9LHWQD P -RXUQDORI 0$ 7+ 0$ 7, &6 9$67 Weighted Estimates of Multilinear Singular Integral Operators with Variable Liu Lanzhe College of Math.. The weighted endpoint estimates for the
Trang 19LHWQD P -RXUQDO
RI 0$ 7+ (0$ 7, &6
9$67
Weighted Estimates of Multilinear
Singular Integral Operators with Variable
Liu Lanzhe
College of Math and Compt., Changsha Univ of Sci and Tech.
Changsha 410077, China
Received February 28, 2005
Abstract. The weighted endpoint estimates for the multilinear singular integral operators with variable Calder´on-Zygmund kernel on some Hardy and Herz type Hardy spaces are obtained
1 Introduction
Let b ∈ BMO(R n ) and T be the Calder´on-Zygmund operator The commutator
[b, T ] generated by b and T is defined by [b, T ]f (x) = b(x)T f (x) − T (bf)(x) By
a classical result of Coifman, Rochberg and Weiss(see [9]), we know that the
commutator [b, T ] is bounded on L p (R n ) for 1 < p < ∞ In [13], the
bound-edness properties of the commutators for the extreme values of p are proved, and in [3], the weak (H1, L1)-boundedness of the multilinear operator related
to some singular integral operator are obtained In [2], Calder´on and Zygmund introduce some singular integral operators with variable kernel and discuss their boundedness In [10], the authors obtain the boundedness for the
commuta-tors generated by the singular integral operacommuta-tors with variable kernel and BM O
functions In [16], the authors prove the boundedness for the multilinear
oscilla-tory singular integral operators generated by the operators and BM O functions.
In recent years, the theory of Herz space and Herz type Hardy space, as a lo-cal version of Lebesgue space and Hardy space, have been developed (see[11,
∗Supported by the NNSF (Grant: 10271071).
Trang 214, 15]) The main purpose of this paper is to establish the weighted endpoint continuity properties of the multilinear singular integral operators with variable Calder´on-Zygmund kernel on Hardy and Herz type Hardy spaces
2 Notations and Theorems
Throughout this paper, we denote the Muckenhoupt weights by A p for 1
p < ∞ (see [12]) Q will denote a cube of R n with sides parallel to the axes
For a cube Q and a locally integrable function f , let f (Q) =
Q f (x)dx, f Q =
|Q| −1
Q
f (x)dx and f#(x) = sup
x∈Q |Q| −1
Q |f(y) − f Q |dy Moreover, f is said to
belong to BM O(R n ) if f# ∈ L ∞ (R n) and define that ||f|| BMO = ||f#|| L ∞
Also, we give the concepts of the atom and weighted H1 space A function a
is called a H1(w) atom if there exists a cube Q such that a is supported on Q,
||a|| L ∞ (w) w(Q) −1 and
R n
a(x)dx = 0 It is well known that the weighted
Hardy space H1(w) has the atomic decomposition characterization (see [1, 12]) For k ∈ Z, define B k={x ∈ R n:|x| 2 k } and C k = B k \ B k−1 Denote by
χ k the characteristic function of C k and ˜χ k the characteristic function of C k for
k ≥ 1 and ˜χ0the characteristic function of B0
Definition 1 Let 1 < p < ∞ and w1, w2 be two non-negative weight functions
on R n
(1) The homogeneous weighted Herz space is defined by
˙
K p (w1, w2; R n) ={f ∈ L p loc (R n \ {0}) : f K˙p (w1,w2)< ∞},
where
f K˙p (w1,w2)=
∞
k=−∞
[w1(B k)]1−1/p fχ k L p (w2 );
(2) The nonhomogeneous weighted Herz space is defined by
K p (w1, w2; R n) ={f ∈ L p loc (R n) :f K p (w1,w2)< ∞},
where
f K p=
∞
k=0
[w1(B k)]1−1/p f ˜χ k L p (w2 );
(3) The homogeneous weighted Herz type Hardy space is defined by
H ˙ K p (w1, w2; R n) ={f ∈ S (R n
) : G(f ) ∈ ˙ K p (w1, w2; R n)}, where
||f|| H ˙ K p (w1,w2)=||G(f)|| K˙p (w1,w2);
(4) The nonhomogeneous weighted Herz type Hardy space is defined by
Trang 3HK p (w1, w2; R n) ={f ∈ S (R n
) : G(f ) ∈ K p (w1, w2; R n)}, where
f HK p (w1,w2)=G(f) K p (w1,w2)
and G(f ) is the grand maximal function of f
The Herz type Hardy spaces have the atomic decomposition characteriza-tion
Definition 2 Let 1 < p < ∞ and w1, w2∈ A1 A function a(x) on R n is called
a central (n(1 − 1/p), p; w1, w2)-atom (or a central (n(1 − 1/p), p; w1, w2)-atom
of restrict type), if
(1) Supp a ⊂ B(0, r) for some r > 0 (or for some r ≥ 1);
(2) ||a|| L p (w2 ) [w1(B(0, r))] 1/p−1 ,
(3)
R n a(x)dx = 0.
Lemma 1 (see [11, 15]) Let w1, w2 ∈ A1 and 1 < p < ∞ A temperate distri-bution f belongs to H ˙ K p (w1, w2; R n )(or HK p (w1, w2; R n )) if and only if there
exist central (n(1−1/p), p; w1, w2)-atoms (or central (n(1 −1/p), p; w1, w2)-atoms
of restrict type) a j supported on B j = B(0, 2 j ) and constants λ j ,
j |λ j | < ∞ such that f =∞
j=−∞ λ j a j (or f =∞
j=0 λ j a j ) in the S (R n ) sense, and
f H ˙ K p (w1,w2)( or f HK p (w1,w2))≈
j
|λ j |.
In this paper, we will study a class of multilinear operators related to the singular integral operators with variable kernel, whose definitions are following
Definition 3 Let k(x) = Ω(x)/ |x| n : R n \ {0} −→ R k is said to be a Calder´ on-Zygmund kernel if
(a) Ω∈ C ∞ (R n \ {0});
(b) Ω is homogeneous of degree zero;
(c)
Σ
Ω(x)x α dσ(x) = 0 for all multi-indices α ∈ (N{0}) n with |α| = N, where Σ = {x ∈ R n:|x| = 1} is the unit sphere of R n
Definition 4 Let k(x, y) = Ω(x, y)/ |y| n : R n × (R n \ {0}) −→ R k is said to
be a variable Calder´ on-Zygmund kernel if
(d) k(x, ·) is a Calder´on-Zygmund kernel for a.e x ∈ R n ;
(e) max|γ|2n∂ |γ|
∂ γ y Ω(x, y)
L ∞ (R n ×Σ) = M < ∞.
Let m be a positive integer and A be a function on R n Set
R m+1 (A; x, y) = A(x) −
|α|m
1
α! D
α
A(y)(x − y) α
and
Trang 4Q m+1 (A; x, y) = R m (A; x, y) −
|α|=m
1
α! D
α
A(x)(x − y) α
.
The multilinear singular integral operators with variable Calder´ on-Zygmund kernel are defined by
˜
T A (f )(x) =
R n
Ω(x, x − y)
|x − y| n+m Q m+1 (A; x, y)f (y)dy
and
T A (f )(x) =
R n
Ω(x, x − y)
|x − y| n+m R m+1 (A; x, y)f (y)dy,
where Ω(x, y)/|y| n is a variable Calder´ on-Zygmund kernel We also define
T (f )(x) =
R n
Ω(x, x − y)
|x − y| n f (y)dy, which is the singular integral operator with variable Calder´ on-Zygmund kernel
(see [2]).
Note that when m = 0, T A is just the commutator of T and A (see [10]) While when m > 0, T A is the non-trivial generalizations of the commutator
From [16], we know that T A is bounded on L p (w) for 1 < p ∞ and w ∈ A1
In this paper, we will study the weighted endpoint continuity properties of the multilinear operators ˜T A on Hardy and Herz type Hardy spaces
We shall prove the following theorems in Sec 3
Theorem 1 Let w ∈ A1 and D α A ∈ BMO(R n ) for all α with |α| = m Then
˜
T A is bounded from H1(w) to L1(w).
Theorem 2 Let 1 < p < ∞, w1, w2∈ A1and D α A ∈ BMO(R n ) for all α with
|α| = m Then ˜ T A is bounded from ˙ HK p (w1, w2; R n ) (resp HK p (w1, w2; R n))
to ˙ K p (w1, w2; R n )(resp HK p (w1, w2; R n))
3 Proofs of Theorems
To prove the theorems, we need the following lemma
Lemma 2 (see [7]) Let A be a function on R n and D α A ∈ L q (R n ) for |α| = m and some q > n Then
|R m (A; x, y) | C|x − y| m
|α|=m
| ˜ Q(x, y)|
˜
Q(x,y)
|D α A(z)| q
dz
1/q
,
Trang 5where ˜ Q(x, y) is the cube centered at x and having side length 5 √
n |x − y| Proof of Theorem 1 It suffices to show that there exists a constant C > 0 such
that for every H1(w)-atom a (that is that a satisfies: suppa ⊂ Q = Q(x0, r),
||a|| L ∞ (w) w(Q) −1 and
a(y)dy = 0 (see [1])), the following holds:
|| ˜ T A (a) || L1(w) C.
Without loss of generality, we may assume l = 2 Write
R n
˜
T A (a)(x)w(x)dx =
2Q
+
(2Q) c
˜
T A (a)(x)w(x)dx := I1+ I2.
For I1, by the following equality
Q m+1 (A; x, y) = R m+1 (A; x, y) +
|α|=m
1
α! (x − y) α (D α A(x) − D α A(y)),
we get
| ˜ T A (a)(x) | |T A (a)(x) | + C
|α|=m
|[D α A, T ]a(x) |,
thus, ˜T A is L p (w)-bounded for 1 < p ∞ (see[10, 16]), we see that
I1 C|| ˜ T A (a) || L ∞ (w) w(2Q) C||a|| L ∞ (w) w(Q) C.
To obtain the estimate of I2, we need to estimate ˜T A (a)(x) for x ∈ (2Q) c Denote ˜A(x) = A(x) −|α|=m 1
α! (D α A) 2Q x α , then D α A = D˜ α A − (D α A) 2Q
for |α| = m, Q m (A; x, y) = Q m( ˜A; x, y) and Q m+1 (A; x, y) = R m (A; x, y) −
|α|=m α!1D α A(x)(x − y) α By [4, 10], we know that
˜
T A (f )(x) =
∞
k=1
g k
h=1
a hk (x)
R n
Y hk (x − y)
|x − y| n+m Q m+1 (A; x, y)f (y)dy
:=
∞
k=1
g k
h=1
a hk (x)S hk A (f )(x),
where g k Ck n−2,||a hk || L ∞ Ck −2n,|Y hk (x − y)| Ck n/2−1and
Y hk |x − y| (x − y) n − Y hk |x − x (x − x0
0| n Ck n/2 |x
0− y|/|x − x0| n+1
for|x − x0| > 2|x0− y| > 0 we write, by the vanishing moment of a and for
x ∈ (2Q) c,
Trang 6S hk A (a)(x) =
R n
Y hk (x − y)
|x − y| m+n − |x − x Y hk (x − x0
0| m+n
R m( ˜A; x, y)a(y)dy
+
R n
Y hk (x − x0
|x − x0| m+n [R m( ˜A; x, y) − R m( ˜A; x, x0)]a(y)dy
− C
|α|=m
R n
Y hk (x − y)(x − y) α
|x − y| m+n − Y hk (x |x − x − x0)(x − x0 α
0| m+n
D α A(x)a(y)dy˜
= I2(1)(x) + I2(2)(x) + I2(3)(x);
For I2(1)(x), by Lemma 1 and the following inequality (see [17])
|b Q1− b Q2| C log(|Q2|/|Q1|)||b|| BMO for Q1⊂ Q2,
we know that, for x ∈ Q and y ∈ 2 j+1 Q \ 2 j Q(j ≥ 1),
|R m( ˜A; x, y)| C|x − y| m
|α|=m
(||D α A|| BMO+|(D α
A) 2Q(x,y) − (D α
A) 2Q |)
Cj|x − y| m
|α|=m
||D α A|| BMO ,
note that|x − y| ∼ |x − x0| for y ∈ Q and x ∈ R n \ 2Q, then
|I2(1)(x) | Ck n/2
R n
|y − x0|
|x − x0| m+n+1 |R m( ˜A; x, y) ||a(y)|dy
Ck n/2
|α|=m
||D α A|| BMO j
Q
|y − x0|
|x − x0| n+1 |a(y)|dy
Ck n/2
|α|=m
||D α A|| BMO j |Q| 1/n+1
|x − x0| n+1 w(Q) −1 .
For I2(2)(x), by the formula (see [7]):
R m( ˜A; x, y) − R m( ˜A; x, x0) =
|β|<m
1
β! R m−|β| (D
β A; x, x˜ 0)(x − y) β
and Lemma 1, we have
|R m( ˜A; x, y) − R m( ˜A; x, x0 | C
|β|<m
|α|=m
|x − x0| m−|β| |x − y| |β| D α A BMO ,
then
Trang 7|I2(2)(x) | Ck n/2
|α|=m
D α A BMO j
Q
|y − x0|
|x − x0| n+1 |a(y)|dy
Ck n/2
|α|=m
D α A BMO j |Q| 1/n+1
|x − x0| n+1 w(Q) −1 .
Similarly,
|I2(3)(x) | Ck n/2
|α|=m
|Q| 1/n+1
|x − x0| n+1 w(Q) −1 |D α A(x)|;˜
Thus, for x ∈ 2 j+1 Q \ 2 j Q(j ≥ 1),
| ˜ T A (a)(x) | C
∞
k=1
g k
h=1
|a hk (x) |k n/2
|α|=m
D α A BMO j |Q| 1/n+1
|x − x0| n+1 w(Q) −1
+ C
∞
k=1
g k
h=1
|a hk (x) |k n/2
|α|=m
|Q| 1/n+1
|x − x0| n+1 w(Q) −1 |D α A(x)˜ |
C∞
k=1
k −2n+n/2+n−2
|α|=m
D α A BMO j |Q| 1/n+1
|x − x0| n+1 w(Q) −1
+ C
∞
k=1
k −2n+n/2+n−2
|α|=m
|Q| 1/n+1
|x − x0| n+1 w(Q) −1 |D α A(x)|˜
|α|=m
||D α A|| BMO j |Q| 1/n+1
|x − x0| n+1 w(Q) −1
|α|=m
|Q| 1/n+1
|x − x0| n+1 w(Q) −1 |D α A(x)|;˜
Notice that if w ∈ A1, then
w(Q2
|Q2|
|Q1| w(Q1 C for all cubes Q1, Q2 with Q1 ⊂ Q2, and w satisfies the reverse of H¨older’ inequality:
1
|Q|
Q
w(x) q dx
1/q
|Q| C
Q
w(x)dx
for all cube Q and some 1 < q < ∞(see[12]) Thus, by H¨older’s inequality, we
obtain
Trang 8∞
j=1
2j+1 Q\2 j Q
| ˜ T A (a)(x) |dx
|α|=m
D α A BMO
∞
j=1
j2 −j |Q|
w(Q)
w(2 j+1 Q)
|2 j+1 Q|
|α|=m
∞
j=1
2−j |Q|
w(Q)
|2 j+1 Q |
2j+1 Q
|D α A(x)|˜ q
dx
1/q
×|2 j+11Q|
2j+1 Q
w(x) q dx
1/q
|α|=m
D α A BMO
∞
j=1
j2 −j w(2
j+1 Q)
|2 j+1 Q|
|Q|
w(Q)
|α|=m
D α A BMO
Proof of Theorem 2 We only give the proof for case of homogeneous Herz
type Hardy space Without loss of generality, we may assume l = 2 Let
f ∈ H ˙ K p (w1, w2; R n ), by Lemma 1, f =∞
j=−∞ λ j a j , where a j s are the central
(n(1 −1/p), p; w1, w2)-atom with suppa j ⊂ B j = B(0, 2 j) and||f|| H ˙ K p (w1,w2)≈
j |λ j | Write
|| ˜ T A (f ) || K˙p (w1,w2)=
∞
k=−∞
[w1(B k)]1−1/p ||χ k T˜A (f ) || L p (w2 )
∞
k=−∞
[w1(B k)]1−1/p
k−1
j=−∞
|λ j |||χ k T˜A (a j)|| L p (w2 ) +
∞
k=−∞
[w1(B k)]1−1/p
∞
j=k
|λ j |||χ k T˜A (a j)|| L p (w2 )
= J1+ J2.
For J2, by the L p (w)-boundedness of ˜ T A for 1 < p < ∞ and w ∈ A1, we get
J2 C
∞
k=−∞
[w1(B k)]1−1/p
∞
j=k
|λ j |||a j || L p (w2 )
C ∞
k=−∞
[w1(B k)]1−1/p
∞
j=k
|λ j |[w1(B j)]−(1−1/p)
C ∞
j=−∞
|λ j |
j
k=−∞
w1(B k)
w1(B j)
1−1/p
C ∞
j=−∞
|λ j | C||f|| H ˙ K p (w1,w2).
Trang 9To estimate J1, we denote that ˜A(x) = A(x) −|α|=m 1
α! (D α A) 2Q x α Then
Q m (A; x, y) = Q m( ˜A; x, y) Similar to the proof of Theorem 1, we know
˜
T A (a j )(x) =
∞
k=1
g k
h=1
a hk (x)
R n
Y hk (x − y)
|x − y| n+m Q m+1 (A; x, y)a j (y)dy
=
∞
k=1
g k
h=1
a hk (x)S hk A (a j )(x),
and write, by the vanishing moment of a j , for x ∈ (2Q) c,
S hk A (a j )(x) =
R n
Y hk (x − y)
|x − y| m+n − |x| Y hk m+n (x)R m( ˜A; x, y)a j (y)dy
+
R n
Y hk (x)
|x| m+n [R m( ˜A; x, y) − R m( ˜A; x, 0)]a(y)dy
− C
|α|=m
R n
Y hk (x − y)(x − y) α
|x − y| m+n − Y |x| hk (x)x m+n αD α A(x)a˜ j (y)dy;
Similar to the proof of Theorem 1, we obtain
| ˜ T A (a j )(x) | C
|α|=m
||D α A|| BMO 2j
2k(n+1)
B j
|a j (y) |dy
|α|=m
|D α A(x)|˜ 2j
2k(n+1)
B j
|a j (y) |dy
|α|=m
||D α A|| BMO 2j
2k(n+1) ||a j || L p (w2 )
B j
w2(y) −1/(p−1) dy
(p−1)/p
|α|=m
|D α A(x)|˜ 2j
2k(n+1) ||a j || L p (w2 )
B j
w2(y) −1/(p−1) dy
(p−1)/p
|α|=m
||D α A|| BMO 2j
2k(n+1) [w1(B j)]
1/p−1
B j
w2(y) −1/(p−1) dy
(p−1)/p
|α|=m
2j
2k(n+1) |D α A(x)|[w˜ 1(B j)]1/p−1
B j
w2(y) −1/(p−1) dy
(p−1)/p
.
Notice that w2∈ A1⊆ A p , w2satisfies
sup
Q
1
|Q|
Q
w2(x)dx
1
|Q|
Q
w2(x) −1/(p−1) dx
(p−1)/p
C
Trang 10and the reverse of H¨older’ inequality for some 1 < q < ∞ (see [12]), thus
J1 C
∞
k=−∞
[w1(B k)]1−1/p
k−1
j=−∞
|λ j | 2j
2k(n+1) [w1(B j)]
−(1−1/p)
×
B j
w2(y) −1/(p−1) dy
(p−1)/p
× [w2(B k)]1/p+
|α|=m
B k
|D α A(x)|˜ p
w2(x)dx
1/p
C
∞
k=−∞
[w1(B k)]1−1/p
k−1
j=−∞
|λ j | 2j
2k(n+1) [w1(B j)]
−(1−1/p)
×
B j
w2(y) −1/(p−1) dy
(p−1)/p
[w2(B k)]1/p+
|α|=m
1
|B k |
×
B k
|D α A(x)|˜ pq
dx
1/pq 1
|B k |
B k
w2(x) q dx
1/pq
|B k | 1/p
C ∞
k=−∞
k−1
j=−∞
|λ j | 2j
2k(n+1)
w1(B k)
w1(B j) 1−1/p
×
B j
w2(x) −1/(p−1) dx
(p−1)/p
[w2(B k)]1/p
C
∞
k=−∞
k−1
j=−∞
|λ j | 2j
2k(n+1)
w1(B k)
w1(B j) 1−1/p
× w2(B k)
w2(B j)
1/p
× |B j ||B1
j |
B j
w2(x)dx
1/p 1
|B j |
B j
w2(y) −1/(p−1) dy
(p−1)/p
C
∞
j=−∞
|λ j |
∞
k=j+1
2j
2k(n+1)
w1(B k)
w1(B j)
|B j |
|B k |
1−1/p
× w2(B k)
w2(B j)
|B j |
|B k |
1/p
|B k |
C
∞
j=−∞
|λ j |
∞
k=j+1
2j−k
C
∞
j=−∞
|λ j | C||f|| H ˙ K p (w1,w2).
Trang 111 Bui Huy Qui, Weighted Hardy spaces, Math Nachr. 103 (1981) 45–62.
2 A P Calder´on and A Zygmund, On singular integrals with variable kernels,
Appl Anal. 7 (1978) 221–238.
3 W G Chen and G E Hu, Weak type (H1,L1) estimate for multilinear singular
integral operator, Adv in Math. 30 (2001) 63–69 (Chinese).
4 F Chiarenza, M Frasca, and P Longo, InteriorW 2,p-estimates for nondivergence
elliptic equations with discontinuous coefficients, Ricerche Mat. 40 (1991) 149–
168
5 J Cohen, A sharp estimate for a multilinear singular integral on R n , Indiana Univ Math J.30 (1981) 693–702.
6 J Cohen and J Gosselin, On multilinear singular integral operators on R n,
Studia Math. 72 (1982) 199–223.
7 J Cohen and J Gosselin, A BMO estimate for multilinear singular integral
op-erators, Illinois J Math. 30 (1986) 445–465.
8 R Coifman and Y Meyer, Wavelets, Calder´ on-Zygmund and multilinear oper-ators, Cambridge Studies in Advanced Math 48, Cambridge University Press,
Cambridge, 1997
9 R Coifman, R Rochberg, and G Weiss, Factorization theorems for Hardy spaces
in several variables, Ann of Math. 103 (1976) 611–635.
10 G Di Fazio and M A Ragusa, Interior estimates in Morrey spaces for strong
so-lutions to nondivergence form equations with discontinuous coefficients, J Func Anal. 112 (1993) 241–256.
11 J Garcia-Cuerva and M L Herrero, A theory of Hardy spaces associated to the
Herz spaces, Proc London Math Soc. 69 (1994) 605–628.
12 J Garcia-Cuerva and J L Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math.16, Amsterdam, 1985.
13 E Harboure, C Segovia, and J L.Torra, Boundedness of commutators of frac-tional and singular integrals for the extreme values of p , Illinois J Math. 41
(1997) 676–700
14 S Z Lu and D C.Yang, The decomposition of the weighted Herz spaces and its
applications, Sci in China (ser A)38 (1995) 147–158.
15 S Z.Lu and D C.Yang, The weighted Herz type Hardy spaces and its applications,
Sci in China (ser.A)38 (1995) 662–673.
16 S Z Lu, D C.Yang, and Z S Zhou, Oscillatory singular integral operators with Calder´on-Zygmund kernels, Southeast Asian Bull of Math. 23 (1999) 457–470.
17 E M.Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Os-cillatory Integrals, Princeton Univ Press, Princeton NJ, 1993.