Introduction The notion of variational bicomplexes was introduced in studying the problem of characterizing the kernel and image of Euler-Lagrange mapping in the calcu-lus of variations.
Trang 1R I
0 $ 7 + ( 0 $ 7 , & 6
9$67
A Presentation of the Elements of the Quotient
Sheaves Ωk r /Θ k r in Variational Sequences
Nong Quoc Chinh
Thai Nguyen University, Thai Nguyen City, Vietnam
Received Ferbuary 05, 2004 Revised Ferbuary 17, 2005
AbstractIn this paper we give a concrete presentation of the elements of the quotient sheavesΩk /Θ k in the variational sequence
0→ R → Ω0
r
E0
−→ Ω1
r /Θ1r −→ Ω E1 2
r /Θ2r −→ E2 E −→ Ω P −2 P −1
r /Θ P −1 r →
E −→ Ω P −1 P
r /Θ P r −→ Ω E P P +1
r
E −→ → Ω P +1 N
r → 0.
1 Introduction
The notion of variational bicomplexes was introduced in studying the problem
of characterizing the kernel and image of Euler-Lagrange mapping in the calcu-lus of variations This problem has been considered by Anderson [1], Duchamp [2], Dedecker [4], Tulczyvew [7], Takens [6] and Krupka [5] The variational
bi-complex was mainly studied on the infinite jet prolongation J ∞ Y of the fibered
manifold Y with the base X and the projection π : Y → X, where dimX = n, dimY −n = m The variational bicomplexes contain Euler-Lagrange mapping as
one of its morphisms Then its developments in the theory of variational bicom-plexes have made an important role in many problems in caculus of variations
on manifolds, in diffrential geometry, in the theory of differential equations and
in mathematical physics
Krupka [5] studied the sheaves of differential forms on finite r-jet prolonga-tions J r Y Then he constructed the sequence of quotient sheaves Ω k /Θ k This
quotient sequence is called the variational sequence of order r over Y It is an acyclic resolution of the constant sheaf R over Y
Trang 20→ R → Ω0
r
E0
−→ Ω1
r /Θ1r −→ Ω E1 2
r /Θ2r −→ E2 E −→ Ω P −2 P −1
r /Θ P −1 r →
E −→ Ω P −1 P
r /Θ P r −→ Ω E P P +1
r
E −→ → Ω P +1 N
In the sequence (1), E n is the Euler-Lagrange mapping and E n+1is the Helmholtz-Sonin mapping In the study of variational sequence, it is very important to give
a concrete presentation of the elements [] ∈ Ω k /Θ k It also has been shown in
[5] that [] = p k r,0 for all positive integers k satisfying 1 ≤ k ≤ n, ∈ Ω k, where
p k
r,0 is the horizontal component of k-form Then Krupka [5] gave a concrete
presentation of [] for 1 ≤ k ≤ n.
The main purpose of this paper is to give a concrete presentation of elements
[] ∈ Ω k /Θ k for all positive integers k satisfying n + 1 ≤ k ≤ P For simplicity,
we will solve this problem in the case of r = 1 and r = 2 Then the other cases
follow by the same method
2 Notations and Premilinaries
Throughout this paper, the following notations will be used: (Y, π, X) is a fibered manifold with base X and the projection π : Y → X, where dimX = n, dimY −
n = m J r Y is the finite r-jet prolongation of the fibered manifold (Y, π, X) π r:
J r Y → X, π r,s : J r Y → J s Y are the canonical jet projections (V, Ψ) is a fiber
chart on Y , where Ψ = (x i , y σ ), 1 ≤ i ≤ n, 1 ≤ σ ≤ m (V r , Ψ r) is the fiber chart
on r-jet prolongation J r Y associated with (V, Ψ), where V r = π −1 r,0 (V ), Ψ r =
(x i , y σ , y j σ1, , y j σ1j2 j r ), 1 ≤ i ≤ n, 1 ≤ σ ≤ m, 1 ≤ j1≤ ≤ j r ≤ n Ω k is the
sheave of k-forms over J r Y and π ∗ r+1,r is the pull-back of the mapping π r+1,r
We put
ω0= dx1∧ dx2∧ ∧ dx n ,
ω i= (−1) i−1 dx1∧ ∧ dx i−1 ∧ dx i+1 ∧ · · · ∧ dx n , 1 ≤ i ≤ n,
ω j σ1j2 j k = dy σ j1j2 j k − y σ
j1j2 j k i dx i , 1 ≤ k ≤ r − 1.
