Trong quá trình lập kế hoạch tiến độ và điều khiển tiến độ thi công xây dựng công trình, chúng ta thường gặp một số trường hợp sau đây: - Khi lập phương án kế hoạch xuất phát ban đầu chú
Trang 1xây dựng mô hình tính toán để quản trị
tiến độ vμ chi phí thực hiện dự án
đầu tư trong xây dựng
TS phạm văn vạng
Bộ môn Kinh tế xây dựng Khoa Vận tải - Kinh tế - Trường ĐHGTVT
Tóm tắt: Bμi báo đề xuất mô hình vμ phương pháp tính toán để quản trị tiến độ vμ chi phí
thực hiện dự án đầu tư trong xây dựng
Summary: The article offers moldel and calculating methods to administer the rate of
progress and expenses of effectuating investment project in construction
Trong quá trình lập kế hoạch tiến độ và
điều khiển tiến độ thi công xây dựng công
trình, chúng ta thường gặp một số trường hợp
sau đây:
- Khi lập phương án kế hoạch xuất phát
ban đầu chúng ta nhận được thời gian thực
hiện theo kế hoạch lớn hơn thời gian cho
phép, tức là: TKH > [T];
- Khi tổng chi phí của dự án là một đại
lượng không đổi, nếu giảm thời gian thực hiện
dự án sẽ dẫn đến giảm chi phí thực hiện;
- Khi rút ngắn thời gian thực hiện sẽ làm
tăng chi phí, nhưng sự tăng chi phí này vẫn
nhỏ hơn lợi ích thu được do giảm thời gian
thực hiện Các lợi ích này có thể là: tiết kiệm
chi phí quản lý; do sớm đưa công trình vào
hoạt động; hoặc nhận được khoản tiền thưởng
do rút ngắn thời gian thực hiện
- Trong quá trình quản trị thực hiện dự án
người quản trị gia thường gặp trường hợp thời
gian thực hiện thực tế lớn hơn thời gian dự
kiến, tức là kế hoạch ban đầu có nguy cơ bị
phá vỡ
Trong tất cả các trường hợp nêu trên,
người quản trị cần phải có biện pháp rút ngắn
thời gian thực hiện của một số hoạt động
(hoặc công việc) nhất định để thực hiện dự án
trong thời hạn mong muốn với chi phí thực hiện hợp lý Tóm lại, việc rút ngắn thời gian thực hiện dự án chỉ có thể xảy ra với một trong hai khả năng sau đây:
Trường hợp thứ nhất: Khi rút ngắn thời
gian thực hiện sẽ làm tăng chi phí Nhưng những chi phí này sẽ được bù đắp bằng lợi ích
do rút ngắn thời gian thực hiện Lợi ích ròng sẽ
là chênh lệch giữa lợi ích rút ngắn thời gian thực hiện với chi phí tăng lên do rút ngắn Tức
là mục tiêu rút ngắn thời gian thực hiện dự án phải là cực đại lợi ích ròng
Trường hợp thứ hai: Rút ngắn thời gian
thực hiện để hoàn thành dự án theo kế hoạch
đã định Trường hợp này cần tìm biện pháp rút ngắn thời gian theo yêu cầu định trước với chi phí tăng lên là nhỏ nhất
Muốn rút ngắn thời gian thực hiện dự án
có thể phải đẩy nhanh tiến độ thực hiện các hoạt động Tuy nhiên, không phải bất cứ việc
đẩy nhanh tiến độ của hoạt động nào cũng có lợi cho việc rút ngắn thời gian thực hiện dự án,
mà ngược lại chỉ sinh ra các chi phí vô ích Các hoạt động có thời gian dự trữ lớn khi được
đẩy nhanh tiến độ có thể không làm giảm thời gian thực hiện dự án Chỉ có các hoạt động trên đường găng (còn gọi là công việc găng) khi được đẩy nhanh tiến độ sẽ góp phần tích
Trang 2cực vào việc làm giảm thời gian thực hiện dự
án
Để tiến hành rút ngắn thời gian thực hiện
dự án cũng có nhiều giải pháp:
- Rút bớt nguồn lực từ các hoạt động có
thời gian dự trữ lớn tức là kéo dài thời gian
thực hiện các hoạt động này để bổ sung cho
hoạt động găng có nguy cơ kéo dài thời gian
so với dự kiến
- Bổ sung nguồn lực từ bên ngoài để thực
hiện các hoạt động có nguy cơ kéo dài so với
dự kiến
Việc sử dụng giải pháp nào còn tuỳ thuộc
vào điều kiện thực tế của chủ thể quản trị và
tình hình thực hiện các hoạt động trong toàn
bộ dự án Người quản trị gia cần xem xét cân
nhắc một cách tỷ mỷ, đầy đủ những yếu tố
liên quan đến việc lựa chọn quyết định Song
người quản trị gia nào cũng mong muốn có
thời gian thực hiện ngắn nhất và chi phí tăng
lên nhỏ nhất Mục tiêu đặt ra là cực tiểu chi
phí cho việc rút ngắn thời gian
Thời gian thực hiện mong muốn ngắn
nhất là thời gian ngắn nhất để thực hiện hoạt
động mà quản trị gia có thể sử dụng để điều
chỉnh Thời gian thực hiện mong muốn ngắn
nhất không phải là thời gian lạc quan mà chỉ
là thời gian hướng tới thời gian lạc quan
Để có được giải pháp hợp lý, chúng ta cần
phải nghiên cứu mối quan hệ giữa chi phí với
thời gian thực hiện các hoạt động trong dự án
1 Quan hệ giữa thời gian vμ chi phí
của một hoạt động trong dự án
Giả sử chúng ta đã tính toán được thời
gian và chi phí để thực hiện các hoạt động
trong điều kiện bình thường Mỗi hoạt động
(công việc) có thể rút ngắn đến giới hạn kỹ
thuật của nó, có thể gọi đây là giới hạn tối đa
của sự rút ngắn thời gian
Giả thiết rằng khả năng rút ngắn tối đa là:
ΔT = t - t' (1)
Nếu quan niệm mối quan hệ giữa chi phí
và thời gian thực hiện một hoạt động là tuyến tính trong khoảng thời gian giữa t và t', ta có chi phí rút ngắn một đơn vị thời gian của công việc là:
K =
' t t
C ' C T
C ' C
ư
ư
= Δ
ư
(2) Trong đó:
t và t' là thời gian thực hiện trong điều kiện bình thường, và trong trường hợp rút ngắn tối đa
C và C' là chi phí công việc trong điều kiện bình thường và trong điều kiện rút ngắn tối đa
Mối quan hệ giữa thời gian thực hiện một hoạt động (công việc) với chi phí cho việc thực hiện hoạt động đó (công việc) được mô tả trong hình 1
Qua hình 1 chúng ta thấy rằng nếu muốn giảm thời gian thực hiện của mỗi hoạt động trong dự án đều phải tăng chi phí cho hoạt
động đó Mỗi hoạt động có độ dốc đường cong chi phí - thời gian khác nhau Do đó, muốn rút ngắn thời gian thực hiện dự án nên
ưu tiên chọn hoạt động có độ dốc đường cong chi phí thấp nhất
Thời gian thực hiện ngắn nhất
Chi phí Công việc
Thời gian
t
t’
Thời gian thực hiện trong
điều kiện bình thường
C
C’
Hình 1: Quan hệ thời gian - chi phí công việc
2 Phương pháp lựa chọn phương án rút ngắn thời gian thực hiện dự án
Để mô tả phương pháp lựa chọn phương
án rút ngắn thời gian thực hiện dự án, chúng
Trang 3ta xét ví dụ sau:
Ví dụ: Một dự án có số liệu về thời gian
và chi phí thực hiện các hoạt động như trong
biểu 1
Hãy điều chỉnh kế hoạch thực hiện dự án
với thời gian ấn định không lớn hơn 10 tháng;
Giả sử việc tổ chức quản lý theo phương
pháp sơ đồ mạng Các bước tiến hành như
sau:
Bước 1: Dựa vào số liệu đã cho trong
biểu 1, ta vẽ sơ đồ mạng PERT xuất phát với
các hoạt động và thời gian dự tính ban đầu
như hình 2
Bước 2: Xác định đường găng và kiểm
tra điều kiện về thời gian thực hiện:
Trên hình 2, có đường găng là đường:
1 - 2 - 3 - 5 - 6 với thời gian là 13 tháng;
Vì thời hạn thực hiện cho phép là 10 tháng, nên cần phải tìm biện pháp rút ngắn thời gian thực hiện dự án còn 10 tháng với chi phí tăng lên do rút ngắn thời gian là nhỏ nhất
Bước 3: Xác định thời gian thực hiện
mong muốn ngắn nhất đối với từng hoạt động (cột 4) biểu 1;
Bước 4: Xác định thời gian rút ngắn có
thể (cột 5) và chi phí rút ngắn (cột 7 và 8);
Bước 5: Xác định các phương án rút
ngắn thời gian thực hiện của dự án và tính toán chi phí tăng lên cho từng phương án
Để xác định phương án rút ngắn thời gian thực hiện dự án, chúng ta cần đưa ra tất cả các phương án rút ngắn có thể rồi chọn phương án đáp ứng yêu cầu về thời gian với chi phí tăng lên là nhỏ nhất
Biểu 1
Công
việc
Việc phải
thực hiện
trước
Thời gian
dự tính ban đầu
Thời gian mong muốn ngắn nhất
Thời gian rút ngắn
có thể
Chi phí trong
điều kiện bình thường
Chi phí trong
điều kiện thời gian ngắn nhất
Chi phí bình quân cho 1 đơn
vị thời gian rút ngắn
5 - 6 2 - 4; 2- 5;
1
2
6
5
4
3
2
6
3
3
4
3
Hình 2
Trang 4Trong quá trình xác định phương án rút
ngắn cần chú ý những điểm sau đây:
- Vì mục tiêu là đảm bảo thời gian thực
hiện dự án trong thời hạn mong muốn với chi
phí tăng lên nhỏ nhất nên cần ưu tiên các hoạt
động có chi phí rút ngắn là nhỏ nhất
- Vì thời gian thực hiện dự án là thời gian
thực hiện của đường găng nên các phương án
rút ngắn thời gian thực hiện dự án sẽ tập trung
vào các hoạt động nằm trên đường găng
- ở mỗi phương án rút ngắn thời gian cần
tính toán lại đường găng và kiểm tra lại điều
kiện thời gian thực hiện T (găng) < [T] của dự
án
Trong ví dụ trên, ta có đường găng là
đường 1 - 2 - 3 - 5 - 6 có thời gian là 13 tháng
Cần tiến hành rút ngắn các hoạt động trên
đường găng Đầu tiên cần ưu tiên rút ngắn các
hoạt động có chi phí tăng lên nhỏ nhất Tức là
ta có các phương án sau:
Phương án 1: Rút ngắn hoạt động (5 - 6)
là 1 tháng, hoạt động 3 - 5 là 2 tháng, khi đó
đường găng mới xuất hiện là đường 1 - 2 - 4 - 6
với thời gian là 12 tháng; đường 1 - 2 - 5 - 6 là
11 tháng nên cần phải rút ngắn hoạt động
4 - 6 là 2 tháng; hoạt động 2 - 5 là 1 tháng; chi
phí rút ngắn của phương án này là:
120 + 2*150 + 2*120 + 1*120 = 780 đơn vị
Phương án 2: Rút ngắn hoạt động 5 - 6 =
1 tháng; hoạt động 1 - 2 = 2 tháng; hoạt động
1 - 3 = 1 tháng; Chi phí rút ngắn là
1*120 + 2*150 + 1*130 = 550 đơn vị
Bài toán lựa chọn phương án rút ngắn thời gian hoạt động của dự án cũng có thể giải quyết bằng phương pháp mô hình toán kinh
tế Mô hình được thành lập có dạng sau:
Phương án 3: Rút ngắn hoạt động 5 - 6 =
1 tháng; hoạt động 1 - 2 =1 tháng; hoạt động
3 - 5 = 1 tháng; hoạt động 4 - 6 = 1 tháng Chi
phí tăng lên là: 1*120 + 1*150 +1*150 +1*120
= 540 đơn vị
Gọi: i là số thứ tự hoạt động (công việc) của
dự án được xác định trên mạng; i=1-N;
Nếu xét tất cả các phương án rút ngắn có
thể chúng ta sẽ có thêm 8 phương án nữa,
nhưng những phương án này đều không có
tính khả thi Thí dụ như: rút ngắn các hoạt
động: 1 - 2 = 2; 2 - 3 =1; 1 - 3 =2, có chi phí tăng lên là: 740 đ.v hoặc rút ngắn các hoạt
động: 1 - 2 = 1; 3 - 5 = 2; 4 - 6 = 1; 2 - 5 = 1, có chi phí tăng lên là 690 đơn vị v.v
Bước 6: Chọn phương án: Phương án
được chọn là phương án đáp ứng được yêu cầu về tiến độ thực hiện với chi phí tăng lên nhỏ nhất Trong ví dụ trên, phương án 3 là phương án chọn với chi phí tăng lên là: 540
đơn vị
Qua ví dụ trên chúng ta thấy rằng dù bài toán đơn giản, số công việc không nhiều song
số phương án rút ngắn thời gian công việc trên đường găng cũng rất lớn Vì vậy cần phân tích loại bỏ những phương án không có tính khả thi Cần đặc biệt ưu tiên những hoạt động nằm trên đường găng có chi phí rút ngắn nhỏ nhất
Trong trường hợp bình thường thì đường găng là đường dài nhất trong sơ đồ mạng Trong trường hợp này có thể quan niệm
đường găng là đường có thời gian thực hiện lớn hơn thời gian cho phép Bởi vì các hoạt
động nằm trên đường này cũng cần quan tâm
để tìm biện pháp rút ngắn thời gian thực hiện
3 Xây dựng mô hình toán kinh tế chọn phương án rút ngắn thời gian thực hiện dự án
ti là thời gian thực hiện dự kiến của công việc i;
yi là thời gian rút ngắn của hoạt động i;
Yi là thời gian rút ngắn tối đa của công việc i;
Trang 5Ci là chi phí bình quân cho việc rút ngắn
một đơn vị thời gian của hoạt động i;
k là số thứ tự của tiến trình (đường) trên
mạng; k = 1, 2, 3, K;
tki là thời gian thực hiện của hoạt động i
trên tiến trình k;
Tk là thời gian thực hiện dự án tính theo
tiến trình k;
[T] là thời gian cho phép để thực hiện
toàn bộ dự án
Cần xác định thời gian rút ngắn các công
việc của dự án sao cho thời gian thực hiện dự
án không lớn quá thời hạn cho phép [T] với
chi phí tăng lên do việc rút ngắn là nhỏ nhất
Hàm mục tiêu có dạng:
f(yi) = C.yi min (3)
N
1 i
∑
=
Điều kiện ràng buộc:
a Thời gian rút ngắn của một hoạt động
không lớn hơn thời gian rút ngắn cho phép
của hoạt động đó; Tức là: 0 ≤ yi ≤ Yi
b Thời gian thực hiện của từng tiến trình
không vượt quá thời hạn cho phép thực hiện
dự án;
tức là: với k = 1, 2, 3, , K
Để giải mô hình trên có thể lập chương
trình tính toán để giải trên máy tính;
Sơ đồ (angorit) tính toán có thể giải quyết
bằng ba phương pháp sau:
1 Sau khi nhập số liệu cần thiết ta tiến
hành tính toán chọn đường găng, sau đó kiểm
tra điều kiện giới hạn Nếu đường găng lớn
hơn thời gian cho phép ta tiến hành rút ngắn
những hoạt động trên đường găng theo thứ tự
ưu tiên hoạt động nào có chi phí rút ngắn nhỏ
nhất Sau khi rút ngắn các hoạt động trên
đường găng để có Tg ≤ [T], ta tiến hành rút ngắn những hoạt động nằm trên tiến trình còn lại có thời gian lớn hơn thời gian thực hiện cho phép Cứ tiếp tục như vậy đến khi nào không còn tiến trình nào vi phạm về điều kiện cho phép (4) thì quá trình tính toán dừng lại
2 Tính toán thời gian thực hiện của từng tiến trình trên mạng, nếu tiến trình nào có thời gian thực hiện lớn hơn thời gian cho phép thì tiến hành rút ngắn các hoạt động nằm trên tiến trình đó, chú ý ưu tiên các hoạt động có chi phí rút ngắn nhỏ nhất, cho đến khi tiến trình đang xét thoả mãn điều kiện giới hạn (4) thì tiến hành tính toán sang tiến trình tiếp theo Tiếp tục như vậy cho đến khi nào không còn tiến trình nào vi phạm điều kiện giới hạn (4) thì quá trình tính toán dừng lại
3 Tính toán chiều dài tất cả các tiến trình, xác định những tiến trình có thời gian thực hiện lớn hơn thời gian cho phép; ưu tiên rút ngắn những hoạt động trên các tiến trình
có chi phí tăng lên nhỏ nhất, cứ tiếp tục như vậy cho đến khi không còn tiến trình nào vi phạm điều kiện giới hạn (4) về thời gian thực hiện dự án thì dừng lại
Trong khuôn khổ giới hạn của bài báo, ở
đây chỉ đề xuất sơ đồ tính toán theo phương pháp thứ 2 Sơ đồ tính toán được mô tả trên hình 3
[ ]
= i
ki ki
Giải thích sơ đồ tính toán:
Nhập số liệu để tính toán: Số liệu về thời gian thực hiện các công việc được lập dưới dạng biểu, trong đó mỗi hàng biểu thị một tiến trình (đường trong sơ đồ mạng) số cột là số thứ tự các hoạt động của dự án, số ghi trong biểu là thời gian thực hiện dự kiến của hoạt
động đang xét Nếu công việc nào không nằm trong tiến trình đang xét ta gán tki = 0 Số liệu
yki và Cki cũng lập tương tự Nếu công việc nào không nằm trong tiến trình đang xét thì gán cho một số đủ lớn Cki = CM; yki = 0; CM là số bất kỳ lớn hơn Cki trong biểu số liệu
Trang 6Bước 1 đến bước 3: Tiến hành tính toán
chiều dài của từng tiến trình (k = 1 - K) và
kiểm tra điều kiện giới hạn Nếu chiều dài tiến
trình Tk lớn hơn thời gian thực hiện cho phép
(điều kiện 4) thì cần phải tìm biện pháp rút
ngắn
Bước 4: Xác định thời gian cần rút ngắn
ΔT;
Bước 5, 6, 7, 8: Xét tất cả các công việc
trên tiến trình k để xác định công việc nào có chi phí rút ngắn nhỏ nhất Tức là xác định công việc
có Cki = min, ta tiến hành rút ngắn thời gian của công việc này trước và tính chi phí cho việc rút ngắn thời gian, mỗi lần rút ngắn
ta chỉ rút ngắn một đơn vị thời gian (lấy yo = 1)
Bước 9, 10: Kiểm tra điều
kiện rút ngắn, nếu công việc
đang xét không có khả năng rút ngắn, ta gắn chi phí rút ngắn của công việc này một đại lượng đủ lớn (Ci = CM)
Bước 11: Kiểm tra số thời
gian cần rút ngắn đã đủ chưa? tức là điều kiện thời gian thực hiện đã đáp ứng yêu cầu hay chưa? nếu đã đáp ứng ta tiến hành tính toán cho tiến trình tiếp theo ở bước 12 (lặp lại từ bước 3); nếu đã kiểm tra hết số tiến trình
ta gắn kết quả bằng một số ký hiệu nào đó để in kết quả: tki; yki;
fk; (bước 13)
Trên đây chỉ là sơ đồ tính toán cơ bản, thời gian tính toán còn phụ thuộc vào kỹ thuật tính toán hoặc kỹ thuật lập trình của từng người
Trên đây là đề xuất cho việc tính toán lập
kế hoạch tiến độ và điều khiển quá trình triển khai thực hiện dự án trong xây dựng
Tài liệu tham khảo
[1] Gerard Chevalier, Nguyễn văn Nghiên Quản lý
sản xuất NXB Thống kê, Hà Nội 1998.
[2] Phạm Văn Vạng Tổ chức và điều hành sản
xuất xây dựng giao thông NXB Trường ĐHGTVT
Nhập: tki; Cki;yki ; [T]
k =1
fk=0;
yk= 0
Tính T k = ∑
i ki t
Kết thúc;
in kết quả
Tk ≤ [T]?
i =1-N Chọn Cmin C
ki = Cmin
Có
k = k +1
Không
Không
Có
Có
Không
Có
k < K ?
yo =1
fki= Cki*yo
fk = fki+fk
yki = yki-yo
yki= 0 ?
Cki=CM
tki= tki-yo
yk= yk+yo
yk<ΔT?
k < K?
Có
3
2
1
9 6
Không
10
11
5
Không
8
Hình 3