors are presented in

• Canudas C., ˚Astr¨om K J., Braun K., 1987, “ Adaptive friction compen-sation in DC-motor drives”, IEEE Journal of Robotics and Automation,

Vol RA-3, No 6, December

• Canudas C., 1988, “Adaptive control for partially known systems—Theory and applications”, Elsevier Science Publishers.

• Canudas C., Olsson H., ˚Astr¨om K J., Lischinsky P., 1995, “A new model for control of systems with friction”, IEEE Transactions on Automatic

Control, Vol 40, No 3, March, pp 419–425

An interesting paper dealing with the problem of definition of solutions for mechanical systems with discontinuous friction is

• Seung-Jean K., In-Joong Ha, 1999, “On the existence of Carath´eodory solutions in mechanical systems with friction”, IEEE Transactions on

Au-tomatic Control, Vol 44, No 11, pp 2086–2089

Trang 2

:= and =: 19

L n 2 390

L n ∞ 390

⇐⇒ 19

=⇒ 19

IR 20

IRn 20

IRn ×m 21

IR+ 20

˙ x 19

∃ .19

∀ .19

∈ 19

→ .19

e.g xiv

i.e xiv

cf xiv

etc xiv

˚ Astr¨om K J 308, 333, 418 Abdallah C T 139, 333, 378 absolute value 20

actuators 60, 82, 411 electromechanical 82, 89 hydraulic 82

linear 82

nonlinear 87

adaptive gain 329

update law 328

adaptive control closed loop 330

law 328

parametric convergence 329

adaptive law 328

Ailon A 308

Alvarez R xv

Alvarez–Ramirez J 218

An C 283

Anderson B D O 333

Annaswamy A 333, 398 Arimoto S xv, 109, 139, 153, 167, 168, 195, 217, 218, 333, 334 armature current 412

armature resistance 83, 411 Arnold V 54

Arteaga A 332

Arteaga, M xv

Asada H 88, 139, 283 asymptotic stability definition 33, 35 Atkeson C 283

back emf 83, 412 back emf constant 411

bandwidth 231

Barb˘alat lemma 397

Bastin G 140

Bayard D 238, 331 Bejczy A K 90, 283 Berghuis H xv, 308, 333 bifurcation 187, 196 pitchfork 188

saddle-node 188

Bitmead R R 333

Block-diagram computed-torque control 228

Trang 3

420 Index

feedforward control 265

generic adaptive control of robots 329 P“D” control with gravity compensa-tion 293

PD control 142

PD control plus feedforward 270

PD control with compensation 245

PD control with desired gravity compensation 172

PD control with gravity compensation 158 pendulum under PD control with adaptive compensation 370

PID control 202

Proportional control plus velocity feedback 141

robot with its actuators 84

Boals M 334

Bodson M 333

Borrelli R 54

boundedness of solutions 148, 174 uniform 45

Braun K 418

Brogliato B 332

Burkov I V 89

Caccavale F 283

Campa R xv

Canudas C 140, 308, 332, 418 Canudas de Wit C xv

Carelli R xv, 238, 332 Cartesian coordinates 115

Cartesian positions 61

catastrophic jumps 187

Cervantes I xv, 218 Chaillet A xv

chaos 187

Chiacchio P 283

Chiaverini S 89

Choi Y 218

Christoffel symbol 97

symbols 73

Chua L O 196

Chung W K 218

CICESE xiv

closed loop 137, 224 adaptive control 330

Computed-torque control 229

Computed-torque+ control 234

control P“D” with gravity compensa-tion 294

P“D” control with desired gravity compensation 302

PD control with compensation 245

PD control with desired gravity compensation 173

PD control with gravity compensation 159 PD plus feedforward control 271

PD+ control 249

PID control 205

closed-loop PD control 143

Coleman C 54

Computed-torque control closed loop 229

control law 228

pendulum 231

Computed-torque+ control closed loop 234

control law 233

CONACyT xiv

control adaptive see adaptive control adaptive Slotine and Li 361

Computed-torque see Computed-torque control Computed-torque+ see Computed-torque+ control feedforward see feedforward control force 16

fuzzy 15

hybrid motion/force 16

impedance 16

law 136, 224 learning 15, 333 motion 223

neural-networks-based 15

P see PD control

P“D” with desired gravity

compensa-tion see P“D” control with desired

gravity compensation P“D” with gravity compensation

see control P“D” with gravity

compensation

PD see control PD

Trang 4

PD plus feedforward see PD plus

feedforward control

PD with desired gravity

compensa-tion see PD control with desired

compensation of gravity

PD with gravity compensation

see control PD with gravity

compensation

PD+ see PD+ control

PID see PID control

position 13

set-point 136

Slotine and Li see PD controller with compensation specifications 12

variable-structure 15

without measurement of velocity 291 control law 136, 224 adaptive 328

Computed-torque control 228

Computed-torque+ control 233

control P“D” with gravity compensa-tion 293

feedforward control 264

P“D” control with desired gravity compensation 300

PD control 142

PD control with desired gravity compensation 171

PD control with gravity compensation 157 PD plus feedforward control 269

PD+ control 248

PID control 201

Slotine and Li 244

control P“D” with gravity compensation closed loop 294

control law 293

controller 136, 224 coordinates Cartesian 61, 115 generalized 78

joint 60, 115 Coriolis forces 72

Craig J 88, 109, 139, 238, 283, 331, 332 critically damped 231

damping coefficient 84

Dawson D M 139, 140, 333, 378 Dawson, D M 308

DC motors 135

de Jager B 333

de Queiroz M 140

degrees of freedom 4

Denavit–Hartenberg 88

desired trajectory 327

Desoer C 398

differential equation autonomous 28, 49 linear 28

nonlinear 28

digital technology 263

direct method of Lyapunov 27

direct-current motor linear model 83

direct-current motors 82, 411 model linear 416

nonlinear model 417

direct-drive robot 77

DOF 4

Dorsey J 218

dynamic linear 396

dynamics residual 102

Egeland O 89, 259 eigenvalues 24

elasticity 78

electric motors 77

energy kinetic 71, 78 potential 72, 79 equations of motion Lagrange’s 62, 72 equilibrium asymptotically stable 37, 38 bifurcation 187

definition 28

exponentially stable 38

isolated 55

stable 31, 32 unstable 39

error position 136, 223 velocity 224

Trang 5

422 Index

feedforward control

control law 264

pendulum 266

fixed point 26

Fixot N 308, 332 Fomin S V 54

forces centrifugal and Coriolis 72

conservative 63

dissipative 76

external 73

friction .76

gravitational 72

nonconservative 63

friction coefficient 83

forces 76

nonlinear 417

Fu K 88, 139, 238 function candidate Lyapunov 43

continuous 390

decrescent 41

globally positive definite 41

locally positive definite 40

Lyapunov 44

positive definite 41, 401 quadratic 41

radially unbounded 41

strict Lyapunov 163, 167, 279 gain adaptive 329

derivative 141

integral 201

position 141, 328 velocity 141, 328 gear 83

gears 77, 412 global asymptotic stability 48

definition 37, 38 theorem 47

global exponential stability 48

definition of 38

theorem 47

global minimum 181

global uniform asymptotic stability theorem 47

Godhavn J M 259

Goldstein H 89

Gonzalez R 88, 139, 238 Goodwin G C 331

gradient 73, 182, 403, 405 adaptive law see adaptive law Guckenheimer J 196

Hahn W 54

Hale J K 54, 196 Hauser W 89

Hessian 182, 387, 403 Hollerbach J 283

Holmes P 196

Hopfield 55

Horn R A 397

Horowitz R xv, 331, 332, 334 Hsu L 332

Hsu P 331

Ibarra J M xv

In-Joong Ha 418

inductance 83, 411 inertia matrix 72

rotor’s 83

input 82, 84 input–output 390

inputs 73

instability definition 39

integrator 201

Jackson E A 196

Jacobian 92, 116 Johansson R 332

Johnson C R 333, 397 joint elastic 77

prismatic 59

revolute 59

joint positions 60

Kanade T 283, 334 Kanellakopoulos I 333

Kao W 334

Kawamura S 168, 218 Kelly R 196, 217, 218, 238, 239, 259, 283, 284, 308, 332, 358, 378 Khalil H 54, 333 Khosla P 334

Trang 6

Khosla P K 283

kinematics direct 61

inverse 61

Ko¸cak H 196

Koditschek D E xv, 259, 260, 333, 334, 359 Kokkinis T 283

Kokotovi´c P 333

Kolmogorov A N 54

Kosut R 333

Krasovski˘ı N N 54

Kristi´c M 333

L¨ohnberg P 308

La Salle see theorem La Salle J 53

Lagrange’s equations of motion 62

Lagrangian 63, 72, 79 Landau I D 332

Landau I D 333

Lee C 88, 139, 238 Lefschetz S 53

lemma Barb˘alat’s 397

Lewis F L 139, 333, 378 Li W 54, 259, 331, 333, 377, 378 Li Z 90

linear dynamic system 264

links numeration of 59

Lipschitz 101, 180 Lischinsky P 418

Lizarralde F 332

Lor´ıa A 218

Lozano R 332, 333 Luh J 89

Lyapunov candidate function 43

direct method 27, 44 function .44

second method 27

stability 27

stability in the sense of 31

theory 54

uniform stability in the sense of 32

Lyapunov, A M 53

M’Saad M 333

manipulator definition 4

Mann W R 397

mapping contraction see theorem Marcus M 397

Mareels I M Y 333

Marino R 89, 333 Marth G T 283

Massner W 334

matrix 21

centrifugal and Coriolis 73, 97 diagonal 22

Hessian 182, 387, 403 identity 23

inertia 72, 95 Jacobian 92, 116 negative definite 24

negative semidefinite 24

nonsingular 23

partitioned 124, 384 positive definite 23, 41 positive semidefinite 24

singular 23

skew-symmetric 22, 98 square 22

symmetric 22

transfer 396

transpose 21

Mawhin J 54

Mayorga R V 89

Meza J L 217

Middleton R H 331

Milano N 89

Minc H 397

Miyazaki F 168, 195, 217, 218 model direct kinematic 61, 115 dynamic 10, 71 elastic joints 77

with actuators 82

with elastic joints 89

with friction 75

dynamics 88

inverse kinematic 61, 116 kinematics 88

moment of inertia 77

motion equations Lagrange’s 79

Trang 7

424 Index

motor-torque constant 83, 411

multivariable linear system 230

Murphy S 218

Nagarkatti S P 140

Naniwa T 334

Narendra K 333, 398 Nicklasson P J 139

Nicosia S 89, 308 Nijmeijer H xv, 308 norm Euclidean 20

spectral 25

numerical approximation 291

observers 291

Ogata K 418

Olsson H 418

open loop 265

operator delay 299

differential 292

optical encoder 291

optimization 181

Ortega R xv, 109, 139, 218, 238, 259, 308, 332, 378 oscillator harmonic 32

van der Pol 39

output 82

outputs 73, 84 P´amanes A xv

P“D” control with desired gravity compensation closed loop 302

control law 300

Paden B 168, 260, 283 Panja R 168, 260 parameters adaptive 328

of interest .317

parametric convergence 329, 330 parametric errors 330

Parker T S 196

Parra–Vega V 334

passivity 111

Paul R 88, 139, 217 PD control 141

closed-loop 143

control law 142

pendulum 146, 150 PD control with adaptive compensation 363 closed loop 364

PD control with adaptive desired gravity compensation adaptive law 339

closed loop 342

control law 339

PD control with compensation closed loop 245

PD control with desired gravity compensation closed loop 173

control law 171

pendulum 174, 187 PD control with gravity compensation 157 closed loop 159

control law 157

pendulum 168

robustness 168

PD control with gravity precompensa-tion see PD control with desired gravity compensation PD plus feedforward control closed loop 271

control law 269

experiments 283

pendulum 273

tuning 273

PD+ control closed loop 249

control law 248

pendulum 252

pendulum 30

Computed-torque control 231

feedforward control 266

kinetic energy 45

PD control 146, 150 PD control with desired gravity compensation 174

PD control with gravity compensation 168 PD plus feedforward control 273

PD+ control 252

PID control 218

Trang 8

potential energy 45

with friction 57

permanent-magnet 411

PID control closed loop 205

control law 201

modified 213

robustness 217

tuning 213

pitchfork see bifurcation potentiometer 291

Praly L 333

properties gravity vector 101

of residual dynamics 102

of the Centrifugal and Coriolis matrix 97 of the inertia matrix 95

Qu Z 139, 218 Queiroz M S de 308

Ramadarai A K 283

Rayleigh–Ritz see theorem Reyes F 284

Riedle B D 283, 333 Rizzi A 260, 333, 334, 359 robot Cartesian 69

definition 4

direct-drive 77

dynamic model .71

mobile 3

robots navigation 13

stability of 75

Rocco P 218

rotors 79

Rouche N 54

saddle-node see bifurcation Sadegh N 331, 332 Salgado R 283

sampling period 299

Samson C xv, 217 Santib´a˜nez V 110, 217, 283 Sastry S 54, 331, 333 Schwartz inequality 21

Schwartz inequality 21

Sciavicco L 139

sensors 78, 136, 224 Seung-Jean K 418

Siciliano B 89, 139, 140 singular configuration 118

Sira-Ram´ırez H xv, 139 Slotine and Li see control control law 244

Slotine J J xv, 54, 88, 139, 259, 331, 333, 377, 378 space L n 2 390

L n p 390, 397 L n ∞ 391

Spong M xv, 88, 89, 109, 139, 153, 167, 217, 238, 259, 332–334, 378, 418 stability definition 31, 32 of robots 75

semiglobal 207

theorem 44

Stoten D P 333

Stoughton R 283

Sylvester see theorem symbols of Christoffel 73

system dynamic lineal 202

tachometer 291

Takegaki M 153, 167, 195 Takeyama I 283

Tarn T J 90, 283 Taylor A E 397

theorem contraction mapping 26

application 147

contraction mapping theorem application 180

global asymptotic stability 47

global exponential stability 47

global uniform asymptotic stability47 La Salle application 145

La Salle’s 49, 51 application 184, 211 use of 160

mean value 392

mean value for integrals 388

of Rayleigh–Ritz 24

Trang 9

426 Index

of Sylvester 23

of Taylor 387

stability 44

uniform stability 44

Tomei P 195, 308, 333, 359 torsional fictitious springs 79

Tourassis V 89

tuning 201, 213 PD plus feedforward control 273

uncertainties parametric 265

uncertainty 313

van der Pol see oscillator vector 20

gravity 101

of external forces 73

of gravitational forces 72

parametric errors 330

Vidyasagar M 88, 109, 139, 153, 167, 217, 238, 333, 334, 378, 397, 398, 418 voltage 83, 412 Wen J T xv, 140, 218, 238, 283, 331 Whitcomb L L xv, 260, 333, 334, 359 Wiggins S 196

Wittenmark B 333

Wong A K 89

Yoshikawa T 88, 89, 139, 153, 167, 238 Yu T 332

Yun X 90

Zhang F 140

Ngày đăng: 10/08/2014, 01:23

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm