H`ınh 4.13: A ˙’ nh c´o d¯ˆo tu.o.ng pha˙’n tˆo´t.
.
s = T (r) 1 r rk sk = T (r k ) 1 (0, 0)
Thuˆ a.t to´an
H[r] = H[r] + 1.
Trang 20 1 2
1
2
pr (r) r (a) 0.0 0.2 0.4 0.6 0.8 1.0 1.0
s = T (r) r (b) 0.0 0.5 1.0 0.5 1.0
ps (s)
s
(c)
Trang 3H`ınh 4.16: A ˙’ nh f v`a biˆe˙’u d¯ˆo` cˆo.t cu˙’a n´o.
T [r] = round
L − 1
M N Hc [r]
.
g(x, y) = T [f (x, y)].
V´ ı du 4.2.2 Hınh 4.16 l` a a˙’nh gˆ o´c f v` a biˆ e˙’u d ¯ˆ ` cˆ o o.t cu˙’a n´o Hınh 4.17 l`a a˙’nh (v`a biˆe˙’u
A ˙’ nh c´o biˆe˙’u d¯ˆo ` cˆ o t cho tru ´o.c
Trang 4H`ınh 4.17: A ˙’ nh v`a biˆe˙’u d¯ˆo` cˆo.t cu˙’a n´o sau khi nˆang cao chˆa´t lu.o ng a˙’ng bˇa`ng phu.o.ng
s := T (r) =
0
v := G(z) =
0
G(z) = T (r),
hay
0
0
(z))
z = G−1[T (r)] =: F (r).
Trang 5X´ et tru.` o.ng ho p r` o.i ra.c, ta c´o
T (r) :=
r
X
i=0
ni
n , r = 0, , L − 1;
G(z) :=
z
X
i=0
mi
n , z = 0, , L − 1.
(4.5)
Thuˆ a.t to´an.
Bu.´ o.c 1 T`ım h` am phˆ an bˆ o´ t´ıch l˜ uy T (r) theo (4.5).
Bu.´ o.c 2 T`ım h` am phˆ an bˆ o´ G(z) t` u h` am mˆ a.t d¯ˆo p z (z) cu˙’a c´ ac m´ u.c x´ am trong a˙’nh
Bu.´ o.c 3 V´ o.i mˆ o ˜i gi´a tri x´am r = 0, 1, , L − 1, t`ım z := z(r) ∈ {0, 1, , L − 1}
Bu.´ o.c 4 Biˆ e´n d ¯ˆ o˙’i a˙’nh gˆ o´c theo cˆ ong th´ u.c
g(x, y) := z[f (x, y)].
Nhˆ a.n x´et 4.2.3 (i) Biˆe´n d¯ˆo˙’i ngu .o c t`u s sang z thu.`o.ng khˆong d¯o.n tri C´ach d¯o.n
H` am phˆ an bˆ o´ Gauss x´ ac d ¯i.nh bo ˙’ i .
h(z) := e −(z−µ)
2 2σ2 ,