Note that the forms
dx i , ω σ j1j2 j k , dy σ j1j2 j r ,
for 0≤ k ≤ r − 1, define a basis of the space of linear forms on V r
Obviously we have
dω j σ1j2 j k ∧ ω i=−ω σ
j1j2 j k i ∧ ω0, for 0 ≤ k ≤ r − 2,
dω j σ1j2 j r−1 ∧ ω i=−dy σ
j1j2 j r−1 i ∧ ω0.
Let N = n + m
n + r n
, M = m
n + r − 1 n
, P = m
n + r − 1 n
+ 2n − 1.
It is clear that N = dimJ r Y and M is the number of linear independent
forms ω σ
j j j , where 0 ≤ k ≤ r − 1.
Trang 3For any function f :V r → R we have h(df) =n
i=1 d i f.dx i , where
d i f = ∂f
∂x i +
m
σ=1
r
k=0
∂f
∂y σ
j1 j k
y σ j1 j k
For any k-form ρ ∈ Ω k , we denote by ρ0the horizontal component of ρ, and
ρ q , 1 ≤ q ≤ k, is the q-contact component of ρ Then for any ρ ∈ Ω kthere exists
a unique decomposition
π ∗ r+1,r ρ = ρ0+ ρ1+· · · + ρ k
We denote by p k
r,q : Ωk → Ω k
r+1 the morphism of sheaves defined by p k
r,q ρ = ρ q, for 0 ≤ q ≤ k Ω k
r(c) = ker p k
r,0 , 1≤ k ≤ n, is the sheave of contact k-forms.
Ωk
r(c) = ker p k
r,k−n , n + 1 ≤ k ≤ N , is the sheave of strongly contact k-forms.
Let Θk = dΩ k−1 r(c) + Ωk
r(c) In [3] and [5] the authours proved the softness of
the sheaves Θk, considered the quotient sheaves Ωk /Θ k, and they obtained the following short exact sequence
0→ Θ k r
i k r
→Ω k r
τ r k
→Ω k
r /Θ k r → 0,
where i k is the canonical injective, τ k is the canonical quotient mapping Especially, Krupka [5] constructed the following variational sequence of order
r over Y
0→ R → Ω0
r
E0
−→ Ω1
r /Θ1r −→ Ω E1 2
r /Θ2r −→ · · · E2 E −→ Ω P −2 P −1
r /Θ P −1 r →
E −→ Ω P −1 P
r /Θ P r −→ Ω E P P +1
r
E −→ · · · → Ω P +1 N
r → 0,
where the sheaf morphism E k : Ωk /Θ k → Ω k+1
r /Θ k+1
r is defined by the formula
E k ([]) = [d].
He proved that, the variational sequence of order r is an acyclic resolution
of the constant sheaf R over Y , and [] = p k
r,0 for all 1 ≤ k ≤ n and for all
∈ Ω k This is the horizontal component of k-form Let 1 ≤ k ≤ n − 1 and
∈ Ω k, then
[] = 1
k! f i1···i k dx
i1∧ · · · ∧ dx i k , (2)
where f i1 i k are some functions on V r
Let k = n and ∈ Ω n
r Then
where f is some function on V r In this case [] is called the Lagrange class of Let n + 1 ≤ k ≤ P For every s > r, Krupka [5] proved that
Ωk /Θ k ≈ Im(τ k π ∗ s,r+1 p k r,k−n ), and this implies that for every ∈ Ω k
Trang 4Let k = n + 1 For each element ∈ Ω n+1
r , [] is called the Euler-Lagrange
class of (n + 1)-forms .
