1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo toán học: "On some continuation problems which are closely related to the theory of operators in spaces $Pi_chi$. IV " pps

27 301 0
Tài liệu được quét OCR, nội dung có thể không chính xác

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 27
Dung lượng 1,06 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

a?RHOH TaRoi rpynne B 6] comocrasnen noTok Wa, te R, H€HCTBVIOIHHH Hà HpOGTpAHOTB© Jle6era Xj, Ho, KOTOpoe HAHOHHH6GRKBM OỐPp830M crpourca no X, 1.. OTOL NOTOK COBIANAGT © TIATKMM HOTORO

Trang 1

J OPER OR oo © Copyright by INCREST, 1985

Hacronnjan Crarba NOcBAIeHa U8y4YeHHO TAaKHX BOMpOCcoB, OHA ABIIA- eron epepaØorkoii namero npenpwnra [19]

TÏpezÐỊe, HeM GODMVUIHPOBATb BOIDOGBI, KOTOPEIE OỐCV?RNBIOTCH BE CTATbO, HAIHOMHHM, WTO GOFJIACHO [ð] BOHRHH MHb€KTHBHHH daxtop M mana [Hạ wsomoppen W*(A, a, Z), GRKDGIIHHOMYV HDOHSB6H€HHPĐ 3/TeỐPĐI

A L®(X, w) rye (X, ð)-1poorpanergo Jleðerna, Ha TDYHHY BTOMODỦUS3MOB 0”, né€ Z, yelictayiomyio Ha 4 GBOỐOHHO u sproguyecku a?RHOH TaRoi rpynne

B (6] comocrasnen noTok Wa), te R, H€HCTBVIOIHHH Hà HpOGTpAHOTB© Jle6era (Xj, Ho), KOTOpoe HAHOHHH6GRKBM OỐPp830M crpourca no (X, 1) OTOL NOTOK COBIANAGT © TIATKMM HOTOROM BĐGCOB, pACCMOTDĐHHHM B [7] OKaatrBaerem ype rpymuer « u aBTOMOp(MaMOB 4 THna lÏÏạy CjA0O0 2RBH- naeHrHm (a sHaunr H W"(A,a, Z) ~ W*(A, B, Z)) Torqa um TOiiIbKO TOPHA, Korma motonu H7,(ø) n W,(B) wawopdHki [6] J[azree, ÿCJIOBHMCR HA8EIBATb H€H- TpaadwaaropoM noroka M,(œ) mHomectBo C(W(a)) < Aut(Xq, ito) Takoe, 4ro ecum ye C(W), To yW(a) = Way, te R

Trang 2

4 8 1 PO2IO71EH

B [7] HORA38HO, WTO GYHI©OCTBYT R8HOHHWGCHHỦH TOMOMODÙHSM

8 — modf us AutW*(A,a,Z) B C(W), aAapy koroporo HDHHA/UI6?7RHT

Int W*(A, a, Z) (Int M ompeseeno s [1])

Tenepb MEI MO?ReM GÿODMY:THpOBATbB BOHIPOCBI, KOTOPBIS DACCMATPHBA- IOTCA B OTOH craTLe

1) aa neaxoro un ốc C(W(M)) cymecrayer ye AutM raKoii, aro mod y=: 6?

2) Ilyerm 6; € Aut M, i= 1,2 uw modf, = modf, == W(M), t #0 nam mod f, == mod £, = id p,(B,) = p, (Bs) = 0, rie p, (8) — acumurotugeckuil nepnog

B [1] Caeyer -m orcioga, ro fp, u By BHeNTHE COIDĐH?R@HEL OTHOGITGIbHO Ấƒ, T.e Jye AutM u ue UCM), rae U(M)—vyunrapnaa rpynna M, ranue, aro

By == Adu-y-Bgry7? ?

(SameTiM, YO OTBET Hà HO7OOHBI BOIPOC HJI HHb€RTHBHOTO aKT0pa

Ta TÍT,, O0 < 2 < |, /AGT THOHYH KCIACCH(ĐHEAHHI KJIAGGOB BH@IHHĐ GOIDR- JK£@HHHX 8BTOMODpH3MOB 6 p, = Ô [2].)

3) Ilyers B;€ AutM, /-:l,2 uw JyeC(W), ragoii, ro mod, =: c= y-modf,-y7! Crenyer cm orcioga, ato ¡ H By BHOIHH€ GOHIDH?RHB oTHocHTembHO M, ecu p,(B;) == 0°

B uacroatteit crarbe /IAHBI OPBGTBI HA H€PBbI€ /1Bä BOIDPOG8 HZIH HpOHđ- HO.IbHBIX HHbOKRTHBHBHX (}aRTOPOB THUA I[I, Hm Ha Tperiii Bompoc — aA HPOM3BOJIBHBIX HHBCRTUBHELX daxtopos M tua Ill), y KoTOpHX HHBBAPHAHT T(M) = (1:6, € Int M1) #0 (cm [8])

Pemenne sonpoca 2) (cm §2), CBO/IHTCH K JoKasareibeTBy TOTO, f0 HIDOM OTOỐPp8/REHIN ƒ > modf? sapcinerca Int Ä

IÏepBEU BOHDpOC PGHIOH B H€€RO:IBRO ð0:160 OỐIHeii (bOpMe, em chopmy- JIHpOBAHO lĨy€rb [Z] — HOIHañØ TpYHHA ABTOMODŸjHSMOB Á, HODO?RKIHHaR

2 [6], a ![z] — ee Hopmadmaarop, re .#[z] = {y€ AutA : y|a]y~! = [a]} lÍonnrHo, dro 66 ye V[a], To y mwanynupyer y, € Aut W*(4,a, Z) B u.3 §1 oRaaaHo, wfo ;In ðe C(M) cymecrpyer y€.fT[e] TaROi, ro mod ? = 6 (em [19]) Bamerum, WTO /IDYTO€ ĐGIIGHI© ĐTOTO B8?RHOTO BOHpOGA vie Woctvaero B [21] (cm rTaRzge [22])

Bonpoo 3) paceMoTpeH ;ữ1 ĐaRTopOB ă ¢ T(M) #0 Ms orpeta ua oror BOlpoc cclenyeT, GTO BCHRHII ye AutAY 6© Pp,(y) =Ũ BHGIHIH€ compamen ¢

yy & Aut M, ipnseM (4) = 4 w | 6 #7[z] B [22] npusegeno nomnoe pemenne BOinpooa 3) n1 aBTOMODÙHaMOB H3 f [2] C HOMOHPbBIO peayabraros [22] MOsKHO JJaTb WOTHOe pettientre BoTIpoca 3) H ;18 @akTopow Tuna Hil, , yro noA- TOTABZHIHAGTGOWT ft IIYỐ/IHRAHHH

Kpome ppeyeHia cratba C0/16pZRHT TpH uaparpada B §I pacemarpn- BAlOTCA HOPMadAHZaTOpbi MO-THBIX TPVIIN 11 aCCONMMpPOBAHHELe NOTOKU, BI 3, § I nam onner na Bompoc I B §2 usyyarorca a € Aut M, y Koroprrx moda = W, nin fe R, B§3 pacemarpuBaiwtca asromophu3smEr daxtopos M c T(M) # 0

fl GaarofapeH peleu3eHTy 38a PA Nome3sHBIX ÿRA88HHH,

Trang 3

ABTOMOPĐH3MBI WHHbEHTHBHDIX ĐARTOPOB THHA ITI, 5

1 AIHPORCHMATHBHO KOHEYHDIE VPYIIibl THUA III,

M WX HOPMAJIM3ATOPHI

4 llyorb Ớ — 04GTHÀ H€GHHTYZIHĐHAH TPYHHa HP€OỐPA80BAHHH TpO- erpaHcrna JleGera (X, B, uw) Uepes (G| o6osnagum nomHy10 rpynny Hpe€- oỐpasopanni (X, B,u), nopompenuyio G (cm [6]) Honnste aproquaecnue TpyEnm [ỚŒ] 1OHYGRKAIOT H/IAGCHÙHRABIIO, AH80THMHVIO TỌ, OT0DAH XOPpOIHO M8B©CTHA J1H (baRTopoB jon Heiimana B nazIbH6iiHI€M MEI ỐYH©€M Hp®HHO/IA- rarb, ro [Ớ] umeer rum IHI, [S] OnpenenM ypoiicrnennyio Gy rpynny IpeoØpaaosanuli nun rpynneri Ớ ([9], [10]), meitcrByroutyio Ha (Xx R, Bx B(R),

dự x< du) c0TJraocHO (ĐODMYI

(1.1) #a(X, M) =: (ex, w ~E log HED ), (x, u)EeXXR

du(x)

llyerb Z — usmepumoe pasdnenne XxR [11], mopompenuoe Gy — MHB8DH8HTHBIMH H3MGDHMBIMH MHO?R©CTBAMH PaccMOTpHM Ha XXR HOTOK T(x, wy) = (x,u+s), (x,u)€ XX<R TaK KAR Tý HROMMWTHDVT © g,€ Gy,

TO MO?RHO paccMoTperb (arrop-norox W,(G) na XxR/Z Torna M,G) — ne- CHHT'VJIIDHEI HaM€DHMbLđ ToToE [9], Ha3bIBA6MBIÍ IOTOROM, 8GC0I1HDOB8HHEIM

c G Cornacno [6], 6074 Ở; — AIIĐOROHMATHBHO KOH©HHH© (A.K.) TDYHHHI npeoốpaaosnannk (X;,, 6) Tuna Ill,, TO Ớy HH G, cnado skBMBaNeHTHE TOTHA

MW TOUKO norxa, Korna W{(G¡) u W(G,) usomopdutt

JIEMMA 1.1 Heau ae W[G], mo % onpeDeasem asmomopduasm moda npocmpancmsca Xy=XXR/F, npuren modae C(W(G)) (cw Beedenue } Omo6pascenue « > moda — zomomopGuss, nOpo Komopozo codepacum, no kpaũnecú atepe, [G]

JH HORA8ATGJIbOTBA /OCTATOHHO 8AMGTHTb, TO ©0GIH œ€.Ý[GŒ], TO a(x, u) = (ax, + logdu(x)/du(x)) npnHanezmnr V[G,] Ocranmbunie pac- OVHIĐHHf HIOHHTHEI

C7IENGTBHB 1.1 Beau fe L°(XxR, wxm), 2em — mepa Te6eza na Ru

HanoMHHM, jlanee, uro corzacno [6] senRan IoHan a.R rpynna [G]

mua lạ aBToMopwaMoB (Ơ, Ư,ø') MOHIGT ỐBITb HDHBSI€HA K 07I61V101I6MV Bunty Iyerp (Q, B,o’) = (X, By, w) xX (Y, By, v), rae — HOH€HHAH H©GIIDG-

Trang 4

6 B H LOTO/EEH phipHad Mepa Ha X, v — o-KROHeuHAM Mepa Ha Y,o=pxXv~o'

S.(x, ¥) = (x, S,), Q,(x, ¥) = (Qx, Uy),

q G€OHfữa/taer 6 OTpaHHnweHHew xi Ha Xạ lÍOHHTHO, HTO HOTOE 7,(x, £) =

== (x,u +5), KOMMyTHpyiomnit c Q,, olpefenner moron W, Ha XX R/¥(Q,) (a aHagnT Wu Ha X,) CaegqoBateIbHO accolyupoBaHHblli noTOR WG) aBainerca CHEWMAABHBIM NOTOKOM G IOTOIONHOH PyHK Wel @(Q~!X) HH ỐA3HOHBIM aBTO- MopdmsMow @~1 [6]

JIEMMA 1.2 Hycme G=(S,, Q,) — epynna muna Il) moavKo «mo onucannozo cuda, « € N[G], npuwen moda=:W,, se R To2da cywecmeyem

Trang 5

ABTOMOPA1)MDI HUƯEERTHBHBIX GAIRTOPOB THA lHIạ 7

te [G] maxot, umo B = t-1x umeem suƠ

20e V, — usmepumoe nose asmomophusmoe (Y, By, v) [6], npuren Ve W[S] u

OV.) = 5 Onn noumu ecex x

Aoxazamenocmeo Ilycth moda = id, torga a onpefennet mpeodpaso- panne XX Y: (x, y) > (x(x, y), v(x, vy) Sametum, uTo @yHRuMH x, uy, WeaMe- PHI, 4@liGrBHT©ZIEHO, ©GJIM E — M8MPHMO© HOHNMHO/R©OTBO ÄÝ, TO H8M©DH- MOCT X„ BbIrekaer I8 ooorHoImeHmn {(x, y)€ XXY : x¿(x, y) 6€ E} = œ~1(EXxY) Tax Kak moda = idua ¥XR/S(Q,), TO AA Boex PyHKIMi M3 L°(XxR), YROBueTROpAION(Mx (1.5), BbUIOMHEHO paBeHcTEBO f(x,(x, y), ứ + Ủ„(x, »)) =f 4),

rne W(x, y) = log (do(a(x, y))/dø(x, y)) Ho Torna (x¿(x, y), # + Wax, y)) H (X, #)

IIPHH8716?&HT OHOïÏi rpaexropuu Q, (cm (1.6)), m.e

x(x, y) = Q"%'x, n(x, y) € Z, (1.8) W(x, y) = Z(n, Y, X),

n

velepb MHomecTBa a&, u QFE B cusy (1.8) X — HocnTenm y Hux coB- IANAIOT, H3 HOGTDOSHHH G2I€HV€T, uTO mMHomecrBAa {vy : (x,y) EaE,} m {y 1 (x,y) € QZE,) HH HOWTH BCexX xX UMeIOT OHHAKROBWIO Mepy v Orcioma enenyet (cM semmy 4.2[6]), aro cymecrsyer s, € [S,] Takoli, wo 5,Q7E, = aE, Pacemotpum tTenepb mpeobpasopanue XxY BH7a

q9) f(x, y) = s,@s(x, y) mpm (x,y) € E,

Tak KHaR ÈF„ — HOHAĐHO He mepecerawrca mu | J]Z„,=XXxỲ, a TâAE?R SaOsE„ (=«E,) — nomapHo He Tepecekalorca u Js, Ore, = XxXY, To B curly 4ieMMEI J[am [12] ? e [G] Ho rorna £~1+ e [G] Ht, GOomee toro, BcIy (1.8) ? 1œ coxpaHneT Mepy o=yuxyv CJI@10BAT€IbHO, / lxe.f[S,]} a Tak Kar (t~ta)(x, y) == (x, yi(x, y)), TO tte = \ @ V,du(x), rne Vy — namMepumoe nome

x

ABTOMOPHU3MOB, IpHWeM 11H -1O9Tn Boex x Ứ¿€ [S]w v- Vy = v Z

Trang 6

§ B 4 1071071211

2 B stom uyHktTe Õ0:166 HOTADÕHO paccmorpumM nomHyio rpynuy [G]

c GOpa3yiomuMy Biya (1.3) B Ip€7U10210?R€HU”H, 410 @(x) = @ (Const) (cm (1.4))

B orom exyyae Oygem ropoputb, WTO Aelicrpue Gua XXY aBaercs# ueprio- IHW€6GRMM

BO3HHR86T BOIPOC HH RARHX OIOBHHX TĐYHHA Ở MO?ZRGT UMeTb I€DHO0/I460RO© 716ÏiGTBH€., TB@T BBID3?EA6TCH B T©DMHHaAX HHBADHaAHTA 7(Œ) (HE HHaue, 7 — MHOZReerBa) 4n Œ |9]: T(G) comepamr Boe te R, y21H KOTODEIX 0VHISOTBV@T B@IHI©CTBGHHAf HSMDIHMANH (yHKHHH ¢(@) TARAH, WTO exp i(€(gw) — €(w)) = exp itlog(do(g@)/do(m)), g€G, roe (2,0) — npocrpaH- crso vledera, B KOTOpoM jeiicrsyer G IloHaATHO, WTO T(G) coBuaqaeT c mHBapnanrom HoHHa 7(M) [2], rae M — darrop suga M = W*(A, G),

=-—-—+*, mie n(a)€ Z CaeqopareabHo Mepa P ABOAeTCA ¿IARVHADHỌL H, Kak 1 B [6], MomHO onpegeanth QO, u S,, jelicrBylome Ha (Xx Y, ux v) npuywemM

XXY=Q, uxv = Pu dP(Q,@)/dP(@) = = n, neN,

IIlycts Tenepb p(t), t¢ R, — usmepumpii norok Ha S=XxYxXR, T©ÏiCTBVIOHIHHI ©OTJIAGHO dopMysie

p(Œ)(x, Vs 1) = (x, y, u + t),

a p(t)—axrop-moror ua Z Tak Kak p(2z/T)e,=e,, T0 B Z GYHI€OTBVGT HO7A21- T€ÕPA II3MGDHMHIX HO/MHO?R€GTB Z,, H€IO/BHZ&HBIX OTHOGHT€IbHO 0(2n/7) =

Trang 7

ABTOMOPOM3MbI WHLBEKTHBHDIX MAKTOPOB THITA Ig >

== p(2n/T) Ha atoii anredpe rpynna p(t) copnayatonjan, ovesugquo, c p(t) HBJIHĐTCH H@ĐHOJHWGCROII c mepuopom 22/7, a nockombKy p(t) — 9pTO- awueckuit noToK Ha Z, ro p(t) — aproxuyecknit noroK na Z,, mocmequee: osHayaeT, uro L(Z,) ~ L™(R/(22/7T)Z)

llyerp Ï — rpynHa aBTOMOPÙM3MOB S, nopommenHaa G, u_ p(t) PaccMorpMuM waMepHMHH rpynnown SXxPƑ [lá] Mnozseerso S¿ = XxY x {0} HIBJII©TGH, O4@BHJ[HO ©TO HOJIHBIM JIARVH8DHBIM OH€THBIM G©@W€HIHM (GM OHIPG eeHHe 2.1 [14]) Tax KaH Ha Š; I1©ÏOTBV€T AHIPOROHMATHBHO KROH€WHAHẳ rpynna G(S,,Q,), To SXIF TAR?R© HIPORCHMATHBHO KOH€HHHII TDYHHOHJL (cm ompey 6.1 w reop 5.3 [14]) nonoốen rpynnonTy SạxŒ

C HDYTỌ GTOĐOHBI, HOHTH RA?£1Ọ TOWR© Z € Z¡ OTB@WA@T H8M€@DHMAH Ò0/i0dEA S, opouret rpynmpr ©, nopompennolt G, u p(2n/T) B cuny paccym7eHuil, HHB€JICHHBIX BBII©, S, Take ABSIAeTCA T0JIHBIM JIAEY- HADPHBIM OH4ƠGTHBIM O@W€HHM JIA rpyntouga Sx, nosromy Sxl TâHRe 1010ðeH Š.X<Ƒ; Ho rDynna Ï;¡ Ha S, wMeer mepwoggeckoe jeiicrsue, Tar Kak G, coxpanaer M€DY, Ø(2m/T7) /I@loTBV6T 3DTOTHUGGRM Hà 8JT@ỐPp€ H3MG- DHMBIX HO/MHO?/KROCTB, HHBADHAHTHBIK OTHOCHTeAbHO G, H YMHOMAeT Mepy

H, Ha S, Ha e~*7/T, npuyem p(2x/T) € W[G,)

ƠGTaA7I0Gb 38M@THTE, W†O IOCKOJIERY TDVNHOIHJI SạXỚ H S,X TT) H0TOỐHM,

IHIPE7UIO?RKEHHE 2.2 Hyeme W, — cnetuasonoii nomorn © Ốđ8HCHbiat asmomoppu3zmMom Q-! u nomosounok Gynnyuett p(x) = @ Ecau % — Gopenes-

ckul, acmomoppusm npocmpancmea (Xy, Mo), 20 Xo = {(x, u) | x€X, 0<u<ø0},

a duty = duxdu, rommymupynoumuii cW, mo % umeem eud

%g(x, w) = (ax, u + p), 2de a € Aut(X, nw), eO = Ox, p = Const

(IHoxoốnoe yTrBep;£eHne ZoKazaHo B [21], cm raxme [19].)

Hoxazsamessemeo Hanomuum, ato

W(x, vw) = (O-"x, u + t — Zn, @)) IIM Z1, @) — w S † < Z{n + Ì, 0) — u, rđ1e Z(n, ø) = @(Q~1x) + + 0(Q~"xỳ (quan 2 0) Noaromy ecau

(2.1) a(x, u) = (x',u,), O< U<@,

TO TOCKONBKY W% = aW,

A (QO-*x, 0) = %W,(x, 0) = Wa9(x, 0) =

= Wx", uy) = (Q~1x', uy).

Trang 8

Ð Xọ Boxee roro, cayuaii %(x,,0) = (x', ứụ), %g(Xs, Ư) — (X”, ve), THE ty F Ue

uw O<4,< 9, UWcKMOUeH, HOGRKOIbRV (x’, v2) = Wu, —u(', u,), @& 3HAYUT (x;, 0) = %ạ "W4, —u đo (x,,0) = (41,4 — 4) HỆ Xị =Agz, =y, Ho Torxa X” — 1z ĐCTb ÕOD@zIEBGRAR (JVHRIHIIT, a BBHTAY (2.2), yHHTBIBAR 9ÐTOTNHNWHOCTb

Ĩ, MO?RHO C716/IATb BBIBOI 0 TOẠI, WTO „ =: p (Const), Ư < p < ø

Pacemorpiim Tenepb asromopdusm ƒ = W „xạ Jlerko BH/I6Tb, WTO B(x, u) = (x0), re x” onpeneneren Tak se, Kak H B (2.1) Ho rorya x—>x' == a(x) ecth aBromop®@usm (X,), KOTOpHH BBHNY (2.2) HOMMY-

TEOPEMA 2.3 Iyems G yOosrembopsem ycnosuas 1emuot 1.2 u, Goce mozo, G umeem nepuoduueckoe Oeticmeue Ecau xe N[G], mo cywyecmeyem té[G] maxott, ymo B = t-1a w.ueem eud

(2.3) B(x, ¥) = (&x, Wy),

2de % — acmomoppuan (X, 2), 2O =Q2, a M„ — UIMCPUMOE NOI G6H10- u0p(uamoe (Y, By,v), npuuen Wye.W[S] 019 noumu ecer x u O(W,) =

= p — log(du(&x)/du(x)), 20e p — Const

SAMEYAHUE 2.4 Ilverh S — aprognaeckiii apromoppusm (Y, By, v), CcOxXpaHAlMii o-RoWeINyIO Mepy v (rpynua Tuma II ) Torga W[S] e046PZRHT O;IHOIADAMGTDPHHGCHRYIO HellpepbIBHy!O Tpynumy aBromopdusmos p(t), te R, TaRKy© ro p(t,)p(t.) = p(t, + t2) m v-p(t) = e'v I[pumep TpYHHBL © TARHATI CHỌOTBAMH MO/RHO HOGTDOHTb C/I6AYIOUHIIMI OỐpA80M lÏycTme G rpynua Tunø lHÏị, a Ớa — 7BolicrBeHHan Tpynna (cm (1.1)), torga G, 0Ố:18/1A6T H?RHHIMH CBOIIOTBAMH ÏÏOHRTHO, WTO Ớ, I€ÏÏCTBY€T ĐDTOTHMĐGEIH, GOXPAHRET Mepy dw(œ, +) = e”“du(œ)du ma Y =(@x<R lĨoTroK OHD€NGIHM COTZIAGHO gopmyue p(s\(@, u) = (w,u — s), torga p(s), se R, u Gy, KommMytTupynr Horasameascmeo meope.we 2.3 Hapagy c rpynnoli G = (S,, Q,) pacemo- tpum rpynuy G’ = (S;, Q,), Koropad welicrayer B upocrpancrse (Xx Y’, nx v’),

Tae (Y’, v’) — Takoe we, Kak I B 8aM@waHum 2.4, a (X, ), KAK H ÿ TPYHNMI Ớ

Sex, y) = (x, Sy),

Q,(x, y) = (Ox, Uz),

Trang 9

ABTOMOPG@HOMbI HHBbERTHBHBIX (ĐARTOPOB THHA HH 11

rne Ủy = ø(®(U,)), p(s) — aproMopjwaM n3 f[SŠ], pAaOGMOTp€HHHH B 3aMme- waHHH 2.4, a &(U,) = @ — log(du(Qx)/du(x)) [lonnrHo, aro y G’ acconuupo- BAHHEBLH notroK W(G’) HM@ĐT B KAWECTB© HOTO/IOHHỌ (YHEKHHHM @(X) = @, a B taqeGrBe ỐasancHorO aBToMop(HaMa Œ, T.e W(GŒ') = W(G) Ho rorna B cuny peayabTarop [6] rDYHHBI G u G’ cua6o skBuBaneHTHE Tlosromy 6e3 orpa- HUYeHHA BE OỐHIHOOTH MO?RHO HD€HHO2IO#Tb, uro U, = p(®(U,))

Ilyerh tenepp œ„€.f[Œ], Torna moda, — asromopdusm (Ấp; Hạ), KOoMMyTupylommi c WG) B cuny upeqnonomenun 2.2 (moda,)(x, u) =

= (ax, u-+ p), re x — apromopd@usm (X, 4), KomMyTupyromuit c QO Tlonomuu

(2.4) B(x, y) = (ax, p(p — log (du(ex)/du(x))y)

B cusy cxBolicrs p(s) (cm sameyanue) Ø,€.#T[S] lloKazreM, aro

0,8, == P,Q„ Jleiicrsurenbuo, Tak Kak

fy) cs 1X, — log —=— — log ——— ?

(Ø;8,⁄x ») (ox o(o — oe u(x) Jp (? _ |

x,y) = [aOx, pl p — log HE? — tog SHE),

(BQ, \X; y) (so: "|? og đo Mị» og uo )>}

TO B CHIY CBOHCTB HĐOH3BOHHBIX PAHOHA paste HAGTH aTux paBeHCTB

©oBna/taor, T.e O,8, = 8,Q, Ho torga „€.#f[S] m y„ = „6z°c ÝTG), upu4em mod y, = 1d C2I61OBAT@JIbHO, a, = ÿ„„ DB cwzry zIeMMBI 1.2 CyHIeCT- Byer /€[Ớ], raRoli, ro (~'y,)(x, y) = (x, Ứ¿ÿ), rne OV.) =0, Ho ToTHA t-ta, == (t~1y,)-B, BBMJAV (2.4) đ6JIA6M BBIBOIT O GIĐAB€7IHBOGTH (2.3) ZY

3 I[pu qonasaresperse 2.3 ỐEIIO HOKA88HO, B HACTHOCTH, ITO BCHKOMY aBTOMOpwaMYV « us C(W), rue M⁄, — GH@IIHAJIbHEUÍ HOTOR c mocToAHHOit

TIOT07104H0lf ÿHRIINGII, OTBeqaeT aBTOMOD(HäM a, € W[G] taxol, aro moda, =a, rye G — rpynma, WA KoTopoli W apuaerca CGOHHHDOBS8HHEIM HOTOROM dloxaskem sToTr pesyubtaT B oOmjeM Cary4ae

TEOPEMA 3.1 Hycmb (Xq, tig) — npocmpancmeo, ¢ Komopom Oeticmeyem cheyuatonei nomor WG), accouuuposanneiii c epynnoli G, asmomoppuanoe npocmpancmea Jlebeza, a « — acmomoppuas (Xp, to) us CCW), v.€

To20a cywecmeyem ở e [G] mawoă, wmo mod & => a

(ƯMGTHM, 4¥TO Teopema yrBepmyaer pesyubrar oOparHbiii uemme 1.1.) IIPEBJNHO/REHHE 3.2 ÏÏCmb evinoanensi npeOnononcenua meopemo 3.1 amuocumedsuo a, a M = W*(A,G) — gaxrmop muna Illy, komopoiii acanemca

Trang 10

12 B A POCTIOEIE

cRpeMmeHHes npouscedenues A = L°(XxY,uxv) na epynny G = (S,, Qg} (cst (1.3)) Toeda cywecmeyem % € Aut M maxot, umo mod % = &

(20 Hp/LI07R€HH© 7OKazaHO copmectHo c C WM BeayT:IHM.)

Aoxazameavemeo HanomHun, 470 X, ects {(x, ä) |x € X, 0 < ứ < ø(Q~1x)}, djto(x, u) =: du(x)du Paccmorpum nwa X, mepy &:

(3.1) dk(x, u) == e~*du(x) du,

a B WpocrpanctBe (X)xY,kxXv) paccmoTpumM rpyniry

Sex, u 9) = (eu SY),

roe S — oproqnuecniii asromop@usm (Y, ¥), COXDAHHHIHHH o-KOHeUHYyIO Mepy v (Kak 1B (1.3)), npuuem Oynem npep~Noaarats, uro (Y, v) H S onpexe- JIĐHEI TAK ?©, RAR II B 3AM©SaHRHH 2.4

llyorb U, = ø(®(Ú,)), rne ø onpeneeno s8 3aMewuanmn 2.4, Ú, w„ ®(Ữ,) — rakiie ae, kak u B (1.3) Torga U, ROMMVTHDVIOT M€ZRHV GOƠỌ 71H H.B

aH82I0THWHO onpesennetca O(Z(/, U-}, x)) gaa 1] < 0

PaoceMoTpHM notok W(t) B HĐOGTpAHGTB€ (Xạx<Ÿ, &kx v):

Trang 11

.ABTOMOPЮII3MbI HHbERTHBHDBIX PAKTOPOB THITA Hy 13

B cuny Takoro onpefesenua V, moroK Wit) € W[S] ana te R, Gonee TOrO, Wt)S = SW(t), te R Haureli yesbw ỐVR€T pACHIIDGHH€ ở WO ABTO- Moppusma a, wpocrpancrBa (X)xY,kxXv) raKoro, WTO a, W(t) = W(t)a, "

a, € V[S] Iponenaem BGHOMOTATGIIbHBI BBIHHGJICHHRH

W(t)—1d(k Xv) dk x v)(W (x, u), Vix + Oy)

log (x, u, y) = log d(& x 9)(x, , y)

og dk(W,(x, u)) + log dv(V(x, u + fy) _

k

- (x, 4’)

Trang 12

= log dk (WG, u)) + log — 2 — (ate, u)) +

rye (x’,u’) «= a(x, u) JleiicrsurerpbHo, nockoapRy V(x, u): > ZU(x, u), U-4, x),

a U, =» p(®(U,)), to V(x, u) = p(ZU, u), (Uz), x)) = p(P(V(x, u))) Oveiona,

yuureran (3.5) u (3.6), Baroy (3.7) Ho roraza

(3.8) x(x, H, y) = (a(x, 1), Pœ?)

-— 8BTOMODHAäM „(XoxY, kx9), TIPHHA/1.16:t811W† MN (S] H ROMMYTIIPY1OHUIET

B GH¿IVY (3.7) © Wit), teR Caegonarenpno, & OHp@RN€:IR€T ABTOMODH3M op

Trang 13

AHTOAOIPG®113A1BI 1IHUbBEHTHBHBIX MAKTOPOB THIEA IL, 15

(bartopa M ’ KoTopsili ABJIACTCH CKPeUICHHEIM WpousBesenHuem L*(X)x Y, kx v)

na S, a satem Ha W(t), te R

Ilyctb — œKpemeHHoe npowsBexeHne L™(Xy)xY, kX v) Ha S, TOr1na

N — Il,,-aure6pa, ee cueyq 0Ø0gHaqunM wepe3 r lĨoTOR W(t), tŒR, HHHy- 1npyer rpynny 0), £e R, àroMopjaMoB W, npHweM 8 ©HJ1Y (3.4) r - Ø(f) = e7't, 0JI910BAT©7IbHO, 718 M=Ww *(N, 0, R) MBI HMeeM H€IP€PEIBHOG pa3smomenne

\looromy raaqKuii noroK Becos yaa M copnagaer c W(t) (cm ra IL memma 1.4 [7])

Ma nocrpoeHHH Đ cienyer, aro N — aHHPĐOKCHMATHBHO KOH€HHAR

ˆ

(uum unpbenTuBHad [13]) anreOpa Tuna IT Ho rorga M Traxme HHb€RTHBHHH MakvTop, WOCKONbRY OH ABUIACTCA CKPeleHHLIM mpousBegeHuem N Ha amena-

^

ỐØenemnyo rpynmy ero asnroMopwawos R [13] Ho rorna M ~ M, tax KâR

VY HUX HOTORH B©OOB I80MOPÿHBL ( (cm [5], [6]), TaRHM o6pasom, BCAKOMYy

Horxazameavcméeo meopeme 3.1 ipemye Bcero 3ametum, uro B cusy (3.4)

a

pas6uenue mpocrpancrna (X,XY,kxv) wa opbuTe W(t), te R, usmepumo Jleitcrsureabno, paccmorpum W(1) Torna pBBHxy (3.4) cormacHo aemme /lan (cm xemmy 8.8 [15]) pas6uenue (X)x Y,4x v) Ha Tpaextopun Wl) 18M6GDMMO QỐốoaHawIM 83P0 pA3ÕỐHeHwe 4©p©3 Z¡ H pA©€GMOTPHM Hã (AKT0D-HĐOGTDAHGTB© X)xXY/F, woTok Wit), te R Tak Kak Wil) Ha XạXY /Z¡ HBJIHGTCH TO?RH@GT-

Wo, u) = (@,u + 0)

Tak nan B gaMewaHHH 2.4 Gy u p(t) KOMMYTUPYIOT, TO Us OnpeneneHuA Ww (cM (3 3)) MomHO HpequonaraTh, WTO Su Wit), té R, xommytupyiot Ho or7a 5 OIĐ©TG7InN€T 8BTOMOP(ĐHSM S, PakTop-npocrpaHcTBa (@xø) PacHIHpMM

S, 0 aBToMopusma Sy mpocrpanctaa 2<, I071074MB So, u) = (S\o, 4),

Ngày đăng: 05/08/2014, 15:21

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm