1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo toán học: "A Presentation of the Elements of the Quotient Sheaves Ωk /Θk in Variational Sequences" pdf

11 314 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 137,17 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Introduction The notion of variational bicomplexes was introduced in studying the problem of characterizing the kernel and image of Euler-Lagrange mapping in the calcu-lus of variations.

Trang 1

R I

0 $ 7 + ( 0 $ 7 , & 6

‹ 9$67 

A Presentation of the Elements of the Quotient

Sheaves Ωk r /Θ k r in Variational Sequences

Nong Quoc Chinh

Thai Nguyen University, Thai Nguyen City, Vietnam

Received Ferbuary 05, 2004 Revised Ferbuary 17, 2005

AbstractIn this paper we give a concrete presentation of the elements of the quotient sheavesΩk /Θ k in the variational sequence

0→ R → Ω0

r

E0

−→ Ω1

r /Θ1r −→ Ω E1 2

r /Θ2r −→ E2 E −→ Ω P −2 P −1

r /Θ P −1 r →

E −→ Ω P −1 P

r /Θ P r −→ Ω E P P +1

r

E −→ → Ω P +1 N

r → 0.

1 Introduction

The notion of variational bicomplexes was introduced in studying the problem

of characterizing the kernel and image of Euler-Lagrange mapping in the calcu-lus of variations This problem has been considered by Anderson [1], Duchamp [2], Dedecker [4], Tulczyvew [7], Takens [6] and Krupka [5] The variational

bi-complex was mainly studied on the infinite jet prolongation J ∞ Y of the fibered

manifold Y with the base X and the projection π : Y → X, where dimX = n, dimY −n = m The variational bicomplexes contain Euler-Lagrange mapping as

one of its morphisms Then its developments in the theory of variational bicom-plexes have made an important role in many problems in caculus of variations

on manifolds, in diffrential geometry, in the theory of differential equations and

in mathematical physics

Krupka [5] studied the sheaves of differential forms on finite r-jet prolonga-tions J r Y Then he constructed the sequence of quotient sheaves Ω k /Θ k This

quotient sequence is called the variational sequence of order r over Y It is an acyclic resolution of the constant sheaf R over Y

Trang 2

0→ R → Ω0

r

E0

−→ Ω1

r /Θ1r −→ Ω E1 2

r /Θ2r −→ E2 E −→ Ω P −2 P −1

r /Θ P −1 r →

E −→ Ω P −1 P

r /Θ P r −→ Ω E P P +1

r

E −→ → Ω P +1 N

In the sequence (1), E n is the Euler-Lagrange mapping and E n+1is the Helmholtz-Sonin mapping In the study of variational sequence, it is very important to give

a concrete presentation of the elements [] ∈ Ω k /Θ k It also has been shown in

[5] that [] = p k r,0  for all positive integers k satisfying 1 ≤ k ≤ n,  ∈ Ω k, where

p k

r,0  is the horizontal component of k-form  Then Krupka [5] gave a concrete

presentation of [] for 1 ≤ k ≤ n.

The main purpose of this paper is to give a concrete presentation of elements

[] ∈ Ω k /Θ k for all positive integers k satisfying n + 1 ≤ k ≤ P For simplicity,

we will solve this problem in the case of r = 1 and r = 2 Then the other cases

follow by the same method

2 Notations and Premilinaries

Throughout this paper, the following notations will be used: (Y, π, X) is a fibered manifold with base X and the projection π : Y → X, where dimX = n, dimY −

n = m J r Y is the finite r-jet prolongation of the fibered manifold (Y, π, X) π r:

J r Y → X, π r,s : J r Y → J s Y are the canonical jet projections (V, Ψ) is a fiber

chart on Y , where Ψ = (x i , y σ ), 1 ≤ i ≤ n, 1 ≤ σ ≤ m (V r , Ψ r) is the fiber chart

on r-jet prolongation J r Y associated with (V, Ψ), where V r = π −1 r,0 (V ), Ψ r =

