1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo toán học: "Weighted Estimates of Multilinear Singular Integral Operators with Variable Calder´n-Zygmund Kernel for the Extreme Cases" ppt

11 230 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 146,72 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

9LHWQD P -RXUQDORI 0$ 7+ 0$ 7, &6 ‹ 9$67 Weighted Estimates of Multilinear Singular Integral Operators with Variable Liu Lanzhe College of Math.. The weighted endpoint estimates for the

Trang 1

9LHWQD P -RXUQDO

RI 0$ 7+ (0$ 7, &6

‹ 9$67 

Weighted Estimates of Multilinear

Singular Integral Operators with Variable

Liu Lanzhe

College of Math and Compt., Changsha Univ of Sci and Tech.

Changsha 410077, China

Received February 28, 2005

Abstract. The weighted endpoint estimates for the multilinear singular integral operators with variable Calder´on-Zygmund kernel on some Hardy and Herz type Hardy spaces are obtained

1 Introduction

Let b ∈ BMO(R n ) and T be the Calder´on-Zygmund operator The commutator

[b, T ] generated by b and T is defined by [b, T ]f (x) = b(x)T f (x) − T (bf)(x) By

a classical result of Coifman, Rochberg and Weiss(see [9]), we know that the

commutator [b, T ] is bounded on L p (R n ) for 1 < p < ∞ In [13], the

bound-edness properties of the commutators for the extreme values of p are proved, and in [3], the weak (H1, L1)-boundedness of the multilinear operator related

to some singular integral operator are obtained In [2], Calder´on and Zygmund introduce some singular integral operators with variable kernel and discuss their boundedness In [10], the authors obtain the boundedness for the

commuta-tors generated by the singular integral operacommuta-tors with variable kernel and BM O

functions In [16], the authors prove the boundedness for the multilinear

oscilla-tory singular integral operators generated by the operators and BM O functions.

In recent years, the theory of Herz space and Herz type Hardy space, as a lo-cal version of Lebesgue space and Hardy space, have been developed (see[11,

Supported by the NNSF (Grant: 10271071).

Trang 2

14, 15]) The main purpose of this paper is to establish the weighted endpoint continuity properties of the multilinear singular integral operators with variable Calder´on-Zygmund kernel on Hardy and Herz type Hardy spaces

2 Notations and Theorems

Throughout this paper, we denote the Muckenhoupt weights by A p for 1 

p < ∞ (see [12]) Q will denote a cube of R n with sides parallel to the axes

For a cube Q and a locally integrable function f , let f (Q) = 

Q f (x)dx, f Q =

|Q| −1

Q

f (x)dx and f#(x) = sup

x∈Q |Q| −1

Q |f(y) − f Q |dy Moreover, f is said to

belong to BM O(R n ) if f# ∈ L ∞ (R n) and define that ||f|| BMO = ||f#|| L ∞

Also, we give the concepts of the atom and weighted H1 space A function a

is called a H1(w) atom if there exists a cube Q such that a is supported on Q,

||a|| L ∞ (w)  w(Q) −1 and 

R n

a(x)dx = 0 It is well known that the weighted

Hardy space H1(w) has the atomic decomposition characterization (see [1, 12]) For k ∈ Z, define B k={x ∈ R n:|x|  2 k } and C k = B k \ B k−1 Denote by

χ k the characteristic function of C k and ˜χ k the characteristic function of C k for

k ≥ 1 and ˜χ0the characteristic function of B0

Definition 1 Let 1 < p < ∞ and w1, w2 be two non-negative weight functions

on R n

(1) The homogeneous weighted Herz space is defined by

˙

K p (w1, w2; R n) ={f ∈ L p loc (R n \ {0}) : f K˙p (w1,w2)< ∞},

where

f K˙p (w1,w2)=



k=−∞

[w1(B k)]1−1/p fχ k  L p (w2 );

(2) The nonhomogeneous weighted Herz space is defined by

K p (w1, w2; R n) ={f ∈ L p loc (R n) :f K p (w1,w2)< ∞},

where

f K p=



k=0

[w1(B k)]1−1/p f ˜χ k  L p (w2 );