Let k = n + 2 For each element ∈ Ω n+2 r , [] is called the Helmiholtz-Sonin
class of (n + 2)-forms .
Below we give a concrete presentation of the elements in Ωk /Θ k for all
pos-itive integer k satisfying n + 1 ≤ k ≤ P in the case of r = 1 and r = 2.
3 The Case of r = 1
Theorem 1.
a) Let ∈ Ω n+11 be a germ Suppose that in the fiber chart (V, ψ), ψ = (x i , y σ ),
p n+1 1,1 = f σ w σ ∧ w0+ f σ i w i σ ∧ w0, (5)
where 1 ≤ σ ≤ m, 1 ≤ i ≤ n , and f σ , f i
σ are functions defined on V2 ⊂ J2Y Then we have
b) Let ∈ Ω n+21 be a germ Suppose that in the fiber chart (V, ψ), ψ = (x i , y σ ),
p n+2 1,2 = f σν w σ ∧ w ν ∧ w0+ f σν i w σ i ∧ w ν ∧ w0+ f σν ij w σ i ∧ w ν
j ∧ w0, (7)
where 1 ≤ σ, ν ≤ m, 1 ≤ i, j ≤ n, and f σν , f i
σν , f ij
σν are functions defined on
V2⊂ J2Y Then
[] = ((f σν w σ + (f σν i − d i f σν ij )w σ i)− f ij
σν w σ ij)∧ w ν ∧ w0. (8)
c) Let n + 3 ≤ k ≤ P and ∈ Ω k
1 be a germ Suppose that in the fiber chart
(V, ψ), ψ = (x i , y σ ),
p k 1,k−n = f σ1 σ k−n w σ1 ∧ w σ2∧ ∧ ∧ w σ k−n ∧ w0
+ f i1
σ1 σ k−n w σ1
i1 ∧ w σ2∧ ∧ ∧ w σ k−n ∧ w0
+
+ f i1 i k−n−1
σ1 σ k−n w σ1
i1 ∧ w σ2
i2 ∧ ∧ w σ k−n−1
i k−n−1 ∧ w σ k−n ∧ w0
+ f i1 i k−n
σ1 σ k−n w σ1
i1 ∧ w σ2
i2 ∧ ∧ w σ k−n−1
i k−n−1 ∧ w σ k−n
i k−n ∧ w0,
(9)
where 1 ≤ σ1, , σ k−n ≤ m, 1 ≤ i1, i k−n ≤ n and each function defined
on V2⊂ J2Y Then we have
Trang 5[] =
k−n−2
h=0
f i1 i h
σ1 σ k−n w σ1
i1 ∧ ∧ w σ h
i h ∧ w σ h+1 ∧ ∧ w σ k−n−1
+ (f i1 i k−n−1
σ1 σ k−n − d i k−n f i1 i k−n
σ1 σ k−n )w σ1
i1 ∧ ∧ w σ k−n−1
i k−n−1
−
k−n−1
t=1
f i1 i k−n
σ1 σ k−n w σ1
i1 ∧ ∧ w σ t−1
i t−1 ∧ w σ t
i t i k−n ∧ w σ t+1
i t+1 ∧
∧ w σ i k−n−1 k−n−1
∧w σ k−n ∧ w0,
(10)
where each function is well defined on V3⊂ J3Y
Proof.
a) Considering all the factors in (5) which contains w σ
i, we get
f σ i w σ i ∧ w0=−f i
σ d(w σ ∧ w i) =−d(f i
σ w σ ∧ w i ) + df σ i ∧ w σ ∧ w i (11)
Since f σ i w σ ∧ w i ∈ Θ n
2 and
π 3,2 ∗ (df σ i ∧ w σ ∧ w i ) = h(df σ i)∧ w σ ∧ w i + p(df σ i)∧ w σ ∧ w i ,
we have
[] = τ3n+1 p n+1 2,1 π ∗ 2,1 () = f σ w σ ∧ w0+ h(df σ i)∧ w σ ∧ w i
= (f σ − d i f σ i )w σ ∧ w0.
b) Considering all the factors in (7) which contains w σ
i ∧ w ν
j , we get
f ij
σν w σ
i ∧ w ν
j ∧ w0=−f ij
σν w σ
i ∧ d(w ν ∧ w j) =
= f σν ij d(w i σ ∧ w ν ∧ w j)− f ij
σν dw i σ ∧ w ν ∧ w j
= d(f σν ij w σ i ∧ w ν ∧ w j)− df ij
σν ∧ w σ
i ∧ w ν ∧ w j+ +
n
l=1
f σν ij dy σ il ∧ dx l ∧ w ν ∧ w j
(12)
Since f ij
σν w σ
i ∧ w ν ∧ w j ∈ Θ n+1
2 , we have
[] =τ3n+2 p n+2 2,2 π 2,1 ∗ ()
= f σν w σ ∧ w ν ∧ w0+ f σν i w i σ ∧ w ν ∧ w0
− d j f σν ij w σ i ∧ w ν ∧ w0− f ij
σν w σ ij ∧ w ν ∧ w0.
(13)
Therefore we have
[] = ((f σν w σ + (f σν i − d i f σν ij )w σ i)− f ij
σν w σ ij)∧ w ν ∧ w0.
c) In the formula (9), we consider all the factors containing w i σ k−n k−n They are
f σ i11 i σ k−n k−n w σ1
i ∧ ∧ w σ k−n
i ∧ w0 We get
Trang 6f i1 i k−n
σ1 σ k−n w σ1
i1 ∧ ∧ w σ k−n
i k−n ∧ w0
= − f i1 i k−n
σ1 σ k−n w σ1
i1 ∧ ∧ w σ k−n−1
i k−n−1 ∧ d(w σ k−n ∧ w i k−n)
= (−1) k−n f i1 i k−n
σ1 σ k−n d(w σ1
i1 ∧ ∧ w σ k−n−1
i k−n−1 ∧ w σ k−n ∧ w i k−n) +
k−n−1
t=1
(−1) k−n+t f i1 i k−n
σ1 σ k−n w σ1
i1 ∧ ∧ w σ t−1
i t−1 ∧ dw σ t
i t ∧
∧ w σ t+1
i t+1 ∧ ∧ w σ k−n−1
i k−n−1 ∧ w σ k−n ∧ w i k−n
= (−1) k−n d(f i1 i k−n
σ1 σ k−n w σ1
i1 ∧ ∧ w σ k−n−1
i k−n−1 ∧ w σ k−n ∧ w i k−n)
− (−1) k−n df i1 i k−n
σ1 σ k−n ∧ w σ1
i1 ∧ ∧ w σ k−n−1
i k−n−1 ∧ w σ k−n ∧ w i k−n
+
k−n−1
t=1
n
l=1
(−1) k−n+t+1 f i1 i k−n
σ1 σ k−n w σ1
i1 ∧ ∧ w σ t−1
i t−1 ∧ dy σ t
i t l ∧ dx l ∧
∧ w σ t+1
i t+1 ∧ ∧ w σ k−n−1
i k−n−1 ∧ w σ k−n ∧ w i k−n
(14)
Since f σ i11 i σ k−n k−n w σ1
i1 ∧ ∧ w σ k−n−1
i k−n−1 ∧ w σ k−n ∧ w i k−n ∈ Θ k−1
2 , we have
τ3k p k 2,k−n (f i1 i k−n
σ1 σ k−n w σ1
i1 ∧ ∧ w σ k−n
i k−n ∧ w0
= − d i k−n f i1 i k−n
σ1 σ k−n w σ1
i1 ∧ ∧ w σ k−n−1
i k−n−1 ∧ w σ k−n ∧ w0
− k−n−1
t=1
f i1 i k−n
σ1 σ k−n w σ1
i1 ∧ ∧ w σ t−1
i t−1 ∧ w σ t
i t i k−n ∧ w σ t+1
i t+1 ∧ ∧ w σ k−n−1
i k−n−1 ∧ w σ k−n ∧ w0.
(15)
Then [] can be presented in the following form
[] =
k−n−2
h=0
f i1 i h
σ1 σ k−n w σ1
i1 ∧ ∧ w σ h
i h ∧ w σ k+1 ∧ ∧ w σ k−n−1
+ (f i1 i k−n−1
σ1 σ k−n − d i k−n f i1 i k−n
σ1 σ k−n )w σ1
i1 ∧ ∧ w σ k−n−1
i k−n−1
−
k−n−1
t=1
f i1 i k−n
σ1 σ k−n w σ1
i1 ∧ ∧ w σ t−1
i t−1 ∧ w σ t
i t i t−1 ∧ w σ t+1
i t+1 ∧
∧ w σ i k−n−1 k−n−1
∧w σ k−n ∧ w0,
4 The Case of r = 2
Theorem 2.
a) Let ∈ Ω n+12 be a germ Suppose that in the fiber chart (V, ψ), ψ = (x i , y σ ),
p n+1 2,1 = f σ w σ ∧ w0+ f σ i w σ i ∧ w0+ f σ ij w σ ij ∧ w0, (16)
Trang 7where 1 ≤ σ ≤ m, 1 ≤ i, j ≤ m, f σ , f i
σ , f ij
σ are functions well defined on V3 ⊂
J3Y Then we have
[] = (f σ − d i f σ i + d i d j f σ ij )w σ ∧ w0, (17)
where each function is well defined on V5⊂ J5Y
b) Let ∈ Ω n+22 be a germ Suppose that in the fiber chart (V, ψ), ψ = (x i , y σ ),
p n+2 2,2 = (f σν J w σ J ∧ w ν ∧ w0+ f σν Ji w J σ ∧ w ν
i ∧ w0+ f σν Jij w σ J ∧ w ν
ij ∧ w0, (18)
where 0 ≤ |J| ≤ 2, 1 ≤ σ, ν ≤ m, 1 ≤ i, j ≤ n, and functions f J
σν , f Ji
σν , f Jij
σν are well defined on V3⊂ J3Y Then we have
[] = ((f σν J − d i f σν Ji + d i d j f σν Jij )w J σ
+(−f Ji
σν + 2d j f σν Jij )w σ Ji + f σν Jij w σ Jij)∧ w ν ∧ w0, (19)
where each function is well defined on V5⊂ J5Y
c) Let n + 3 ≤ k ≤ P and ∈ Ω k2 be a germ Suppose that in the fiber chart
(V, ψ), ψ = (x i , y σ ) we have
p k 2,k−n =
2
q=0
f J1 J k−n−1 j1 j q
σ1 σ k−n w σ1
J1 ∧ ∧ w σ k−n−1
J k−n−1 ∧ w σ k−n
j1 j q ∧ w0, (20)
where 0 ≤ |J1|, , |J k−n−1 | ≤ 2, 1 ≤ σ1, , σ k−n ≤ m, 1 ≤ j1, , j q ≤ n, and every function f σ J11 σ J k−n k−n−1 j1 j q is well defined on V3⊂ J3Y Then we have
[] =
(f J1 J k−n−1
σ1 σ k−n − d j1f J1 J k−n−1 j1
σ1 σ k−n + d j1d j2f J1 J k−n−1 j1j2
σ1 σ k−n )w σ1
J1 ∧ ∧ w σ J k−n−1 k−n−1+
k−n−1
t=1
(−f J1 J k−n−1 j1
σ1 σ k−n + 2d j2f J1 J k−n−1 j1j2
σ1 σ k−n )w σ1
J1 ∧ ∧ w σ J t−1 t−1 ∧ w σ t
J t j1∧ w σ t+1
J t+1 ∧ ∧ w σ k−n−1
+
k−n−1
h=1
h=t
k−n−1
t=1
f J1 J k−n−1 j1j2
σ1 σ k−n w σ1
J1 ∧ ∧ w σ h−1
J h−1 ∧ w σ h
J h j1∧ w σ h+1
J h+1 ∧ ∧ w σ J t−1 t−1 ∧ w σ t
J t j2∧ w σ t+1
J t+1 ∧ ∧ w σ k−n−1
J k−n−1
+
k−n−1
t=1
f J1 J k−n−1 j1j2
σ1 σ k−n w σ1
J1 ∧ ∧ w σ t−1
J t−1 ∧ w σ t
J t j1j2∧ w σ t+1
J t+1 ∧
∧ w σ J k−n−1 k−n−1
∧w σ k−n ∧ w0,
where each function is well defined on V5⊂ J5Y
Trang 8a) In the formula (16) we consider the factors containing w σ
i They aref i
σ w σ
i ∧w0.
We get
f σ i w i σ ∧ w0=−f i
σ d(w σ ∧ w i) =−d(f i
σ w σ ∧ w i ) + df σ i ∧ w σ ∧ w i
(22)
Since f σ i w σ ∧ w i ∈ Ω n
3 = Θn3 and
π 4,3 ∗ (df σ i ∧ w σ ∧ w i ) = h(df σ i)∧ w σ ∧ w i + p(df σ i)∧ w σ ∧ w i ,
it implies that
τ4n+1 p n+1 3,1 (f σ i w σ i ∧ w0) =−d i f σ i ∧ w σ ∧ w0. (23)
Now we consider all the factors containing w ij σ in the formula (16) Then we have
f σ ij w σ ij ∧ w0=−d(f ij
σ w σ i ∧ w j ) + df σ ij ∧ w σ
This implies that
τ4n+1 p n+1 3,1 (f σ ij w σ ij ∧ w0) =−d j f σ ij w σ i ∧ w0
= d(d j f σ ij w σ ∧ w i)− d(d j f σ ij)∧ w σ ∧ w i (25) Therefore we have
τ5n+1 p n+1 4,1 π 4,3 ∗ (f σ ij w ij σ ∧ w0) = d i d j f σ ij w σ ∧ w0. (26) Since (16), (23) and (26) we get
[] = τ5n+1 p n+1 4,1 π 4,2 ∗ () = (f σ − d i f i
σ + d i d j f ij
σ )w σ ∧ w0,
where each function is defined on V5⊂ J5Y
b) In the formula (18) we consider all the factors containing w ν
i Then we get
f σν Ji w σ J ∧ w ν
i ∧ w0=−f Ji
σν w σ J ∧ d(w ν ∧ w i)
= f σν Ji d(w σ J ∧ w ν ∧ w i)− f Ji
σν dw J σ ∧ w ν ∧ w i
= d(f σν Ji w σ ∧ w ν ∧ w i)− df Ji
σν ∧ w σ ∧ w ν ∧ w i
+
n
l=1
df σν Ji dy σ Jl ∧ dx l ∧ w ν ∧ w i
Therefore
τ4n+2 p n+2 3,2 (f σν Ji w σ J ∧ w ν
i ∧ w0) =− d i f σν Ji w σ J ∧ w ν ∧ w0
− f Ji
σν w Ji σ ∧ w ν ∧ w0. (27)
Now we consider all the factors containing w ν
ij in the formula (16) Then we have
Trang 9f σν Jij w σ J ∧ w ν
ij ∧ w0=−f Jij
σν w σ J ∧ d(w ν
i ∧ w j)
= d(f σν Jij w σ J ∧ w ν
i ∧ w j)− df Jij
σν ∧ w σ
J ∧ w ν
i ∧ w j
+
n
l=1
f σν Jij dy Jl σ dx l ∧ w ν
i ∧ w j
τ4n+2 .p n+2 3,2
−→ −d j f σν Jij w σ J ∧ w ν
i ∧ w0− f Jij
σν w σ Jj ∧ w ν
i ∧ w0
τ5n+2 .p n+2 4,2
−→ d i d j f σν Jij w σ J ∧ w ν ∧ w0+ d j f σν Jij w Ji σ ∧ w ν ∧ w0
+ d i f σν Jij w σ Jj ∧ w ν ∧ w0+ f σν Jij w σ Jij ∧ w ν ∧ w0,
(28)
where τ4n+2 p n+2 3,2 ( resp τ5n+2 p n+2 4,2 ) are morphisms of sheaves Since the formu-las (18), (27), (28) and the symmetry of indexes i, j we have
[] = τ5n+2 p n+2 4,2 π ∗ 4,2 () = ((f σν J − d i f σν Ji + d i d j f σν Jij )w σ J
+ (−f Ji
σν + 2d j f σν Jij )w Ji σ + f σν Jij w σ Jij)∧ w ν ∧ w0,
where each function is defined on V5⊂ J5Y
c) We consider the factors containing w σ J1k−n in the formula (20) We have
f J1 J k−n−1 j1
σ1 σ k−n w σ1
J1 ∧ ∧ w σ k−n−1
J k−n−1 ∧ w σ k−n
j1 ∧ w0
= − f J1 J k−n−1 j1
σ1 σ k−n w σ1
J1 ∧ ∧ w σ k−n−1
J k−n−1 ∧ d(w σ k−n ∧ w j1)
= (−1) k−n f J1 J k−n−1 j1
σ1 σ k−n d(w σ1
J1 ∧ ∧ w σ k−n−1
J k−n−1 ∧ w σ k−n ∧ w j1) +
k−n−1
t=1
(−1) k−n+t f J1 J k−n−1 j1
σ1 σ k−n w σ1
J1 ∧ ∧ w σ t−1
J t−1 ∧
∧ dw σ t
J t ∧ w σ t+1
J t+1 ∧ ∧ w σ k−n−1
J k−n−1 ∧ w σ k−n ∧ w j1
= (−1) k−n d(f J1 J k−n−1 j1
σ1 σ k−n w σ1
J1∧ ∧ w σ k−n−1
J k−n−1 ∧ w σ k−n ∧ w j1)
− (−1) k−n df J1 J k−n−1 j1
σ1 σ k−n ∧ w σ1
J1 ∧ ∧ w σ k−n−1
J k−n−1 ∧ w σ k−n ∧ w j1
−
k−n−1
t=1
n
l=1
(−1) k−n+t f J1 J k−n−1 j1
σ1 σ k−n w σ1
J1∧ ∧ w σ t−1
J t−1 ∧
∧ dy σ t
J t l ∧ dx l ∧ w σ t+1
J t+1 ∧ ∧ w σ k−n−1
J k−n−1 ∧ w σ k−n ∧ w j1
τ4k .p k 3,k−n
−→ −d j1f J1 J k−n−1
σ1 σ k−n w σ1
J1 ∧ ∧ w σ k−n−1
J k−n−1 ∧ w σ k−n ∧ w0
− k−n−1
t=1
f J1 J k−n−1
σ1 σ k−n w σ1
J1∧ ∧ w σ t−1
J t−1 ∧ w σ t
J t j1∧
∧ w σ t+1
J t+1 ∧ ∧ w σ k−n−1
J k−n−1 ∧ w σ k−n ∧ w0.
(29)
We consider all the factors containing w σ j k−n j in the formula (20) We have
Trang 10f J1 J k−n−1 j1j2
σ1 σ k−n w σ1
J1 ∧ ∧ w σ k−n−1
J k−n−1 ∧ w σ k−n
j1j2 ∧ w0τ
k
4.p k 3,k−n
−→
− d j2f J1 J k−n−1 j1j2
σ1 σ k−n w σ1
J1∧ ∧ w σ k−n−1
J k−n−1 ∧ w σ k−n
j1 ∧ w0
−
k−n−1
t=1
f J1 J k−n−1 j1j2
σ1 σ k−n w σ1
J1 ∧ ∧ w σ t−1
J t−1 ∧ w σ t
J t j2∧ w σ t+1
J t+1 ∧ ∧ w σ k−n−1
J k−n−1 ∧ w σ k−n
j1 ∧ w0
τ5k .p −→ k 4,k−n d j1 d j2f J1 J k−n−1 j1j2
σ1 σ k−n w σ1
J1 ∧ ∧ w σ k−n−1
J k−n−1 ∧ w σ k−n ∧ w0
+
k−n−1
h=1
d j2f J1 J k−n−1 j1j2
σ1 σ k−n w σ1
J1∧ ∧ w σ h−1
J h−1 ∧ w σ h
J h j1∧ w σ h+1
J h+1 ∧ ∧ w J σ k−n−1 k−n−1 ∧ w σ k−n ∧ w0
+
k−n−1
t=1
d j1f J1 J k−n−1 j1j2
σ1 σ k−n w σ1
J1∧ ∧ w σ t−1
J t−1 ∧ w σ t
J t j2∧ w σ t+1
J t+1 ∧ ∧ w J σ k−n−1 k−n−1 ∧ w σ k−n ∧ w0
+
k−n−1
h=1
h=t
k−n−1
t=1
f J1 J k−n−1 j1j2
σ1 σ k−n w σ1
J1∧ ∧ w σ h−1
J h−1 ∧ w σ h
J h j1∧ w σ h+1
J h+1 ∧ ∧ w J σ t−1 t−1 ∧ w σ t
J t j2∧ w σ t+1
J t+1 ∧ ∧ w σ k−n−1
J k−n−1 ∧ w σ k−n ∧ w0
+
k−n−1
t=1
f J1 J k−n−1 j1j2
σ1 σ k−n w σ1
J1 ∧ ∧ w σ t−1
J t−1 ∧ w σ t
J t j1j2∧ w σ t+1
J t+1 ∧ ∧ w J σ k−n−1 k−n−1 ∧ w σ k−n ∧ w0.
(30)
Since the formulas (20), (29), (30) and the symmetry of indexes j1, j2 we have
[] = τ5k p k 4,k−n π 4,2 ∗ ()
=
(f J1 J k−n−1
σ1 σ k−n − d j1f J1 J k−n−1 j1
σ1 σ k−n + d j1d j2f J1 J k−n−1 j1j2
σ1 σ k−n )w σ1
J1∧ ∧ w J σ k−n−1 k−n−1+
k−n−1
t=1
(−f J1 J k−n−1 j1
σ1 σ k−n + 2d j2f J1 J k−n−1 j1j2
σ1 σ k−n )w σ1
J1∧ ∧ w J σ t−1 t−1 ∧ w σ t
J t j1∧ w σ t+1
J t+1 ∧ ∧ w σ k−n−1
J k−n−1
+
k−n−1
h=1
h=t
k−n−1
t=1
f J1 J k−n−1 j1j2
σ1 σ k−n w σ1
J1∧ ∧ w σ h−1
J h−1 ∧ w σ h
J h j1∧ w σ h+1
J h+1 ∧ ∧ w J σ t−1 t−1 ∧ w σ t
J t j2∧ w σ t+1
J t+1 ∧ ∧ w σ k−n−1
J k−n−1