(x i , y σ , y j σ1, , y j σ1j2 j r ), 1 ≤ i ≤ n, 1 ≤ σ ≤ m, 1 ≤ j1≤ ≤ j r ≤ n Ω k is the

sheave of k-forms over J r Y and π ∗ r+1,r is the pull-back of the mapping π r+1,r

We put

ω0= dx1∧ dx2∧ ∧ dx n ,

ω i= (−1) i−1 dx1∧ ∧ dx i−1 ∧ dx i+1 ∧ · · · ∧ dx n , 1 ≤ i ≤ n,

ω j σ1j2 j k = dy σ j1j2 j k − y σ

j1j2 j k i dx i , 1 ≤ k ≤ r − 1.

Note that the forms

dx i , ω σ j1j2 j k , dy σ j1j2 j r ,

for 0≤ k ≤ r − 1, define a basis of the space of linear forms on V r

Obviously we have

dω j σ1j2 j k ∧ ω i=−ω σ

j1j2 j k i ∧ ω0, for 0 ≤ k ≤ r − 2,

dω j σ1j2 j r−1 ∧ ω i=−dy σ

j1j2 j r−1 i ∧ ω0.

Let N = n + m



n + r n



, M = m



n + r − 1 n



, P = m



n + r − 1 n



+ 2n − 1.

It is clear that N = dimJ r Y and M is the number of linear independent

forms ω σ

j j j , where 0 ≤ k ≤ r − 1.

Trang 3

For any function f :V r → R we have h(df) =n

i=1 d i f.dx i , where

d i f = ∂f

∂x i +

m



σ=1

r



k=0

∂f

∂y σ

j1 j k

y σ j1 j k

For any k-form ρ ∈ Ω k , we denote by ρ0the horizontal component of ρ, and

ρ q , 1 ≤ q ≤ k, is the q-contact component of ρ Then for any ρ ∈ Ω kthere exists

a unique decomposition

π ∗ r+1,r ρ = ρ0+ ρ1+· · · + ρ k

We denote by p k

r,q : Ωk → Ω k

r+1 the morphism of sheaves defined by p k

r,q ρ = ρ q, for 0 ≤ q ≤ k Ω k

r(c) = ker p k

r,0 , 1≤ k ≤ n, is the sheave of contact k-forms.

Ωk

r(c) = ker p k

r,k−n , n + 1 ≤ k ≤ N , is the sheave of strongly contact k-forms.

Let Θk = dΩ k−1 r(c) + Ωk

r(c) In [3] and [5] the authours proved the softness of

the sheaves Θk, considered the quotient sheaves Ωk /Θ k, and they obtained the following short exact sequence

0→ Θ k r

i k r

→Ω k r

τ r k

→Ω k

r /Θ k r → 0,

where i k is the canonical injective, τ k is the canonical quotient mapping Especially, Krupka [5] constructed the following variational sequence of order

r over Y

0→ R → Ω0

r

E0

−→ Ω1

r /Θ1r −→ Ω E1 2

r /Θ2r −→ · · · E2 E −→ Ω P −2 P −1

r /Θ P −1 r →

E −→ Ω P −1 P

r /Θ P r −→ Ω E P P +1

r

E −→ · · · → Ω P +1 N

r → 0,

where the sheaf morphism E k : Ωk /Θ k → Ω k+1

r /Θ k+1

r is defined by the formula

E k ([]) = [d].

He proved that, the variational sequence of order r is an acyclic resolution

of the constant sheaf R over Y , and [] = p k

r,0  for all 1 ≤ k ≤ n and for all

 ∈ Ω k This is the horizontal component of k-form  Let 1 ≤ k ≤ n − 1 and

 ∈ Ω k, then

[] = 1

k! f i1···i k dx

i1∧ · · · ∧ dx i k , (2)

where f i1 i k are some functions on V r

Let k = n and  ∈ Ω n

r Then

where f is some function on V r In this case [] is called the Lagrange class of  Let n + 1 ≤ k ≤ P For every s > r, Krupka [5] proved that

Ωk /Θ k ≈ Im(τ k π ∗ s,r+1 p k r,k−n ), and this implies that for every  ∈ Ω k

Trang 4

Let k = n + 1 For each element  ∈ Ω n+1

r , [] is called the Euler-Lagrange

class of (n + 1)-forms .

Let k = n + 2 For each element  ∈ Ω n+2 r , [] is called the Helmiholtz-Sonin

class of (n + 2)-forms .

Below we give a concrete presentation of the elements in Ωk /Θ k for all

pos-itive integer k satisfying n + 1 ≤ k ≤ P in the case of r = 1 and r = 2.

3 The Case of r = 1

Theorem 1.

a) Let  ∈ Ω n+11 be a germ Suppose that in the fiber chart (V, ψ), ψ = (x i , y σ ),

p n+1 1,1  = f σ w σ ∧ w0+ f σ i w i σ ∧ w0, (5)

where 1 ≤ σ ≤ m, 1 ≤ i ≤ n , and f σ , f i

σ are functions defined on V2 ⊂ J2Y Then we have

b) Let  ∈ Ω n+21 be a germ Suppose that in the fiber chart (V, ψ), ψ = (x i , y σ ),

p n+2 1,2  = f σν w σ ∧ w ν ∧ w0+ f σν i w σ i ∧ w ν ∧ w0+ f σν ij w σ i ∧ w ν

j ∧ w0, (7)

where 1 ≤ σ, ν ≤ m, 1 ≤ i, j ≤ n, and f σν , f i

σν , f ij

σν are functions defined on

V2⊂ J2Y Then

[] = ((f σν w σ + (f σν i − d i f σν ij )w σ i)− f ij

σν w σ ij)∧ w ν ∧ w0. (8)

c) Let n + 3 ≤ k ≤ P and  ∈ Ω k

1 be a germ Suppose that in the fiber chart

(V, ψ), ψ = (x i , y σ ),

p k 1,k−n  = f σ1 σ k−n w σ1 ∧ w σ2∧ ∧ ∧ w σ k−n ∧ w0

+ f i1

σ1 σ k−n w σ1

i1 ∧ w σ2∧ ∧ ∧ w σ k−n ∧ w0

+

+ f i1 i k−n−1

σ1 σ k−n w σ1

i1 ∧ w σ2

i2 ∧ ∧ w σ k−n−1

i k−n−1 ∧ w σ k−n ∧ w0

+ f i1 i k−n

σ1 σ k−n w σ1

i1 ∧ w σ2

i2 ∧ ∧ w σ k−n−1

i k−n−1 ∧ w σ k−n

i k−n ∧ w0,

(9)

where 1 ≤ σ1, , σ k−n ≤ m, 1 ≤ i1, i k−n ≤ n and each function defined

on V2⊂ J2Y Then we have

Trang 5

[] =

k−n−2

h=0

f i1 i h

σ1 σ k−n w σ1

i1 ∧ ∧ w σ h

i h ∧ w σ h+1 ∧ ∧ w σ k−n−1

+ (f i1 i k−n−1

σ1 σ k−n − d i k−n f i1 i k−n

σ1 σ k−n )w σ1

i1 ∧ ∧ w σ k−n−1

i k−n−1

k−n−1

t=1

f i1 i k−n

σ1 σ k−n w σ1

i1 ∧ ∧ w σ t−1

i t−1 ∧ w σ t

i t i k−n ∧ w σ t+1

i t+1 ∧

∧ w σ i k−n−1 k−n−1



∧w σ k−n ∧ w0,

(10)

where each function is well defined on V3⊂ J3Y

Proof.

a) Considering all the factors in (5) which contains w σ

i, we get

f σ i w σ i ∧ w0=−f i

σ d(w σ ∧ w i) =−d(f i

σ w σ ∧ w i ) + df σ i ∧ w σ ∧ w i (11)