(3) The homogeneous weighted Herz type Hardy space is defined by

H ˙ K p (w1, w2; R n) ={f ∈ S  (R n

) : G(f ) ∈ ˙ K p (w1, w2; R n)}, where

||f|| H ˙ K p (w1,w2)=||G(f)|| K˙p (w1,w2);

(4) The nonhomogeneous weighted Herz type Hardy space is defined by

Trang 3

HK p (w1, w2; R n) ={f ∈ S  (R n

) : G(f ) ∈ K p (w1, w2; R n)}, where

f HK p (w1,w2)=G(f) K p (w1,w2)

and G(f ) is the grand maximal function of f

The Herz type Hardy spaces have the atomic decomposition characteriza-tion

Definition 2 Let 1 < p < ∞ and w1, w2∈ A1 A function a(x) on R n is called

a central (n(1 − 1/p), p; w1, w2)-atom (or a central (n(1 − 1/p), p; w1, w2)-atom

of restrict type), if

(1) Supp a ⊂ B(0, r) for some r > 0 (or for some r ≥ 1);

(2) ||a|| L p (w2 ) [w1(B(0, r))] 1/p−1 ,

(3) 

R n a(x)dx = 0.

Lemma 1 (see [11, 15]) Let w1, w2 ∈ A1 and 1 < p < ∞ A temperate distri-bution f belongs to H ˙ K p (w1, w2; R n )(or HK p (w1, w2; R n )) if and only if there

exist central (n(1−1/p), p; w1, w2)-atoms (or central (n(1 −1/p), p; w1, w2)-atoms

of restrict type) a j supported on B j = B(0, 2 j ) and constants λ j , 

j |λ j | < ∞ such that f =

j=−∞ λ j a j (or f =

j=0 λ j a j ) in the S  (R n ) sense, and

f H ˙ K p (w1,w2)( or f HK p (w1,w2))

j

|λ j |.

In this paper, we will study a class of multilinear operators related to the singular integral operators with variable kernel, whose definitions are following

Definition 3 Let k(x) = Ω(x)/ |x| n : R n \ {0} −→ R k is said to be a Calder´ on-Zygmund kernel if

(a) Ω∈ C ∞ (R n \ {0});

(b) Ω is homogeneous of degree zero;

(c) 

Σ

Ω(x)x α dσ(x) = 0 for all multi-indices α ∈ (N{0}) n with |α| = N, where Σ = {x ∈ R n:|x| = 1} is the unit sphere of R n

Definition 4 Let k(x, y) = Ω(x, y)/ |y| n : R n × (R n \ {0}) −→ R k is said to

be a variable Calder´ on-Zygmund kernel if

(d) k(x, ·) is a Calder´on-Zygmund kernel for a.e x ∈ R n ;

(e) max|γ|2n∂ |γ|

∂ γ y Ω(x, y)

L ∞ (R n ×Σ) = M < ∞.

Let m be a positive integer and A be a function on R n Set

R m+1 (A; x, y) = A(x) − 

|α|m

1

α! D

α

A(y)(x − y) α

and

Trang 4

Q m+1 (A; x, y) = R m (A; x, y) − 

|α|=m

1

α! D

α

A(x)(x − y) α

.

The multilinear singular integral operators with variable Calder´ on-Zygmund kernel are defined by

˜

T A (f )(x) =



R n

Ω(x, x − y)

|x − y| n+m Q m+1 (A; x, y)f (y)dy

and

T A (f )(x) =



R n

Ω(x, x − y)

|x − y| n+m R m+1 (A; x, y)f (y)dy,

where Ω(x, y)/|y| n is a variable Calder´ on-Zygmund kernel We also define

T (f )(x) =



R n

Ω(x, x − y)

|x − y| n f (y)dy, which is the singular integral operator with variable Calder´ on-Zygmund kernel

(see [2]).

Note that when m = 0, T A is just the commutator of T and A (see [10]) While when m > 0, T A is the non-trivial generalizations of the commutator

From [16], we know that T A is bounded on L p (w) for 1 < p  ∞ and w ∈ A1

In this paper, we will study the weighted endpoint continuity properties of the multilinear operators ˜T A on Hardy and Herz type Hardy spaces

We shall prove the following theorems in Sec 3

Theorem 1 Let w ∈ A1 and D α A ∈ BMO(R n ) for all α with |α| = m Then

˜

T A is bounded from H1(w) to L1(w).

Theorem 2 Let 1 < p < ∞, w1, w2∈ A1and D α A ∈ BMO(R n ) for all α with

|α| = m Then ˜ T A is bounded from ˙ HK p (w1, w2; R n ) (resp HK p (w1, w2; R n))

to ˙ K p (w1, w2; R n )(resp HK p (w1, w2; R n))

3 Proofs of Theorems

To prove the theorems, we need the following lemma

Lemma 2 (see [7]) Let A be a function on R n and D α A ∈ L q (R n ) for |α| = m and some q > n Then

|R m (A; x, y) |  C|x − y| m 

|α|=m

| ˜ Q(x, y)|



˜

Q(x,y)

|D α A(z)| q

dz

1/q

,

Trang 5

where ˜ Q(x, y) is the cube centered at x and having side length 5 √

n |x − y| Proof of Theorem 1 It suffices to show that there exists a constant C > 0 such

that for every H1(w)-atom a (that is that a satisfies: suppa ⊂ Q = Q(x0, r),

||a|| L ∞ (w)  w(Q) −1 and

a(y)dy = 0 (see [1])), the following holds:

|| ˜ T A (a) || L1(w)  C.

Without loss of generality, we may assume l = 2 Write



R n

˜

T A (a)(x)w(x)dx =

2Q

+



(2Q) c

˜

T A (a)(x)w(x)dx := I1+ I2.

For I1, by the following equality

Q m+1 (A; x, y) = R m+1 (A; x, y) + 

|α|=m

1

α! (x − y) α (D α A(x) − D α A(y)),

we get

| ˜ T A (a)(x) |  |T A (a)(x) | + C 

|α|=m

|[D α A, T ]a(x) |,

thus, ˜T A is L p (w)-bounded for 1 < p  ∞ (see[10, 16]), we see that

I1 C|| ˜ T A (a) || L ∞ (w) w(2Q)  C||a|| L ∞ (w) w(Q)  C.

To obtain the estimate of I2, we need to estimate ˜T A (a)(x) for x ∈ (2Q) c Denote ˜A(x) = A(x) −|α|=m 1

α! (D α A) 2Q x α , then D α A = D˜ α A − (D α A) 2Q

for |α| = m, Q m (A; x, y) = Q m( ˜A; x, y) and Q m+1 (A; x, y) = R m (A; x, y) −



|α|=m α!1D α A(x)(x − y) α By [4, 10], we know that

˜

T A (f )(x) =



k=1

g k



h=1

a hk (x)



R n

Y hk (x − y)

|x − y| n+m Q m+1 (A; x, y)f (y)dy

:=



k=1

g k



h=1

a hk (x)S hk A (f )(x),

where g k  Ck n−2,||a hk || L ∞  Ck −2n,|Y hk (x − y)|  Ck n/2−1and



Y hk |x − y| (x − y) n − Y hk |x − x (x − x0

0| n   Ck n/2 |x

0− y|/|x − x0| n+1

for|x − x0| > 2|x0− y| > 0 we write, by the vanishing moment of a and for

x ∈ (2Q) c,

Trang 6

S hk A (a)(x) =



R n

Y hk (x − y)

|x − y| m+n − |x − x Y hk (x − x0

0| m+n

R m( ˜A; x, y)a(y)dy

+



R n

Y hk (x − x0

|x − x0| m+n [R m( ˜A; x, y) − R m( ˜A; x, x0)]a(y)dy

− C 

|α|=m



R n

Y hk (x − y)(x − y) α

|x − y| m+n − Y hk (x |x − x − x0)(x − x0 α

0| m+n

D α A(x)a(y)dy˜

= I2(1)(x) + I2(2)(x) + I2(3)(x);

For I2(1)(x), by Lemma 1 and the following inequality (see [17])

|b Q1− b Q2|  C log(|Q2|/|Q1|)||b|| BMO for Q1⊂ Q2,

we know that, for x ∈ Q and y ∈ 2 j+1 Q \ 2 j Q(j ≥ 1),

|R m( ˜A; x, y)|  C|x − y| m 

|α|=m

(||D α A|| BMO+|(D α

A) 2Q(x,y) − (D α

A) 2Q |)

 Cj|x − y| m 

|α|=m

||D α A|| BMO ,

note that|x − y| ∼ |x − x0| for y ∈ Q and x ∈ R n \ 2Q, then

|I2(1)(x) |  Ck n/2

R n

|y − x0|

|x − x0| m+n+1 |R m( ˜A; x, y) ||a(y)|dy

 Ck n/2 

|α|=m

||D α A|| BMO j



Q

|y − x0|

|x − x0| n+1 |a(y)|dy

 Ck n/2 

|α|=m

||D α A|| BMO j |Q| 1/n+1

|x − x0| n+1 w(Q) −1 .

For I2(2)(x), by the formula (see [7]):

R m( ˜A; x, y) − R m( ˜A; x, x0) = 

|β|<m

1

β! R m−|β| (D

β A; x, x˜ 0)(x − y) β

and Lemma 1, we have

|R m( ˜A; x, y) − R m( ˜A; x, x0 |  C 

|β|<m



|α|=m

|x − x0| m−|β| |x − y| |β| D α A BMO ,

then

Trang 7

|I2(2)(x) |  Ck n/2 

|α|=m

D α A  BMO j



Q

|y − x0|

|x − x0| n+1 |a(y)|dy

 Ck n/2 

|α|=m

D α A BMO j |Q| 1/n+1

|x − x0| n+1 w(Q) −1 .

Similarly,

|I2(3)(x) |  Ck n/2 

|α|=m

|Q| 1/n+1

|x − x0| n+1 w(Q) −1 |D α A(x)|;˜

Thus, for x ∈ 2 j+1 Q \ 2 j Q(j ≥ 1),

| ˜ T A (a)(x) |  C



k=1

g k



h=1

|a hk (x) |k n/2 

|α|=m

D α A  BMO j |Q| 1/n+1

|x − x0| n+1 w(Q) −1

+ C



k=1

g k



h=1

|a hk (x) |k n/2 

|α|=m

|Q| 1/n+1

|x − x0| n+1 w(Q) −1 |D α A(x)˜ |

 C

k=1

k −2n+n/2+n−2 

|α|=m

D α A BMO j |Q| 1/n+1

|x − x0| n+1 w(Q) −1

+ C



k=1

k −2n+n/2+n−2 

|α|=m

|Q| 1/n+1

|x − x0| n+1 w(Q) −1 |D α A(x)|˜

|α|=m

||D α A|| BMO j |Q| 1/n+1

|x − x0| n+1 w(Q) −1

|α|=m

|Q| 1/n+1

|x − x0| n+1 w(Q) −1 |D α A(x)|;˜

Notice that if w ∈ A1, then

w(Q2

|Q2|

|Q1| w(Q1  C for all cubes Q1, Q2 with Q1 ⊂ Q2, and w satisfies the reverse of H¨older’ inequality:

 1

|Q|



Q

w(x) q dx

1/q

|Q| C



Q

w(x)dx

for all cube Q and some 1 < q < ∞(see[12]) Thus, by H¨older’s inequality, we

obtain

Trang 8



j=1



2j+1 Q\2 j Q

| ˜ T A (a)(x) |dx

|α|=m

D α A BMO



j=1

j2 −j |Q|

w(Q)

w(2 j+1 Q)

|2 j+1 Q|

|α|=m



j=1

2−j |Q|

w(Q)

|2 j+1 Q |



2j+1 Q

|D α A(x)|˜ q 

dx

1/q 

×|2 j+11Q|



2j+1 Q

w(x) q dx

1/q

|α|=m

D α A BMO



j=1

j2 −j w(2

j+1 Q)

|2 j+1 Q|

|Q|

w(Q)

|α|=m

D α A BMO

Proof of Theorem 2 We only give the proof for case of homogeneous Herz

type Hardy space Without loss of generality, we may assume l = 2 Let

f ∈ H ˙ K p (w1, w2; R n ), by Lemma 1, f =

j=−∞ λ j a j , where a  j s are the central

(n(1 −1/p), p; w1, w2)-atom with suppa j ⊂ B j = B(0, 2 j) and||f|| H ˙ K p (w1,w2)



j |λ j | Write

|| ˜ T A (f ) || K˙p (w1,w2)=



k=−∞

[w1(B k)]1−1/p ||χ k T˜A (f ) || L p (w2 )





k=−∞

[w1(B k)]1−1/p

k−1



j=−∞

|λ j |||χ k T˜A (a j)|| L p (w2 ) +



k=−∞

[w1(B k)]1−1/p



j=k

|λ j |||χ k T˜A (a j)|| L p (w2 )

= J1+ J2.

For J2, by the L p (w)-boundedness of ˜ T A for 1 < p < ∞ and w ∈ A1, we get

J2 C



k=−∞

[w1(B k)]1−1/p



j=k

|λ j |||a j || L p (w2 )

 C 

k=−∞

[w1(B k)]1−1/p



j=k

|λ j |[w1(B j)]−(1−1/p)

 C 

j=−∞

|λ j |

j



k=−∞

w1(B k)

w1(B j)

1−1/p

 C 

j=−∞

|λ j |  C||f|| H ˙ K p (w1,w2).

Trang 9

To estimate J1, we denote that ˜A(x) = A(x) −|α|=m 1

α! (D α A) 2Q x α Then

Q m (A; x, y) = Q m( ˜A; x, y) Similar to the proof of Theorem 1, we know

˜

T A (a j )(x) =



k=1

g k



h=1

a hk (x)



R n

Y hk (x − y)

|x − y| n+m Q m+1 (A; x, y)a j (y)dy

=



k=1

g k



h=1

a hk (x)S hk A (a j )(x),

and write, by the vanishing moment of a j , for x ∈ (2Q) c,

S hk A (a j )(x) =



R n

Y hk (x − y)

|x − y| m+n − |x| Y hk m+n (x) R m( ˜A; x, y)a j (y)dy

+



R n

Y hk (x)

|x| m+n [R m( ˜A; x, y) − R m( ˜A; x, 0)]a(y)dy

− C 

|α|=m



R n

Y hk (x − y)(x − y) α

|x − y| m+n − Y |x| hk (x)x m+n α D α A(x)a˜ j (y)dy;

Similar to the proof of Theorem 1, we obtain

| ˜ T A (a j )(x) |  C 

|α|=m

||D α A|| BMO 2j

2k(n+1)



B j

|a j (y) |dy

|α|=m

|D α A(x)|˜ 2j

2k(n+1)



B j

|a j (y) |dy

|α|=m

||D α A|| BMO 2j

2k(n+1) ||a j || L p (w2 )

 

B j

w2(y) −1/(p−1) dy

(p−1)/p

|α|=m

|D α A(x)|˜ 2j

2k(n+1) ||a j || L p (w2 )

 

B j

w2(y) −1/(p−1) dy

(p−1)/p

|α|=m

||D α A|| BMO 2j

2k(n+1) [w1(B j)]

1/p−1 

B j

w2(y) −1/(p−1) dy

(p−1)/p

|α|=m

2j

2k(n+1) |D α A(x)|[w˜ 1(B j)]1/p−1

 

B j

w2(y) −1/(p−1) dy

(p−1)/p

.

Notice that w2∈ A1⊆ A p , w2satisfies

sup

Q

 1

|Q|



Q

w2(x)dx

 1

|Q|



Q

w2(x) −1/(p−1) dx

(p−1)/p

 C

Trang 10

and the reverse of H¨older’ inequality for some 1 < q < ∞ (see [12]), thus

J1 C



k=−∞

[w1(B k)]1−1/p

k−1



j=−∞

|λ j | 2j

2k(n+1) [w1(B j)]

−(1−1/p)

× 

B j

w2(y) −1/(p−1) dy

(p−1)/p

× [w2(B k)]1/p+ 

|α|=m

 

B k

|D α A(x)|˜ p

w2(x)dx

1/p

 C



k=−∞

[w1(B k)]1−1/p

k−1



j=−∞

|λ j | 2j

2k(n+1) [w1(B j)]

−(1−1/p)

× 

B j

w2(y) −1/(p−1) dy

(p−1)/p

[w2(B k)]1/p+ 

|α|=m

 1

|B k |

×



B k

|D α A(x)|˜ pq 

dx

1/pq  1

|B k |



B k

w2(x) q dx

1/pq

|B k | 1/p

 C 

k=−∞

k−1



j=−∞

|λ j | 2j

2k(n+1)

w1(B k)

w1(B j) 1−1/p

× 

B j

w2(x) −1/(p−1) dx

(p−1)/p

[w2(B k)]1/p

 C



k=−∞

k−1



j=−∞

|λ j | 2j

2k(n+1)

w1(B k)

w1(B j) 1−1/p

× w2(B k)

w2(B j)

1/p

× |B j ||B1

j |



B j

w2(x)dx

1/p 1

|B j |



B j

w2(y) −1/(p−1) dy

(p−1)/p

 C



j=−∞

|λ j |



k=j+1

2j

2k(n+1)

w1(B k)

w1(B j)

|B j |

|B k |

1−1/p

× w2(B k)

w2(B j)

|B j |

|B k |

1/p

|B k |

 C



j=−∞

|λ j |



k=j+1

2j−k

 C



j=−∞

|λ j |  C||f|| H ˙ K p (w1,w2).

Trang 11

1 Bui Huy Qui, Weighted Hardy spaces, Math Nachr. 103 (1981) 45–62.

2 A P Calder´on and A Zygmund, On singular integrals with variable kernels,

Appl Anal. 7 (1978) 221–238.

3 W G Chen and G E Hu, Weak type (H1,L1) estimate for multilinear singular

integral operator, Adv in Math. 30 (2001) 63–69 (Chinese).

4 F Chiarenza, M Frasca, and P Longo, InteriorW 2,p-estimates for nondivergence

elliptic equations with discontinuous coefficients, Ricerche Mat. 40 (1991) 149–

168

5 J Cohen, A sharp estimate for a multilinear singular integral on R n , Indiana Univ Math J.30 (1981) 693–702.

6 J Cohen and J Gosselin, On multilinear singular integral operators on R n,

Studia Math. 72 (1982) 199–223.

7 J Cohen and J Gosselin, A BMO estimate for multilinear singular integral

op-erators, Illinois J Math. 30 (1986) 445–465.

8 R Coifman and Y Meyer, Wavelets, Calder´ on-Zygmund and multilinear oper-ators, Cambridge Studies in Advanced Math 48, Cambridge University Press,

Cambridge, 1997

9 R Coifman, R Rochberg, and G Weiss, Factorization theorems for Hardy spaces

in several variables, Ann of Math. 103 (1976) 611–635.

10 G Di Fazio and M A Ragusa, Interior estimates in Morrey spaces for strong

so-lutions to nondivergence form equations with discontinuous coefficients, J Func Anal. 112 (1993) 241–256.

11 J Garcia-Cuerva and M L Herrero, A theory of Hardy spaces associated to the

Herz spaces, Proc London Math Soc. 69 (1994) 605–628.

12 J Garcia-Cuerva and J L Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math.16, Amsterdam, 1985.

13 E Harboure, C Segovia, and J L.Torra, Boundedness of commutators of frac-tional and singular integrals for the extreme values of p , Illinois J Math. 41

(1997) 676–700

14 S Z Lu and D C.Yang, The decomposition of the weighted Herz spaces and its

applications, Sci in China (ser A)38 (1995) 147–158.

15 S Z.Lu and D C.Yang, The weighted Herz type Hardy spaces and its applications,

Sci in China (ser.A)38 (1995) 662–673.

16 S Z Lu, D C.Yang, and Z S Zhou, Oscillatory singular integral operators with Calder´on-Zygmund kernels, Southeast Asian Bull of Math. 23 (1999) 457–470.

17 E M.Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Os-cillatory Integrals, Princeton Univ Press, Princeton NJ, 1993.

Ngày đăng: 06/08/2014, 05:20

🧩 Sản phẩm bạn có thể quan tâm