Since f σ i w σ ∧ w i ∈ Θ n

2 and

π 3,2 ∗ (df σ i ∧ w σ ∧ w i ) = h(df σ i)∧ w σ ∧ w i + p(df σ i)∧ w σ ∧ w i ,

we have

[] = τ3n+1 p n+1 2,1 π ∗ 2,1 () = f σ w σ ∧ w0+ h(df σ i)∧ w σ ∧ w i

= (f σ − d i f σ i )w σ ∧ w0.

b) Considering all the factors in (7) which contains w σ

i ∧ w ν

j , we get

f ij

σν w σ

i ∧ w ν

j ∧ w0=−f ij

σν w σ

i ∧ d(w ν ∧ w j) =

= f σν ij d(w i σ ∧ w ν ∧ w j)− f ij

σν dw i σ ∧ w ν ∧ w j

= d(f σν ij w σ i ∧ w ν ∧ w j)− df ij

σν ∧ w σ

i ∧ w ν ∧ w j+ +

n



l=1

f σν ij dy σ il ∧ dx l ∧ w ν ∧ w j

(12)

Since f ij

σν w σ

i ∧ w ν ∧ w j ∈ Θ n+1

2 , we have

[] =τ3n+2 p n+2 2,2 π 2,1 ∗ ()

= f σν w σ ∧ w ν ∧ w0+ f σν i w i σ ∧ w ν ∧ w0

− d j f σν ij w σ i ∧ w ν ∧ w0− f ij

σν w σ ij ∧ w ν ∧ w0.

(13)

Therefore we have

[] = ((f σν w σ + (f σν i − d i f σν ij )w σ i)− f ij

σν w σ ij)∧ w ν ∧ w0.

c) In the formula (9), we consider all the factors containing w i σ k−n k−n They are

f σ i11 i σ k−n k−n w σ1

i ∧ ∧ w σ k−n

i ∧ w0 We get

Trang 6

f i1 i k−n

σ1 σ k−n w σ1

i1 ∧ ∧ w σ k−n

i k−n ∧ w0

= − f i1 i k−n

σ1 σ k−n w σ1

i1 ∧ ∧ w σ k−n−1

i k−n−1 ∧ d(w σ k−n ∧ w i k−n)

= (−1) k−n f i1 i k−n

σ1 σ k−n d(w σ1

i1 ∧ ∧ w σ k−n−1

i k−n−1 ∧ w σ k−n ∧ w i k−n) +

k−n−1

t=1

(−1) k−n+t f i1 i k−n

σ1 σ k−n w σ1

i1 ∧ ∧ w σ t−1

i t−1 ∧ dw σ t

i t ∧

∧ w σ t+1

i t+1 ∧ ∧ w σ k−n−1

i k−n−1 ∧ w σ k−n ∧ w i k−n

= (−1) k−n d(f i1 i k−n

σ1 σ k−n w σ1

i1 ∧ ∧ w σ k−n−1

i k−n−1 ∧ w σ k−n ∧ w i k−n)

− (−1) k−n df i1 i k−n

σ1 σ k−n ∧ w σ1

i1 ∧ ∧ w σ k−n−1

i k−n−1 ∧ w σ k−n ∧ w i k−n

+

k−n−1

t=1

n



l=1

(−1) k−n+t+1 f i1 i k−n

σ1 σ k−n w σ1

i1 ∧ ∧ w σ t−1

i t−1 ∧ dy σ t

i t l ∧ dx l ∧

∧ w σ t+1

i t+1 ∧ ∧ w σ k−n−1

i k−n−1 ∧ w σ k−n ∧ w i k−n

(14)

Since f σ i11 i σ k−n k−n w σ1

i1 ∧ ∧ w σ k−n−1

i k−n−1 ∧ w σ k−n ∧ w i k−n ∈ Θ k−1

2 , we have

τ3k p k 2,k−n (f i1 i k−n

σ1 σ k−n w σ1

i1 ∧ ∧ w σ k−n

i k−n ∧ w0

= − d i k−n f i1 i k−n

σ1 σ k−n w σ1

i1 ∧ ∧ w σ k−n−1

i k−n−1 ∧ w σ k−n ∧ w0

− k−n−1

t=1

f i1 i k−n

σ1 σ k−n w σ1

i1 ∧ ∧ w σ t−1

i t−1 ∧ w σ t

i t i k−n ∧ w σ t+1

i t+1 ∧ ∧ w σ k−n−1

i k−n−1 ∧ w σ k−n ∧ w0.

(15)

Then [] can be presented in the following form

[] =

k−n−2

h=0

f i1 i h

σ1 σ k−n w σ1

i1 ∧ ∧ w σ h

i h ∧ w σ k+1 ∧ ∧ w σ k−n−1

+ (f i1 i k−n−1

σ1 σ k−n − d i k−n f i1 i k−n

σ1 σ k−n )w σ1

i1 ∧ ∧ w σ k−n−1

i k−n−1

k−n−1

t=1

f i1 i k−n

σ1 σ k−n w σ1

i1 ∧ ∧ w σ t−1

i t−1 ∧ w σ t

i t i t−1 ∧ w σ t+1

i t+1 ∧

∧ w σ i k−n−1 k−n−1



∧w σ k−n ∧ w0,

4 The Case of r = 2

Theorem 2.

a) Let  ∈ Ω n+12 be a germ Suppose that in the fiber chart (V, ψ), ψ = (x i , y σ ),

p n+1 2,1  = f σ w σ ∧ w0+ f σ i w σ i ∧ w0+ f σ ij w σ ij ∧ w0, (16)

Trang 7

where 1 ≤ σ ≤ m, 1 ≤ i, j ≤ m, f σ , f i

σ , f ij

σ are functions well defined on V3

J3Y Then we have

[] = (f σ − d i f σ i + d i d j f σ ij )w σ ∧ w0, (17)

where each function is well defined on V5⊂ J5Y

b) Let  ∈ Ω n+22 be a germ Suppose that in the fiber chart (V, ψ), ψ = (x i , y σ ),

p n+2 2,2  = (f σν J w σ J ∧ w ν ∧ w0+ f σν Ji w J σ ∧ w ν

i ∧ w0+ f σν Jij w σ J ∧ w ν

ij ∧ w0, (18)

where 0 ≤ |J| ≤ 2, 1 ≤ σ, ν ≤ m, 1 ≤ i, j ≤ n, and functions f J

σν , f Ji

σν , f Jij

σν are well defined on V3⊂ J3Y Then we have

[] = ((f σν J − d i f σν Ji + d i d j f σν Jij )w J σ

+(−f Ji

σν + 2d j f σν Jij )w σ Ji + f σν Jij w σ Jij)∧ w ν ∧ w0, (19)

where each function is well defined on V5⊂ J5Y

c) Let n + 3 ≤ k ≤ P and  ∈ Ω k2 be a germ Suppose that in the fiber chart

(V, ψ), ψ = (x i , y σ ) we have

p k 2,k−n  =

2



q=0

f J1 J k−n−1 j1 j q

σ1 σ k−n w σ1

J1 ∧ ∧ w σ k−n−1

J k−n−1 ∧ w σ k−n

j1 j q ∧ w0, (20)

where 0 ≤ |J1|, , |J k−n−1 | ≤ 2, 1 ≤ σ1, , σ k−n ≤ m, 1 ≤ j1, , j q ≤ n, and every function f σ J11 σ J k−n k−n−1 j1 j q is well defined on V3⊂ J3Y Then we have

[] =



(f J1 J k−n−1

σ1 σ k−n − d j1f J1 J k−n−1 j1

σ1 σ k−n + d j1d j2f J1 J k−n−1 j1j2

σ1 σ k−n )w σ1

J1 ∧ ∧ w σ J k−n−1 k−n−1+

k−n−1

t=1

(−f J1 J k−n−1 j1

σ1 σ k−n + 2d j2f J1 J k−n−1 j1j2

σ1 σ k−n )w σ1

J1 ∧ ∧ w σ J t−1 t−1 ∧ w σ t

J t j1∧ w σ t+1

J t+1 ∧ ∧ w σ k−n−1

+

k−n−1

h=1

h=t

k−n−1

t=1

f J1 J k−n−1 j1j2

σ1 σ k−n w σ1

J1 ∧ ∧ w σ h−1

J h−1 ∧ w σ h

J h j1∧ w σ h+1

J h+1 ∧ ∧ w σ J t−1 t−1 ∧ w σ t

J t j2∧ w σ t+1

J t+1 ∧ ∧ w σ k−n−1

J k−n−1

+

k−n−1

t=1

f J1 J k−n−1 j1j2

σ1 σ k−n w σ1

J1 ∧ ∧ w σ t−1

J t−1 ∧ w σ t

J t j1j2∧ w σ t+1

J t+1 ∧

∧ w σ J k−n−1 k−n−1



∧w σ k−n ∧ w0,

where each function is well defined on V5⊂ J5Y

Trang 8

a) In the formula (16) we consider the factors containing w σ

i They aref i

σ w σ

i ∧w0.

We get

f σ i w i σ ∧ w0=−f i

σ d(w σ ∧ w i) =−d(f i

σ w σ ∧ w i ) + df σ i ∧ w σ ∧ w i

(22)

Since f σ i w σ ∧ w i ∈ Ω n

3 = Θn3 and

π 4,3 ∗ (df σ i ∧ w σ ∧ w i ) = h(df σ i)∧ w σ ∧ w i + p(df σ i)∧ w σ ∧ w i ,

it implies that

τ4n+1 p n+1 3,1 (f σ i w σ i ∧ w0) =−d i f σ i ∧ w σ ∧ w0. (23)

Now we consider all the factors containing w ij σ in the formula (16) Then we have

f σ ij w σ ij ∧ w0=−d(f ij

σ w σ i ∧ w j ) + df σ ij ∧ w σ

This implies that

τ4n+1 p n+1 3,1 (f σ ij w σ ij ∧ w0) =−d j f σ ij w σ i ∧ w0

= d(d j f σ ij w σ ∧ w i)− d(d j f σ ij)∧ w σ ∧ w i (25) Therefore we have

τ5n+1 p n+1 4,1 π 4,3 ∗ (f σ ij w ij σ ∧ w0) = d i d j f σ ij w σ ∧ w0. (26) Since (16), (23) and (26) we get

[] = τ5n+1 p n+1 4,1 π 4,2 ∗ () = (f σ − d i f i

σ + d i d j f ij

σ )w σ ∧ w0,

where each function is defined on V5⊂ J5Y

b) In the formula (18) we consider all the factors containing w ν

i Then we get

f σν Ji w σ J ∧ w ν

i ∧ w0=−f Ji

σν w σ J ∧ d(w ν ∧ w i)

= f σν Ji d(w σ J ∧ w ν ∧ w i)− f Ji

σν dw J σ ∧ w ν ∧ w i

= d(f σν Ji w σ ∧ w ν ∧ w i)− df Ji

σν ∧ w σ ∧ w ν ∧ w i

+

n



l=1

df σν Ji dy σ Jl ∧ dx l ∧ w ν ∧ w i

Therefore

τ4n+2 p n+2 3,2 (f σν Ji w σ J ∧ w ν

i ∧ w0) =− d i f σν Ji w σ J ∧ w ν ∧ w0

− f Ji

σν w Ji σ ∧ w ν ∧ w0. (27)

Now we consider all the factors containing w ν

ij in the formula (16) Then we have

Trang 9

f σν Jij w σ J ∧ w ν

ij ∧ w0=−f Jij

σν w σ J ∧ d(w ν

i ∧ w j)

= d(f σν Jij w σ J ∧ w ν

i ∧ w j)− df Jij

σν ∧ w σ

J ∧ w ν

i ∧ w j

+

n



l=1

f σν Jij dy Jl σ dx l ∧ w ν

i ∧ w j

τ4n+2 .p n+2 3,2

−→ −d j f σν Jij w σ J ∧ w ν

i ∧ w0− f Jij

σν w σ Jj ∧ w ν

i ∧ w0

τ5n+2 .p n+2 4,2

−→ d i d j f σν Jij w σ J ∧ w ν ∧ w0+ d j f σν Jij w Ji σ ∧ w ν ∧ w0

+ d i f σν Jij w σ Jj ∧ w ν ∧ w0+ f σν Jij w σ Jij ∧ w ν ∧ w0,

(28)

where τ4n+2 p n+2 3,2 ( resp τ5n+2 p n+2 4,2 ) are morphisms of sheaves Since the formu-las (18), (27), (28) and the symmetry of indexes i, j we have

[] = τ5n+2 p n+2 4,2 π ∗ 4,2 () = ((f σν J − d i f σν Ji + d i d j f σν Jij )w σ J

+ (−f Ji

σν + 2d j f σν Jij )w Ji σ + f σν Jij w σ Jij)∧ w ν ∧ w0,

where each function is defined on V5⊂ J5Y

c) We consider the factors containing w σ J1k−n in the formula (20) We have

f J1 J k−n−1 j1

σ1 σ k−n w σ1

J1 ∧ ∧ w σ k−n−1

J k−n−1 ∧ w σ k−n

j1 ∧ w0

= − f J1 J k−n−1 j1

σ1 σ k−n w σ1

J1 ∧ ∧ w σ k−n−1

J k−n−1 ∧ d(w σ k−n ∧ w j1)

= (−1) k−n f J1 J k−n−1 j1

σ1 σ k−n d(w σ1

J1 ∧ ∧ w σ k−n−1

J k−n−1 ∧ w σ k−n ∧ w j1) +

k−n−1

t=1

(−1) k−n+t f J1 J k−n−1 j1

σ1 σ k−n w σ1

J1 ∧ ∧ w σ t−1

J t−1 ∧

∧ dw σ t

J t ∧ w σ t+1

J t+1 ∧ ∧ w σ k−n−1

J k−n−1 ∧ w σ k−n ∧ w j1

= (−1) k−n d(f J1 J k−n−1 j1

σ1 σ k−n w σ1

J1∧ ∧ w σ k−n−1

J k−n−1 ∧ w σ k−n ∧ w j1)

− (−1) k−n df J1 J k−n−1 j1

σ1 σ k−n ∧ w σ1

J1 ∧ ∧ w σ k−n−1

J k−n−1 ∧ w σ k−n ∧ w j1

k−n−1

t=1

n



l=1

(−1) k−n+t f J1 J k−n−1 j1

σ1 σ k−n w σ1

J1∧ ∧ w σ t−1

J t−1 ∧

∧ dy σ t

J t l ∧ dx l ∧ w σ t+1

J t+1 ∧ ∧ w σ k−n−1

J k−n−1 ∧ w σ k−n ∧ w j1

τ4k .p k 3,k−n

−→ −d j1f J1 J k−n−1

σ1 σ k−n w σ1

J1 ∧ ∧ w σ k−n−1

J k−n−1 ∧ w σ k−n ∧ w0

− k−n−1

t=1

f J1 J k−n−1

σ1 σ k−n w σ1

J1∧ ∧ w σ t−1

J t−1 ∧ w σ t

J t j1

∧ w σ t+1

J t+1 ∧ ∧ w σ k−n−1

J k−n−1 ∧ w σ k−n ∧ w0.

(29)

We consider all the factors containing w σ j k−n j in the formula (20) We have

Trang 10

f J1 J k−n−1 j1j2

σ1 σ k−n w σ1

J1 ∧ ∧ w σ k−n−1

J k−n−1 ∧ w σ k−n

j1j2 ∧ w0τ

k

4.p k 3,k−n

−→

− d j2f J1 J k−n−1 j1j2

σ1 σ k−n w σ1

J1∧ ∧ w σ k−n−1

J k−n−1 ∧ w σ k−n

j1 ∧ w0

k−n−1

t=1

f J1 J k−n−1 j1j2

σ1 σ k−n w σ1

J1 ∧ ∧ w σ t−1

J t−1 ∧ w σ t

J t j2∧ w σ t+1

J t+1 ∧ ∧ w σ k−n−1

J k−n−1 ∧ w σ k−n

j1 ∧ w0

τ5k .p −→ k 4,k−n d j1 d j2f J1 J k−n−1 j1j2

σ1 σ k−n w σ1

J1 ∧ ∧ w σ k−n−1

J k−n−1 ∧ w σ k−n ∧ w0

+

k−n−1

h=1

d j2f J1 J k−n−1 j1j2

σ1 σ k−n w σ1

J1∧ ∧ w σ h−1

J h−1 ∧ w σ h

J h j1∧ w σ h+1

J h+1 ∧ ∧ w J σ k−n−1 k−n−1 ∧ w σ k−n ∧ w0

+

k−n−1

t=1

d j1f J1 J k−n−1 j1j2

σ1 σ k−n w σ1

J1∧ ∧ w σ t−1

J t−1 ∧ w σ t

J t j2∧ w σ t+1

J t+1 ∧ ∧ w J σ k−n−1 k−n−1 ∧ w σ k−n ∧ w0

+

k−n−1

h=1

h=t

k−n−1

t=1

f J1 J k−n−1 j1j2

σ1 σ k−n w σ1

J1∧ ∧ w σ h−1

J h−1 ∧ w σ h

J h j1∧ w σ h+1

J h+1 ∧ ∧ w J σ t−1 t−1 ∧ w σ t

J t j2∧ w σ t+1

J t+1 ∧ ∧ w σ k−n−1

J k−n−1 ∧ w σ k−n ∧ w0

+

k−n−1

t=1

f J1 J k−n−1 j1j2

σ1 σ k−n w σ1

J1 ∧ ∧ w σ t−1

J t−1 ∧ w σ t

J t j1j2∧ w σ t+1

J t+1 ∧ ∧ w J σ k−n−1 k−n−1 ∧ w σ k−n ∧ w0.

(30)

Since the formulas (20), (29), (30) and the symmetry of indexes j1, j2 we have

[] = τ5k p k 4,k−n π 4,2 ∗ ()

=



(f J1 J k−n−1

σ1 σ k−n − d j1f J1 J k−n−1 j1

σ1 σ k−n + d j1d j2f J1 J k−n−1 j1j2

σ1 σ k−n )w σ1

J1∧ ∧ w J σ k−n−1 k−n−1+

k−n−1

t=1

(−f J1 J k−n−1 j1

σ1 σ k−n + 2d j2f J1 J k−n−1 j1j2

σ1 σ k−n )w σ1

J1∧ ∧ w J σ t−1 t−1 ∧ w σ t

J t j1∧ w σ t+1

J t+1 ∧ ∧ w σ k−n−1

J k−n−1

+

k−n−1

h=1

h=t

k−n−1

t=1

f J1 J k−n−1 j1j2

σ1 σ k−n w σ1

J1∧ ∧ w σ h−1

J h−1 ∧ w σ h

J h j1∧ w σ h+1

J h+1 ∧ ∧ w J σ t−1 t−1 ∧ w σ t

J t j2∧ w σ t+1

J t+1 ∧ ∧ w σ k−n−1

J k−n−1

Ngày đăng: 06/08/2014, 05:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm